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Abstract

Numerous financial problems can be posed as nonlinear Hamilton-Jacobi-Bellman (HJB)
partial differential equations (PDEs). In order to guarantee that the discretized equations
converge to the viscosity solution, the required conditions are pointwise consistency, [,
stability, and monotonicity. We use the positive coefficient method, choosing central dif-
ferencing as much as possible, to construct a monotone scheme. Fully implicit timestepping
method is used because it is unconditionally stable. However, this method generates non-
linear algebraic equations. To solve the nonlinear algebraic equations, we must find the
optimal control that maximizes the objective function at each node. In this paper, we
will investigate three methods to numerically find the optimal control: the linear search
method, Brent’s method and the LQ (Linear, Quadratic) method. We also investigate a
new discretization method, which results in a continuous local objective function. We il-
lustrate these methods using a pension plan example. Numerical experiments indicate that
both Brent’s method and the LQ method outperform the linear search method. The LQ
method is preferable to Brent’s method because Brent’s method requires convex functions
in order to guarantee convergence.
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Chapter 1

Introduction

Many financial problems can be treated as optimal control problems, resulting in nonlinear
Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). Typical examples
of nonlinear HJB PDEs include American options [6], passport options [9] and unequal
borrowing /lending costs [3]. In general, there are no analytical solutions for nonlinear
PDEs. However, there exist many approaches in which numerical methods can be used to
solve such PDEs.

Kushner proposed an approach that is based on a controlled Markov chain approxima-
tion [7]. A Markov chain is essentially equivalent to an explicit finite difference method.
Due to the timestep limitations of an explicit method, implicit methods have been devel-
oped. In this essay, we focus on the implicit discretization method described in [3, 9].

Usually, a nonlinear PDE has many solutions, so it is necessary to ensure that the
discretization converges to the financially relevant solution termed the viscosity solution
[1]. It can be shown that the viscosity solution is the solution to the problem posed
as a dynamic programming problem. The required conditions for discrete schemes to
ensure convergence to the viscosity solution are pointwise consistency, [, stability, and
monotonicity [9]. The theoretical proof can be found in [3].

To construct a monotone scheme, we use the positive coefficient method. All the
cocfficients depend on the choice of using central or upstream differencing for the drift
term (i.e., the first order derivative term). In terms of the convergence rate, for smooth
functions, central differencing results in a second order method, and upstream results in a
first order method. To discretize the PDE, we should use central differencing as much as
possible in order to achieve a high convergence rate (at least for smooth functions). We
use upstream only when the central differencing generates negative coefficients [9].
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In order to have an unconditionally stable scheme, a fully implicit timestepping method
is commonly used. However, the implicit method gives rise to nonlinear equations at each
timestep. Therefore, we need a method to solve nonlinear algebraic equations. A common
technique is policy iteration [8], which approximates the solution by solving linear equations
at each iteration. To ensure that the policy iteration converges, we must find the optimal
control. Since the discretization at each node is a function of the control, finding the
optimal control means searching for the control that maximizes the local objective function
at each node.

In this essay, we will examine three different methods to numerically determine the
optimal control.

The first method is linear search, originally proposed in [9]. Since the coefficients of the
local objective function at each node depend on the control, the type of discretization (e.g.
central or upstream differencing) may change and this results in a discontinuous objective
function. Wang [9] suggests discretizing the control (assuming the admissible control space
is compact) and then using linear search.

In order to ensure convergence as the grid is refined, we increase the number of discrete
controls at each refinement. As the controls are refined, linear search becomes expensive.
The main purpose of this essay is to investigate two optimization methods that can improve
efficiency when finding the optimal control.

Since choosing between central or upstream at each node and timestep depends on the
control, the local objective function is in general a discontinuous function of the control.
However, with the weighted average discretization [6], the local objective function is a
continuous (but non-smooth) function of the control. We will use this method [6] in this
essay.

The first local optimization method we investigate is called Brent’s method [4]. How-
ever, this method is not guaranteed to converge unless the local objective function is convex.
We will demonstrate that, in general, the local objective function is not convex, even with
the weighted average discretization.

The weighted average discretization is piecewise linear or quadratic. Thus, we can
determine the local optimal control of each piecewise interval easily and then compare
them to determine the local maximum. We will term this method LQ (Linear, Quadratic)
in the following chapters. This technique is guaranteed to converge.

As an example, we will use the pension plan model [2] to demonstrate the above meth-
ods.

The main results of this essay are the following:



We outline the discretization of the pension plan model [2].

We show that the weighted average discretization [6] generates a continuous local
objective function.

We implemented the linear search method as in [9] to validate the discretization
method.

We compare two techniques for computing the maximum of the local objective func-
tion at each node: Brent’s method and the LQ technique.



Chapter 2

Preliminaries

In this essay, we use the pension plan model in [2] in order to illustrate the numerical
techniques. We outline this model in this chapter.

2.1 Background of the Pension Plan Model

The default strategy for most pension providers is deterministic lifestyling. Initially, all
contributions are invested into high-risk assets such as equity funds. At a predetermined
date, for example, ten years before retirement, the contributions will be transferred grad-
ually to low-risk assets such as cash and bond funds. The purpose of this strategy is to
hedge market fluctuations in the long term and provide a positive return to investors at
the maturity date [2].

However, the above strategy is not optimal in terms of maximizing the terminal return.
Cairns et al [2] proposed a new strategy to ensure an optimal terminal utility. The key
feature taken into account is the plan member’s lifetime salary. Thus, instead of maximizing
the total wealth, the purpose is to find the optimal utility, which is a function of wealth and
salary. This optimal asset allocation dynamically adjusts the proportion invested between
the low-risk and high-risk assets according to the plan members’ stochastic salary. The
control in this example represents the proportion of the pension wealth invested in risky
assets. More details about this stochastic model are described in [2].



2.2 Stochastic Model

Suppose there are two different underlying assets in the pension plan: one is risk-free (e.g.
a cash or bond fund); the other is risky (e.g. an equity fund). The risk-free asset B(t) can
be priced as follows:

B(t) = B(0) exp(rt), (2.1)
where 7 i1s the constant risk-free rate of interest and ¢ is the time.

The increment of the risky asset follows the stochastic differential equation (SDE):

dS(t) = S[(r+§101)dt+01d21], (22)

where 7, is the standard Brownian motion, oy is the volatility, r is the constant interest
rate, and & is the market price of risk.

Every year, plan members contribute a fraction of m of their salary Y to the pension
plan. We assume that the increment of salary Y at time ¢ follows the SDE:

dY(t) = (T + /Ly)Ydt -+ UyUYdZO + O_YIYth (23)

where py, oy,, and oy, are constants, and Z, and Z; are two independent Brownian
motions.

The plan members’ pension wealth is denoted by W (¢). In this case, the control variable
is the proportion ¢ of the wealth invested in the risky assets. It follows that the proportion
invested in the risk-free assets is 1 — ¢q. The wealth process follows the SDE:

dW (t) = W[(r + ¢&101)dt + qo1dZ, ] + wY dt. (2.4)

As explained in the previous section, our goal is to maximize the terminal utility,
u(W(T),Y(T)), which depends on the terminal salary and terminal wealth:

(2.5)

%(V;/((ZT,)) 2 where v < 1 and v # 0 '
( when v = 0



Define the ratio of the wealth W (t¢) and the salary Y (t) as X(t) = W(t)/Y (¢), and
then apply Ito’s Lemma to formulate the SDE for X(¢):

dX =[r 4+ X(—py + qo1(& — oy1) + a%l + U%/O)]dt
— Upong + X(QO‘l — 0y1)le. (26)

Define J(t,z,q) = Eu(X,(T7))|X(t) = z|, where X, () is the path of X given the
optimal control ¢(t). We work backwards from the terminal time 7" and set 7 =T — ¢. It
follows that

Ve, 1) = sug Eu(X,(TNHX(T —71)=1x] = sug J(T—T1,2,q), (2.7)

where Q is the set of admissible controls.

Equation (2.7) mathematically shows that the goal is to maximize the terminal utility
with the optimal control. Following standard techniques, the solution of Equation (2.7) is
equivalent to the viscosity solution of the HJB PDE:

1
V.= SUP{Ung + _<U:?:)2Vm}v (2'8)
q€Q 2

subject to terminal condition

Loy where v < 1 and v # 0
pu— p— "Y 2.
V(z,7=0) { log(x)  when 5 = 0 } , (2.9)
where
pl =+ a(—py + qo1(& — oy1) + oy +0vy), (2.10)
(09)? = 2*(oo + (901 — 0v1)?). (2.11)

The derivation of equation (2.8) from equation (2.7) is presented in [1].



2.3 Boundary Conditions and Terminal Condition

By substituting z = 0 into the PDE in (2.8), we obtain

Viz =0,7) =7V5. (2.12)

As x goes to infinity, the boundary condition becomes

V(z — oo, 7) =0. (2.13)

when v < 0. For v > 0 (a case not used in this essay), we can use the terminal condition
as a Dirichlet boundary condition as x — oc.

For the purpose of computation, we restrict x to the domain [0, Zypax], Where xpay is
large enough that it does not affect the solution.

Since the terminal condition in (2.9) is undefined at x = 0, we modify the terminal
condition by replacing x by max(z, €), where € is a very small positive number. Consider
the case when ~ < 0, then the modified terminal condition becomes

V(e,7=0)= { (2.14)

%max(a:, €)7 where v < 0
log(max(z,€))  when vy =0

Tests show that € = 1073 results in solutions, which are accurate to at least seven digits
[9].



Chapter 3

Discretization

3.1 Implicit Discretization

The general form of this optimal control problem is

V. =sup{LV}, (3.1)
a€Q
where we define

and the coefficients a(x, 7, q), b(x, 7,q) and c(z, T, q) are:

1
a(w,7,q) = 5(0D)% bl,mq) = s e(w,7,9) = 0. (33)
We apply the fully implicit timestepping method, which is unconditionally stable, to
discretize this HJB equation. We discretize the computational domain x;, = = 0,...,m;
7" = nAr. The discrete solution at each node (z;,7") is denoted by V", which is an
approximation to V(x;, 7). In addition, we define V" = [V, ..., V»].

b m

Using fully implicit timestepping, we obtain

V7b+1 - ‘/ln
ZT = Sup{(ﬁqvn+1)i}. (34)
€Q
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After applying finite differencing to discretize the drift term V, and the diffusion term
Vi in Equation (3.4), we obtain

|

A = sup{af gV + BT (VD — (o TN @) + 87T )V

A 7
q€Q
(3.5)
Depending on the choice of using central or upstream differencing of the drift term, o and
£ have different expressions at each node ¢ and timestep n.

Central differencing gives

{ [od]? [1d]i }
Q; central = -
(Tz - -?Ti—l)(-??i+1 - -%'—1) Tit1 — Ti—1
o2 )
5i,cen ral — |: == + g . 3.6
! ($i+1 - CIIi)(SIJiH - 13171) Tit1l — Ti—1 ( )

Upstream differencing (forward /backward differencing) generates

ozl —[pd]s
i,upstream — Tt O’ e
Qi upst {(% e Cop— + max( o Ii—1)
lodl; )i }
i,upstream — = + max 0, — % ). 3.7
P [(xiﬂ — ) (Tip1 — xi-1) ( Titl — mz) (3.7)

3.2 Boundary Conditions

Recall that at x = 0, we have

Vi(x=0,7) =7V,. (3.8)
This PDE can be discretized by forward differencing;:

vt v vt v
=T .

AT Tit1 — T4

According to the boundary condition (2.13), V' =0 at & = Zax.

9



3.3 Matrix Form

For computational purposes, we define V"*! = [Vt .. V2] and Q! = [¢f 1 ..., ¢,
where every q'i”Jrl is a local optimal control. Then we can write the right-hand side of Equa-
tion (3.5) in the matrix form as

[An—H (Qn—H VTH—I)VTH_IL‘

= o gV BT @YV = (@ T @) + BT )V, (3.10)

(2

where 0 < 7 < m.

To completely construct the matrix A, we need to modify the first and last row to
satisfy the boundary conditions as stated in Section 3.2. Thus, the general form of the
matrix A is

[~ (mljmo) (mlimo) 0 07
aq —o1 — B B 0 0
0 ' ' 0 0 0
A= 0 0 o —O; — 6z ﬁz 0 0
0 0 0 ’ ’ - 0
O O Om—1 —Om—1 — 6m71 Bmfl
0 0 e . .. 0 0 |
We define
Fn-H (Q, Vn—i—l) — A”H(Q, Vn+1)Vn+1. (3.11)

Then the approximation of V, V" = [V, ..., V']', at each timestep can be updated in the
matrix form as

[] . ATA”+1(Qn+1, Vn+1)]vn+l _ vn, (312)
where
QM =g, ', (3.13)
and
' = argsup{[F"TH(Q, V"), }. (3.14)
4€Q

10



3.4 Monotone Scheme

To construct a monotone scheme, it is important to ensure that the discretization (3.10)
is a positive coefficient discretization [3]:

oM gy >0, g >0, i=0,..,m and VYge Q, (3.15)
where m + 1 is the total number of grid points.

In this section, two discretization methods will be discussed: using central differencing
as much as possible and weighted average.

3.4.1 Using Central Differencing As Much As Possible

We want to use central differencing as much as possible because this method converges at
a higher rate than using only upstream [9]. The algorithm for using central differencing as
much as possible is stated in Algorithm 1.

Algorithm 1 Using Central Differencing As Much As Possible
if A central Z 0 and /Bi,central 2 0 then

Q; = QY central and 51 = Bi,central
else
Q; = QG ypstream and ﬂl = Bi,upstream

end if

3.4.2 Weighted Average

The basic idea of the weighted average discretization is to use a combination of central and
upstream differencing. The smallest possible weight is used for upstream weighting, which
results in a positive coefficient method.

The weighted average discretization is given in Algorithm 2.

There are three possible algebraic expressions for «; and §; which depend on the fol-
lowing cases:

11



Algorithm 2 Weighted Average

forido =1,2.3,...
w=1;

if QG central < 0 then

Qi upstream

w =

Q4 upstream — X4, central

else

if 6i,central <0 then

Bi,upstrcam

w =

- Bi,upstream_ﬁi,central

end if

end if

Oy = W * O central + (]- - U)) * QY upstream

Bi =w * ﬁi,centrul + (]- - U)) * ﬁi,upstream

end for

12



1. Q; central 2 0 and Bi,central 2 O;
2. Qj central < 0 and ﬁi,central > 0,

3. O central > 0 and ﬁi,central < 0.

It is impossible to have both @ centrai < 0 and B; centrar < 0 because, when «; centrar < 0,
we have

q)2 q].
(xz' - 331—1)(«T¢+1 - xi—l) Tit1 — Ti—1
and then
q12 q].
ﬁi,eentral - ] — [O-L]L — + . [M_L]Z . > 0. (317)
(xH—l xz)(xz—&—l xz—l) Tit1 Ti

SimﬂarlYa when Bi,central < 07 then QA central > 0.

If & centrar = 0 and i centrar = 0, We can use just & centrar a0d 5; centrar as the coefficients:

A = O central

/Bi = 5i,central- (318)
When @ centrar < 0, we have
a1, o412
gl o4
Tiy1 — Ty ($i+1 - xi)<xi+1 - 371'71)
. [0 ) 02
(i —zio)(Tip1 — 1) (0 — @im1) (Tig1 — T4)
_ [mdh
Tit1 — X4
= Biwt- (3.19)

SimﬂaﬂYa when ﬁ@centrul < O,

13



—[pdli [o3)?

o; = +
Ty — Tj—1 ($i+1 - xi)(xi-i-l - I¢—1)
. [0 ) 02
(-Ti - xz’fl)<xi+l - xifl) (sz - xzel)(iﬂzurl - xz)
s
Ty — Ti—1
= Qapt
pi = 0.

14

(3.20)



Chapter 4

Iterative Solution Method

Equation (3.12) is a nonlinear algebraic equation resulted from the implicit timestepping
method. A popular approach for solving nonlinear algebraic equations at each iteration is
policy iteration.

4.1 Policy Iteration

The algorithm for policy iteration is shown in Algorithm 3. To avoid excessive computation
when the value is too small, the term scale in Algorithm 3 is one for plans priced in dollars.
We also assume the weighted average discretization is used, in which case A = A(Q), as
opposed to using central differencing as much as possible [5].

The detailed proof of the convergence of this iteration is described in [8]. The following
is a brief sketch of the proof. First, the iteration step in Algorithm 3 can be rearranged as

[[ _ ATAn+1(Qk)]<Vk+1 - Vk)

_ AT[An+1(Qk)Vk _ An+1(Qk71)Vk]. (4.1)
We have
¢ = argsup{[F"*1(Q, V)], (4.2)
qeq

15



Algorithm 3 Policy Iteration

(V) = v

VE — (V'n,-i-l)k:;

for k = 0,1,2,... until converge do
[I — ATA™LH(QM)VFH = v,
where Q" =[5, .., ¢3.]";

¢t = argsup{[F"(Q, V)] )
q€Q
|Vik’,+1_‘7k|

if (k> 0) and (m;dx e (aale UFFT < tolerance) then
quit
end if
end for

16



where F(Q, V™) is defined in Equation (3.11), and we denote [F"*1(Q, V*)]; as the local
objective function at each node.

Equation (4.2) indicates that ¢* is the value maximizing [F"*(Q, V*)];, so any other
control cannot maximize the objective function, e.g. qf_l. Hence, the right-hand side of
Equation (4.1) is non-negative, i.e.,

AT[AH—H(QIC)VIC o An—i—l(@k—l)f/k]i > 0. (43)

In addition, it is easy to verify that [I — ATA"T(Q¥)] is an M-matrix because it
has positive diagonals, non-positive off-diagonals and is diagonally dominant. By the
property of an M-matrix, the inverse matrix of an M-matrix is non-negative, i.e., [I —
ATA(QF)]"! > 0. Knowing these two results, we can conclude that V*t! — V% > 0,
which means we have a non-decreasing sequence. From [8], we know that Vk is also a
bounded sequence. Hence, we prove that this iteration converges to the solution.

Note that the key step in this proof is to verify that the control ¢ at each iteration
maximizes the objective function [F"*1(Q,V*)];. Consequently, in next chapter, we will
focus on three different numerical methods to find the optimal control.

17



Chapter 5

Optimal Control

In this chapter, we discuss and compare three methods of computing the optimal control.
The first method is linear search, which is introduced briefly in Section 5.2. In the case
that the weighted average discretization is used, we have more flexibility regarding the
choice of optimization method. We investigate two alternative local optimization methods
to find the optimal control in the following two sections: (i) Brent’s method; and (ii) the
LQ method.

5.1 Continuity of Weighted Average

The objective function, which needs to be maximized at each node, is

[FHQ VI = af T @)VE + BT @)V — (@f M @) + 57T )V, (B

7

where «; and (; are functions of the control q.

If we follow Algorithm 1, using central differencing as much as possible, we obtain a
possibly discontinuous objective function of the control ¢ at each node since the type of
discretization (e.g. central or upstream differencing) may change. Figure 5.1 shows an ex-
ample of a discontinuous objective function using Algorithm 1, where the subinterval before
and after the discontinuity is formed by upstream and central differencing, respectively.

However, a continuous function can be achieved by using the weighted average dis-
cretization specified in Algorithm 2. Figure 5.2 demonstrates an example of a continuous

18
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Figure 5.1: Discontinuous objective function of the control (using central as much as
possible)

(but non-smooth) function of the control, in which the subinterval before the change point
is shifted to weighted averaging, but after the change point, it uses central differencing.

According to the three cases discussed in Section 3.4.2, the weighted average discretiza-
tion manipulates the objective function to the following form:

[E:ent]i = ai,(ie’rl,t'l‘(l,l(‘/i—l - V;) + /Bi,(:ent'ra,l(‘/;?—f—l - V;) if (ai,(JBTLtT'(Ll Z O) and (ﬁi,cent’ru,l Z O)

[Fwt]i - ﬁi,wt(‘/i—l—l - V;) if (ai,central < O) and (ﬁi,central > 0)

[Fwt]i = ai,wt(‘/ifl - ‘/z) if (ai,central > 0) and (ﬁi,central < 0)
where «; ,; and f; ,; are defined in Equation (3.19, 3.20).

We can mathematically prove that the weighted average algorithm generates a contin-
uous function. The potential discontinuities occur when ; centrar = 0 OF 35 centrar = 0. Let
us first consider the case when ; centrar = 0. In this case, we have (from Equation (3.6))

4] (1]

(xi - xi—l)(«rz‘ﬂ - %—1) B Titr1 — xi_l’ (5'2)
> T, (5.3)
(; — @i-1) o
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Figure 5.2: Continuous objective function of the control (using weighted average)

Substituting Equation (5.3) into the expression of f; .+ in Equation (3.19) gives

PO ) S o2
Tit1l — Ti—1 (l"z'+1 - xi)(l'iJrl - %71)
1 [od]?
+ (IH—I _ IL) [ IUJ;I:]l - (IL xi—l)]
I 047
Tit1l — Ti—1 ($i+1 - xi)(-%'iJrl - %71)
= Bicentrat- (5.4)

Since ﬁi,central = ﬁi,wt at A central = 0, [Fcentral]i = [Fwt]i at the pOtential discontinuity;
therefore, the objective function is continuous when o centrar = 0.

Analogously, when f; centrar = 0, it follows that

[Ug]g _ —[pd]; ‘ (5.5)

($¢+1 - fbi)(wiﬂ - SUz‘—l) Tit1 — Ti—1

By manipulating the expression of a;,; in (3.20), we can show easily o centrar = Qiwt
at B centrat = 0. Therefore, we conclude that the weighted average algorithm generates
continuous (but non-smooth) objective functions of the control.

In the following, we use the weighted average discretization.

20



5.2 Linear Search

In this model, the control ¢ represents the fraction of the wealth invested in risky asset.
Thus, a rcasonable range of the control can be set as

Q = [07 Qmax]- (56)
g cannot become infinitely large in practice, so we choose the g, to be large enough such
that it does not affect the results [9].

The idea of the linear search method is to non-uniformly discretize the control in the
above range [0, gmax]. We want to choose more points in the domain [0, 2] because infor-
mation changes quickly in this range. The optimal control, the one that maximizes the
objective function, can be found by performing a linear search.

Originally, this method was proposed in [9]. We implemented and verified the claimed
results. The linear search method is very easy to implement, yet costly to run. In terms
of performance, computing the objective function is the most time-consuming part of the
process. The bottleneck of the linear search method is that as the number of controls
increases, the time complexity increases proportionally. This fact will be demonstrated in
Section 6.2.

5.3 Brent’s Method

Brent’s method is a hybrid numerical method of finding extremes (maximum/minimum)
by combining golden section search and inverse quadratic interpolation, and retains the
advantages of both and achieves a stable and high convergence rate [4]. The details of
Brent’s method are shown in Appendix A.

We implemented Brent’s method to find the optimal control of each local objective
function and the results are demonstrated in Chapter 6. Nevertheless, Brent’s method
is not guaranteed to converge unless the objective function is convex/concave. Generally
speaking, the objective function is not always convex/concave even with a weighted average
discretization.
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Figure 5.3: Example of weighted average

5.4 the LQ Method

Recall that after applying the weighted average discretization, the objective function be-
comes

[Fcent]i - Oéi,central(‘/ifl - V;) + Bi,central(‘/;Jrl - ‘/7,) if (ai,central Z O) and (5i,central 2 0)
[Fwt]i = ﬁi,wt(‘/iqtl - ‘/z) if (@i,central < 0) and (5i,central > 0)
[Fwt]i — O-/z’,wt(‘/;—l - VYZ) if (ai,ccntral > O) and (ﬁz’,ccntral < 0)

Since the second order term ¢ appears in both a;cenirar a0d Bicentrar, [Feent)i 15 a
quadratic function of the control g. Similarly, [F,]; a is a linear function of ¢ because f; 4
and «;,, contain only the first order term ¢. As illustrated in Figure 5.3, the weighted
average discretization is piecewise linear or quadratic: central differencing gives a quadratic
function of the control, and weighted average generates a linear one. The curve is contin-
uous but not smooth.

In order to find the maximum, the first step is to determine the change points. The
change points occur when o centrar = 0 0r 5 centrar = 0. Recall the equation for a; centrai

q]2 q].
[O-m]z _ [H’:c]l . (57)
Ty — 1) (Tig1 — Tim1)  Tig1 — Tioa

Q& central = (
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After expanding Equation (5.7), we can see that o centrar i @ quadratic function of the

control q:
_ 2
QG central = Aad + baq + Ca,

where

. wio}
(zi — i) (@i — Ti1)
by, = —2%20101/1 - CUiUl(fl - UY1)(CU¢ - Ii—1)
(Ii - Iifl)(l’zﬂrl - %71)
Co = rio% + wioty _ 7T+xi(_MY+U%/0+U)2/1)‘
(%‘ - mi—1)(51%‘+1 - 33i—1) ($i+1 - $z‘—1)

Similarly, B; centrar 1 also a quadratic function of the control:

Bi,central - a5q2 + be + Cs,

where

2

_ x;of
= (3Ui+1 - 1’i)($i+1 - iUzel)
by = —2zf010y1 + 201 (& — oy1)(@ip1 — )
($i+1 - 33@)(%‘4-1 - IL’z‘—1)
cp = xiov + wiovy 7T+xi(_/~LY+‘712/0+012f1)‘
(Tit1 — i) (Tis1 — Ti-1) (Tig1 — Ti1)

(5.8)

(5.10)

(5.11)

Consequently, determining the change points is equivalent to finding the roots of the
above equations (5.8, 5.10). Since both ; centrar and B; centrar are quadratic functions of
the control ¢, each has, at most, two real roots. Thus, four real roots are in the interval

[0, ¢max] &t most according to the property of quadratic equations.

The next step is to determine the local optimal control of each piecewise interval. If
the subinterval is linear, the local maximum must be at either end point, so we substitute
the two ends into the corresponding objective function and choose the end point with the
higher function value. If the subinterval is quadratic, the local optimal control, i.e., extreme
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point, can be determined explicitly from the quadratic objective function. Note that the
extreme point may not lie within the range of [a, ¢]. When this happens, the maximum is
at one of the end points of the interval.

Now that we have the local optimal controls of all piecewise intervals, the final optimal
control ¢ will be the one that yields the largest function value.
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Chapter 6

Numerical Results

The parameters used in the pension plan model are shown in Table 6.1. All the experiments
in this chapter are based on the weighted average discretization.

Table 6.1: Parameters used in the pension plan example. The time is in years.

tolerance | 1077
€ 1073
Jmax 200
Tmax 80
My 0
01 0.2
Oyo 0.05
T 20
& 0.2
Oy1 0.05
T 0.1
¥ -9

In Table 6.1, tolerance is used to determine the terminal condition in Algorithm 3;
Tmax 18 the largest value of x in the domain; ¢, is the maximized value of ¢ used in the
linear search method.
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6.1 Verification of the Linear Search Method

In order to verify the validity of the linear search method in [9] and use it as a basis for
the comparison of those two improved methods, we implemented the linear search method
(with the weighted average discretization) and present the results in Table 6.2.

Table 6.2: Results for the linear search method

x — Node | ¢ — Node | Timesteps(N) | Utility
x=0

189 109 640 -0.003653053

377 217 2560 -0.003580836

753 433 10240 -0.003563587
x =1

189 109 640 -0.000431663

377 217 2560 -0.000426846

753 433 10240 -0.000425619

The numerical results obtained in Table 6.2 are extremely close to the results reported
in [9]. In this experiment, we refine the grid by inserting a grid node between every two
grid nodes and reduce the timestep size by four.

6.2 Numerical Results for Brent’s Method and the
LQ Method

After verifying the basic method (linear search), we examine the other two methods, Brent’s
method and the LQ method. Table 6.3 demonstrates the experimental results. In this
experiment, we insert a grid node between every two grid nodes and reduce the timestep
size by two at each level of refinement.

The first column in Table 6.3 represents the number of grid nodes in x, the second
column the number of timesteps (i.e., N = T/A7), and the third column the utility. As
the number of grid nodes and timesteps increases, the utility values computed by all three
methods converge. These methods yield consistent results, agreeing with each other up
to seven digits. Hence, we conclude that these two improved methods converge to the
viscosity solution, as expected.
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Table 6.3: Numerical results for three methods: linear search, Brent’s and LQ

x — Node | Timesteps(N) | Utility
x=0
Linear Search
95 320 -0.003859615
189 640 -0.003653053
377 1280 -0.003606185
753 2560 -0.003582497
Brent’s Method
95 320 -0.003827772
189 640 -0.003651308
377 1280 -0.003605979
753 2560 -0.003582445
LQ
95 320 -0.003827772
189 640 -0.003651308
377 1280 -0.003605979
753 2560 -0.003582445
x=1
Linear Search
95 320 -0.000459486
189 640 -0.000431663
377 1280 -0.000428345
753 2560 -0.000426739
Brent’s Method
95 320 -0.000456354
189 640 -0.000431528
377 1280 -0.000428313
753 2560 -0.000426732
LQ

95 320 -0.000456354
189 640 -0.000431528
377 1280 -0.000428313
753 2560 -0.000426732
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In terms of performance, computing the objective function costs the most. Therefore,
the improvement made by Brent’s method and the L(Q method focuses mainly on decreasing
the number of times the objective function is evaluated. The number of evaluated functions
at each node and each timestep is shown in Table 6.4.

Table 6.4: The number of evaluated functions at each node and timestep

Refinement Linear Search Brent’s Method LQ
I=1 28 30 5
[=2 55 22 4
[=3 109 17 4
I[=14 217 14 3
I[=5 433 13 3

The first column in Table 6.4 is the level of refinement. For instance, I = 1 means
the number of grids in x — Node is 48 and the timestep is 160. As the level of refinement
increases, a new grid node is inserted in between every two grid nodes, and the timestep
size is reduced by two. The rest of the three columns contain the number of evaluated
functions at each node and timestep for all three methods, respectively.

As indicated in the second column (in Table 6.4), since the linear search method eval-
uates the objective function for each possible control, the number of evaluated objective
functions increases as the grid is refined. Again, computing the objective function involves
the most time, and the linear search method has expensive computational cost.

The third column in Table 6.4 indicates that the number of evaluated functions for
Brent’s method decreases as the grid is refined, thereby resulting in reduced computational
cost. As the grid is refined, central differencing is used more often, making the objective
function smoother. Mathematically speaking, using central differencing requires o; centrar >
0, which means

(#; — 21 ) (g1 — Tim1) — Tip1 — Tioq
which is equivalent to
o
L—} > [pdli- (6.2)



As the grid is refined, the denominator (x; — x;_1) in Equation (6.2) becomes smaller,
making the left-hand side in Equation (6.2) larger. Additionally, as noted in [2], because
the amount invested in the high-risk assets (i.e., ¢(t)x) converges to zero as = goes to zero,
the coefficients (02 and u?) in Equation (6.2) are bounded. Consequently, it is easier for
Equation (6.2) to hold.

The smoother the objective function is, the more often inverse quadratic interpolation
is used compared to golden section search. With inverse quadratic interpolation being
more efficient, fewer evaluations are needed to find the optimal control.

The last column in Table 6.4 indicates that the number of evaluated functions for the
LQ method also decreases as the grid is refined. The change points in the LQQ method occur
when & central = 0 01 B centrat = 0. Because of the choice of the parameters shown in Table
6.1, Bi centrar 18 always positive in this experiment (according to the expression of §; centrar i
Equation (3.6)). Thus, @ centrar = 0 is the only case where the change points can possibly
occur. In the worst case, there are six evaluations at each node and timestep: two at each
change point; plus two at the end points, 0 and ¢,,4.; plus two at each quadratic interval.
As the grid is refined, central differencing is used more often (as discussed above), and we
will have even fewer change points than in the worst case scenario.

In conclusion, Brent’s method and the L(Q method outperform the linear search method.
Since the LQ method does not require a convex objective function in order to guarantee
convergence, this method is preferable to Brent’s method.
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Chapter 7

Conclusion

Numerous financial problems can be formulated in nonlinear Hamilton-Jacobi-Bellman
(HJB) partial differential equations (PDEs). There is no analytical solution for a nonlinear
HJB PDE. Therefore, we need to find numerical solutions by discretizing the PDE. Usually,
we do not have unique numerical solutions. Hence, some techniques are needed to ensure
that the discretization converges to the viscosity solution. The required conditions for
convergence are pointwise consistency, [, stability, and monotonicity.

A monotone scheme can be constructed by a positive coefficient method. The equation
coefficients depend on the choice of using central or upstream differencing. In practice,
we use central as much as possible because of the high convergence rate. A fully implicit
timestepping method is used because it generates an unconditionally stable scheme. Nev-
ertheless, the implicit method produces nonlincar algebraic equations at cach iteration.
Thus, policy iteration is used to solve the nonlinear discretized equations. To make sure
that the policy iteration converges, finding the optimal control (which maximizes the local
objective function) is required.

We first verified the linear search method as originally proposed in [9]. The linear search
method is easy to implement but has expensive computational cost. Since the linear search
method evaluates the objective function for each possible control, the average number of
evaluated objective functions at each node and timestep increases as the grid is refined.
Most of the computing effort is spent on evaluating the objective functions, so the linear
search method is expensive.

To achieve better performance than the linear search method, we propose two new
methods: Brent’s method and the L.QQ method. With the numerical results converging to
the viscosity solution, it can be concluded that the two improved methods correctly find
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the optimal control. Furthermore, we find that the number of evaluated functions at each
node and timestep for both Brent’s method and the LQ method decrease as the grid is
refined, thereby improving the computing speed. This is because, as the grid is refined,
central differencing is used more often, smoothing the objective function.

In summary, Brent’s method and the LQ method outperform the linear search method
in terms of computational efficiency. The LQ method is preferable, since it does not require
a convex objective function.

When we use the LQ method in this model, the objective function becomes either a
quadratic or linear function of the control. If the objective function is more complicated,
this problem will be hard to solve. The basic idea of using the L method is still to
separate the intervals and treat them individually. Solving complicated functions of the
control for each piecewise interval is considered future work.
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Appendix A

Brent’s Method

Brent’s method is a hybrid numerical method for finding extremes (maximum /minimum)
by combining golden section search and inverse quadratic interpolation.

Inverse quadratic interpolation requires three known points, say (a, f(a)), (b, f(b)) and
(¢, f(c)). Then we can apply inverse quadratic interpolation through the above points
to estimate the extreme point, which in this case is the minimum. This estimation is
formulated as follows:

~ (b—a)?[f(b) — f(0)] = (b —c)*[f(b) — f(a)] (A1)

2(b = a)[f(b) = f(e)] = (b= ) [f(b) = f(a)] '
Inverse quadratic interpolation converges fast but becomes unstable easily. Therefore, we
need another method, golden section search, to supplement it.

=b

In golden section search, we need to have three points a < b < ¢ such that f(a) > f(b)
and f(c) > f(b) and

— o~ 16 A2
b, = (A.2)

This initial set-up brackets the searching interval in [a, ¢|. The next point d can be evaluated

by

= . (A.3)
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The updated search interval depends on f(d). More specifically, if f(d) is greater than
f(b), the subinterval should be [a,d]; otherwise, it should be [b,¢]. After updating the
subinterval, we repeat the computation as illustrated in Equation (A.3).

Golden section search is more stable than inverse quadratic interpolation, but much
slower. Thus, Brent’s method takes the advantages of both and achieves a stable conver-
gence of high rate. If the new estimated point evaluated by inverse quadratic interpolation
is not “reasonable” as specified in [4], it switches to golden section search; otherwise, it
keeps using inverse quadratic interpolation to maintain a high convergence rate.
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