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Abstract

The quadratic assignment problem (QAP) is one of the most difficult NP-hard prob-
lems, and so far there is no efficient exact algorithm that can solve large QAP instances in
a reasonable amount of time. Prior studies have shown that the semidefinite programming
(SDP) relaxation is able to provide extremely tight lower bound to the QAP. Prelimi-
nary results suggest that the alternating method of multipliers (ADMM) can solve the
SDP relaxation much faster than the previous primal-dual interior-point method, which
has difficulty solving the SDP relaxation efficiently and accurately. Such promising re-
sults motivated us to implement a branch and bound algorithm, the most successful exact
algorithm for the QAP, based on the ADMM method for the SDP relaxation.

Our empirical results show a dramatic reduction in the number of visited nodes by either
breadth first search or depth first search in our branch and bound algorithm. This reduction
demonstrates the effectiveness of the ADMM method for the SDP relaxation, and enables
us to apply our algorithm to large QAP instances. In fact, our results are comparable to
some of the best existing branch and bound algorithms using different bounds, indicating
the potential of a new efficient and robust exact algorithm for the QAP.
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Chapter 1

Introduction

In this paper, we study the quadratic assignment problem (QAP), and propose a new
branch and bound algorithm that is efficient and able to solve large QAP instances. The
QAP was introduced by Koopmans and Beckmann in [18] to model the facility location
problem. A QAP instance usually contains the flows between n facilities, the distances
between n locations, and the costs of putting facilities at specific locations. The task is to
find the best planning such that the sum of flows multiplied by distances plus location costs
is minimized. It is well known that solving the QAP itself and finding an e-approximation
are both NP-hard problems. The detailed proof can be found in [9]. Problems with
size n = 30 are still considered hard to solve as Burkard et al. commented in [8], “All
main algorithm techniques for the exact solution of NP-hard problems have been used for
attacking the QAP: decomposition, branch-and-bound, and branch-and-cut. The QAP,
however, bravely resisted.”

Recent progress in exact algorithms is largely due to branch and bound approaches [9].
However, the performance of such method depends on efficient bounding procedures. The
trade off between a tight bound and fast calculation has been the most intriguing topic
in this field. Among all relaxations, the semidefinite programming (SDP) relaxation for
the QAP proposed in [29] has been verified to provide competitive or even best bounds
for a few QAPLIB [7] instances such as the Hadley [17] problems and the Taillard [28]
problems [9]. Nevertheless, the popular approach, namely the primal-dual interior-point
method, has difficulty solving large problems and obtaining high accuracy results. There-
fore, implementing branch and bound based on such an approach would fail inevitably in
terms of computation time, despite the benefit of getting a tight lower bound from the
SDP relaxation.



Some weaknesses of the above method have been addressed in a new study of the
alternating direction method of multipliers (ADMM) for solving the SDP relaxation.
By adding non-negativity constraint, they manage to show that ADMM can obtain high
accuracy results in a significantly less amount of time than the p-d, i-d approach. In fact,
the new method provides the best known lower bound for almost all test instances from
QAPLIB [24]. The promising results from their study motivate us to implement a branch
and bound algorithm based on the new ADMM approach.

The ADMM method is updated in this paper to include a new stopping criterion that
takes advantege of the branch and bound setting. Several combinations of the maximum
number of iterations and the tolerance are tested in a grid search for optimal branch and
bound performance. The empirical results in Chapter 4 suggest that our new branch and
bound algorithm is able to take advantage of the new ADMM bounding strategy, and
provides a possible way of solving large QAP instances. In particular, the number of
visited nodes is dramatically reduced from previous branch and bound algorithms using
classical bounds and is comparable to the best existing algorithms in [1, 3, 4].

The rest of this chapter includes a detailed introduction to the QAP, branch and
bound, and the ADMM. Many mathematical operators and definitions used by this paper
is introduced in Section 1.4. We provide a derivation of the new ADMM algorithm for
the SDP relaxation in Chapter 2, which is the underlying theoretical motivation for this
paper. Then we introduce our new branch and bound algorithm in Chapter 3, in which
we define our node selection strategy in Section 3.1, branching strategy in Section 3.2, and
our full algorithm in Section 3.4. Chapter 4 provides implementation details and numerical
results of our mew branch and bound algorithm. Chapter 5 gives a brief summary of our
conclusions and some potential improvements of our algorithm.

1.1 The Quadratic Assignment Problem

The earliest formulation of the QAP by Koopmans and Beckmann [18] is
min D> Fidimt) + D Cintiy: (1.1)
i=1 j=1 i=1

where p is a permutation of {1...n}, f;; is the “flow” from facility ¢ to facility j, dj; is the
“distance” from location k to [, and c¢;; is the “fixed cost” of putting facility ¢ in position
k. If we simultaneously assign facility ¢ to location k and facility j to location [, we incur



the cost f;jdp + fjidi + ci + ;. If all ¢’s are zeros or equal, as in many instances in the
QAPLIB, we call the problem the homogeneous QAP.

The original settings in [18] lead to the famous facility location problem. Dickey and
Hopkins proposed a similar campus planning problem in [12]. Another famous engineering
problem formulated as QAP is the turbine balancing problem [8]. The goal of that problem
is to minimize the distance between the center of gravity and the axis of the runner, which
has also been proved to be NP-hard. The most renowned combinatorial optimization
problem, the traveling salesman problem (TSP), can also be formulated as a QAP. In
this formulation, D = (dj,;) is the distances between cities and F' = (F};) forms a cyclic

unit flow, e.g., ' = I. Then the Koopmans-Beckmann formulation for the TSP can be
written as

min DD fuduoni- (1.2)
i=1 j=1
This result can be used to prove that the QAP is an NP-hard problem since it contains
the TSP as a special case. Some other applications of the QAP, including computer man-
ufacturing, scheduling, parallel and distributed computing, and statistical data analysis,
just to name a few, can be found in [8, 9, 26].

In this paper, we consider the equivalent trace formulation of the QAP [13] with sym-
metric and 0-diagonal flow and distance matrices:

Py = )I(Iélnri tr (FXDX' +20X"), (1.3)

where F' = (f;;), D = (d) € S™ are real symmetric n x n matrices, C' = (¢;;) is a real

n x n matrix, and II,, denotes the set of n x n permutation matrices. This formulation was
used to derive the eigenvalue related bound in [14], which is still one of the tightest lower
bounds for the QAP. For other formulations of the QAP, see [8, 9, 26].

Example 1.1. Suppose we have the following QAP instance.

0 2 3 4 0O 15 14 13 16 15 14 13
2 0 7 8 15 0 10 9 9 10 11 12
F=ls 7 0 1200P= |10 0 5[ ™C=1g 7 6 5
4 8 12 0 13 9 5 0 1 2 3 4
01 00
) . . 0010 .
Given a permutation matrix, X = 100 ol we can compute the corresponding
00 01

objective function by (1.1). The assignments here are facility 1 to location 2, facility 2 to
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location 3, facility 3 to location 1, and facility 4 to location 4. The objective value is

PP=02x10+3x154+4x9)+2x10+7x14+8%x5)+(3x15+7x 14+ 12 x 13)
+(4x94+8x5+12x%x13)+2 x (15 + 11+ 8+ 4) = 866.

Alternatively, we compute the objective function by (1.3).

023 47010070 15 14 13] [0 1 0 0]"
o | (207 8100 10/ 115 0 10 9] )00 10
X 37 0 12| |1 0001410 0 5[]t 000

4812 0ollooo1]|13 9 5 o|llooo1

16151413 010 0]"
Con 10 11 12 {0010
5111 00 0

41100 01

101 62 80 49 30 28 32 26
_ | 177 188 131 100|202 18 24

178 90 299 62 14 12 16 10

260 208 172 232 4 6 2 8

= 101 + 158 + 299 + 232 + 30 + 22 + 16 + & = 866.

The results are consistent with the fact that the trace formulation (1.3) is equivalent to
the Koopmans-Beckmann formulation (1.1).

The optimal value of this example is 724 with X* =

S O O
S O = O
_ o O O
O = O O

It is well known that the set of permutation matrices II,, is equivalent to the following
two intersections [26]

I, =0,NENN,=2,NENO,, (1.4)
where O,, = {X € R™™ : XTX = I} is the set of orthogonal matrices, Z, = {X : X2 —
X;; =0,Vi,j=1,...,n} is the set of (0,1) matrices, &, = {X € R”": Xe = X'e = e}
is the set of doubly stochastic matrices whose row and column sums equal to one, and

={X e R : X > 0} is the set of non-negative matrices.

In the next chapter, we derive the SDP relaxation of the QAP as shown in [24, 29],
starting with the intersection of those sets.



1.2 Branch and Bound

Even though 54 years have passed since the branch and bound for the QAP was first
introduced by Gilmore in [16], this algorithm remains the most effective exact algorithm for
the QAP [9]. Nearly all successful methods for the QAP can be categorized as branch and
bound algorithms [8]. It is a tree-based model wherein each node represents a subproblem
generated in the branching phase. The upper and lower bound of the subprobelm are
calculated according to some relaxation in the bounding phase. The algorithm then decides
whether to prune the current branch or subdivide the problem even further by assessing
the lower bound.

In the branching phase, the algorithm needs to select a subproblem to process and then
subdivide the problem into even smaller subproblems. The selection strategies have been
explored for many years, including problem-independent, instance related branching, max
lower bound branching, and min number of nodes strategies. However, there is no clear
winner in practice [8].

The oldest and probably the simplest branching rule is single assignment branching
proposed by Gilmore in [16]. This rule is still the most efficient one, and some development
has been proposed on node selection methods based on different bounding strategies. As
the name suggests, this method allocates an unassigned facility ¢ to an available location j
according to some selection rule. Then two branches (leaves) of the node (root) are created
— one assigning i to j (a) and another preventing the assignment (u). The subproblem at
(a) is a smaller QAP, whereas the one at (u) is the original QAP with some modification
to prevent the assignment. This modification can be easily done by bumping C(7, j) up to
a large number and thus making the assignment ¢ to j come with an unbearable fixed cost.

The pair assignment branching puts two facilities at two locations each time, but its
performance in practice is not as good as the single one. Mirchandani proposed the relative
positioning method in [21], in which the partial permutation at each node is determined
by distances between facilities instead of assignments. Empirical results show that this
method may be appropriate for sparse QAPs, but in general single assignment branching
still outperforms this method |8, 26].

In addition to the above three classic branching rules, Roucairol proposed another
powerful branching rule called polytomic or k-partite branching [27]. This method assigns
an available facility to all possible locations at one level, or alternatively, uses an available
location to host all possible facilities. For a QAP of size n, if we choose facility ¢ in the
beginning, then the method creates n branches, in which ¢ is assigned to location 1,2,...,n
respectively. The size of all subprobelms at this level is n — 1, and thus those problems are



easier to solve. The depth of the branching tree is at most n—1 and the number of nodes is
at most Zz;i (nﬁ—'k, The branching tree created in this way is naturally suited for parallel
computing since afl branches of a level can be computed independently and pruned after
all computation for one level is done. In fact, the parallel computing implementation of
the polytomic branching solved nug30, a Nugent probelm [22] of size 30, for the first time
in 2000 [6].

The success of any branch and bound algorithm depends on its bounding technique,
especially the effectiveness of the lower bound. The calculation of the lower bound often
involves solving relaxations of the original QAP. The ideal lower bound should be tight
but computationally inexpensive. However, such bound rarely exists in practice, resulting
in the failure of many branch and bound algorithms [29]. Due to computation limits,
the Gilmore-Lawler bound (GLB) have been the only bound implemented in branch and
bound algorithms for a long time [9]. The GLB s efficient for QAP instances of size up
to 24, but the growth rate of the branching tree, together with the poor quality of the
bound, eventually eats up the computational advantage. Therefore, it is impossible to use
GLB in a branch and bound algorithm to solve large QAP instances such as nug27,/28/30
[2]. Many new bounds have been proposed since the GLB came out, including eigenvalue
based, linear programming based, and reformulation based bounds. For a survey of the
lower bounds, see [2, 9].

In this paper, we use the lower bounds from the SDP relaxation. This type of bounds
have been verified to be one of the tightest bounds up to date, but it is generally too
expensive for branch and bound algorithms [9]. Recently, this disadvantage is addressed
in [24], in which Oliveira et al. proposed a new ADMDM method for calculating the lower
bounds. Their empirical tests show that the computation time has been dramatically
reduced comparing to the original interior point method. This improvement makes it
possible for us to implement a branch and bound algorithm based on their new method.

The last step in a branch and bound algorithm is pruning. We use the global minimum
upper bound (the incumbent value) as the cutoff point, which are updated in the bounding
phase. Then any nodes with their lower bounds greater than the incumbent solution are
deleted. To speed up branch and bound algorithm, we would want to prune a branch
as early as possible, and that is why the tightness of the lower bounds are crucial in the
algorithm. In general, as the size of the problem gets larger, it is impossible to visit all
nodes within a reasonable time frame.

Among the existing implementations, parallel computing implementation seems to be
most successful in recent development [9]. nug30 was first solved with a computing grid
of more than 1000 machines over a one-week period, witch is equivalent to seven years



of computation on a single fast workstation [6]. Even with the improvements done in
[1], nug30 still requires 2.5 CPU years to solve. Although hardware advances play an
important role behind the solution of large QAP instances, we want to point out that the
improvement is not possible without good new algorithms.

1.3 The Alternating Direction Method of Multipliers

The ADMM was first introduced in the mid-1970s with some early ideas emerged in
the mid-1950s. Most theoretical results for this method have already been established in
the last century. However, ADMM remained in theory for a long time due to hardware
constraints. Recent improvements in parallel and distributed computing systems have
brought ADMM back to light. We introduce the basic idea of the ADMM as shown in
[5] using the following minimization problem.

Example 1.2.
min f(x) +g(y)
s.t. Ar+By=c (1.5)

where z € R*,y € R, A € R**" B € R*™ and ¢ € R¥. We further assume that f and
g are convex. Next, we introduce a multiplier z ~ Ax + By = ¢. Then we can write the
augmented Lagrangian for (1.5) as

Ly(w,y.2) = f(x) + g(y) + 2T (Aw + By — ) + 5| Az + By — ||
The ADMM then performs the following update iteratively:
x4 =arg min L,(z,vy, 2),
Yy, =arg xmin Ly(xy,y,2),
y
zy =2+ p(Azy + By, — o).

0

As we can see above, The ADMM borrows some ideas from dual ascent method and
the method of multipliers. However, it is different from the other two methods that the



two primal variables, z and y, are updated in an alternating fashion. While the joint
minimization may be very difficult, the separate update is often much easier to carry
out. It is also worth mentioning that ADMM does need separable objective function.
we show in Section 2.2 that we can manipulate the constraints if the original function is
non-separable. For a survey of the ADMM, see [5].

1.4 Preliminaries

We denote the set of n x n symmetric matrices by S™; symmetric positive semidefinite
matrices by S ; symmetric positive definite matrices by S7} . II is the set of permutations,
and TII,, is the set of n x n permutation matrices. For X € R"*" vec(X) € R™ is a vector
constructed by stacking the columns of X, and diag(X) € R™ is the vector of the diagonal
entries of X. For z € R™, Mat(z) € R™™ is a matrix whose columns are made up of every
n elements in z, and Diag(z) € R"*" is a diagonal matrix formed from the corresponding
entries of x.

Definition 1.1. Let E and F denote some Hilbert spaces. Let A : E — F be a linear
mapping between the two spaces. The adjoint operator, A* : F — E, is defined such that

(Az,y) = (z,A"y)  VxcE,yeF,

where (-, ) is the inner product. [

Note that vec(:) and Mat(-) are adjoint operators to each other, as well as diag()
and Diag(-). As we have defined previously, O,, = {X € R™" : XTX = [} is the set of
orthogonal matrices, Z,, = {X : ij —X;; =0,Vi,j=1,...,n}is the set of (0, 1) matrices,
E, ={X € R™" : Xe = X'e = e} is the set of doubly stochastic matrices whose row
and column sums equal to one, and N,, = {X € R™" : X > 0} is the set of non-negative
matrices. X oY is the Hadamard product, i.e., element-wise product, of two matrices of
the same size.

The trace of a square matrix X, tr(X), is the sum of the elements on the main diagonal
of X. We use the following properties of the trace operator in our paper.

e tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)
o tr(Y'X) =tr(X'Y) = Z” XijYiy = Zi,j(X oY)

o (X.Y)=tr(YTX)



o tr(XY) = vec(Y)T vec(X) = vec(X) " vec(Y)

Suppose X € R™™ and Y € RP*Y. The Kronecker product of those two matrices,
denoted X ® Y, is defined as:

XuY o XY
XeYy=| 1 ..
XV o XY

We use the following properties of the Kronecker product in our paper.

e (A®B)(X®Y)=AX® BY

e vec(FXD) = (D" ® F)vec(X)

e (XY) =XTeY"

o tr( X ®Y) = tr(X)tr(Y)

For Y € S, Y > 0 refers to the Lowner partial order, that is, Y is positive semidefinite.

Similarly, ¥ < 0 indicates Y is negative semidefinite. The usual ¥ > 0 is used to suggest
all entries of Y are non-negative.



Chapter 2

The New ADMM Algorithm for the
QAP

In this chapter, we introduce a new bounding strategy for the QAP based on the SDP
relaxation and the ADMM algorithm in [24]. This strategy relaxes the searching space

from I1,, to S’f“, and then reduces to SS:FDQH after facial reduction. If the solution of the
SDP relaxation is also in the original search space, then the original QAP is solved. Since
the relaxation usually does not solve the original QAP, we get a lower bound from solving
the relaxation and an upper bound from approximating the closest feasible solution.

An efficient and tight lower bound is crucial to the success of any branch and bound
algorithm. The SDP relaxation related bounds in [29] have been shown to be among
the best existing bounds. However, it is not suitable for a branch and bound method
when solved using the primal-dual interior point method. In Section 2.1, we derive the
SDP relaxation following a similar procedure as shown in [29]. Then in Section 2.2, we
introduce the new ADMM algorithm. The numerical experiments in [24] have shown that
this new algorithm is much faster than the p-d i-d approach, while still maintains decent
accuracy and tightness. Finally, the last two sections are dedicated to the actual lower and
upper bound used in our branch and bound algorithm.

We make extensive use of mathematical operators and symbols in this chapter. Please
refer to Section 1.4 for notations and definitions.

10



2.1 A Derivation for the SDP Relaxation

We start with the trace formulation (1.3) and replace the set of permutation matrices using
(1.4).

Py = m)}n tr(FXDXT +20XT")

st XXT=XTX =1 (0)
[ Xe —el* + || XTe—el*=0 (€) (2.1)
X2 —X;;=0,Vi,j (2)
Then we introduce the following Lagrange multipliers:
Sy~ XX =1,
S, ~ XTX =1,

uy ~ || Xe—e|>+ | X e—e||* =0,

The Lagrangian for (2.1) is
Lo(X, Sy, So, g, W) =tr(FXDXT +2CXT) + S(XXT — 1)+ S,(X"X — 1)

+uo([[Xe —el*+ (| XTe —ell?) + Y > Wiy(X] = Xyy)

i=1 j=1
=tr(FXDX" +20X ") + Sy(XXT =)+ S,(X"TX — 1)
+uo(|| Xe|* + || X Tel|* = 2T (X + X e + 2n)
+W[(XoX)T —XT].

Next, we homogenize the X terms in Ly by zgs.t. 2 = 1 and introduce another multiplier
wo ~ x4 = 1. Then we can rewrite Ly as

L1(X, Sy, So, o, W,wo) =tr(FXDX ") + S, XX T + S, XTX +up(]| Xe||? + || X Te||)
+W(X 0o X)T +word — tr(Sy) — tr(S,) — 2moupe (X + X e
+ 2x2ugn — tr[zo(W — 20)X ] — wy.
_ Lo n?+1 _ «wo n2+1
Let y = [vec(X)} eR and w = |:V€C(W):| eR . Then
L(y, Sy, Soy 0, W,w) = tr (y" (Lg + B° Diag(5y) + O° Diag(S,) + ugK + Arrow(w)) y)
—wg — tr.S, — tr.S,,

11



where

|0 vec(C)T
@~ lvec(C) D@ F |’

. 0 0
BODlag(Sb) = I® Sb‘| )

S, ® 1
r 1,7
Wo —aWr,
Arrow(w) = 2 ,
@ =1, Dmg(c«;l:)]
[ n —el & el n —e' & el
K__—e®e I®F + —e®e FE®I

The dual problem of (2.1) can then be written using Ls:

d’ = max minZLs(y, Sy, Sy, ug, W,w
V' SSeuoWew y (Y, S, o, tt0, W)
= max —wy — trS, —tr.S, (2.2)
Sp,80,wo0

s.t. Lg + B Diag(Sy) + O° Diag(S,) + ugK + Arrow(w) »= 0.

Now, we introduce a new matrix of multipliers Y for the only constraint in (2.2), and
write yet another Lagrangian as:

L5(Y, Sy, So,up, W,w) = YT (Lg + B? Diag(S,) + O° Diag(S,) + ugK + Arrow(w))
—wo — tr S, —trS,.

We can now obtain the final SDP relaxation by taking the dual of (2.2):

= 1mi Y. . 2.
Pro mx}nsb,slfﬁffw,wﬁ?’( , Sy So, ug, W, w) (2.3)

Before we write the final SDP relaxation, we need the following adjoint operators:
bO Dlag(Y) = Z }/(k,:)(k,:)a
k=1

o’ Diag(Y) = Z Ny
k=1
arrow(Y') = diag(Y) — 0 .
}/(2:,1)

12



Then the SDP relaxation of (1.3) is
m}in tr (LqY)
s.t. b"Diag(Y) =1
o’ Diag(Y) =1
tr(KY) = 0
arrow (Y') = Eqyo
Y = 0.

Theorem 2.1. [29, Theorem 2.1] Suppose thatY is restricted to be rank-one in (2.4), i.e.,

=

11 1 27 y ‘ | |
Y = L} [x} = LE xxT} for some x € R™ . Then the optimal solution of (2.4) provides
the permutation matriz X = Mat(z) that solves the QAP. A

The above theorem establishes the link between the SDP relaxation and the original
QAP, enabling us to find the closest feasible solution using the relaxed solution. Note
that the SDP relaxation is very tight since dy < py, < p, where pp, is the dual of the
dual d;.

y

Proposition 2.1. [29, Proposition 2.1] Suppose the Y is feasible for the SDP relazation
(2.4). Then'Y is singular. <

Since all feasible solutions are singular, the set of the feasible solutions for (2.4) has no
interior. This may cause instability when implementing any kind of interior-point method.
The SDP relaxation of QAP presented in [29] uses facial reduction to guarantee strict
feasibility. The so-called minimal face of the semidefinite cone is defined by a full-rank
matrix V € RO*+Dx[(n=)*H1] given ag

- 1 0
P~ b ver) 2

where V' is an n x (n — 1) matrix containing a basis of the orthogonal complement of e,
i.e. VTe = 0. The feasible solutions for (2.4) can then be characterized as Y = VRV,

where R € Sgﬁ_l)QH. It has been shown in [29] that the block-0-diagonal and off-0-diagonal
operators have many redundant constraints. Therefore, the gangster operator is introduced
to remove all redundant constraints and provide a tighter SDP relaxation.

13



Definition 2.1. [24, Definition 2.1] The gangster operator, G : S*’*! — §"°*1 is defined

as
0 if (4,j) € Jor (j,i) € J
Y, otherwise

G,(Y)ij = {
where the gangster index set, J, is the set of of indices i < j of entries in Y (given in
Theorem 2.1) corresponding to:

e the off-diagonal elements in the n diagonal blocks;

e the diagonal elements in the off-diagonal blocks except for the last column of off-
diagonal blocks and also not the (n — 2,n — 1) off-diagonal block (These latter off-
diagonal block constraints are redundant after the facial reduction).

Before we write the final SDP relaxation, we need the following theorem to show that
all constraints in (2.4), except for the positive semidefinite requirement, are redundant
after adding the gangster operator.

Theorem 2.2. [29, Theorem 4.1] Let Y = VRV be written in block matriz form as given
in Theorem 2.1. Then

1. G;(Y) = 0 implies that diag(Y"") = 0, ..., diag(Y""~V) = 0, and diag(Y "*=2:(n—1)) =

0,
2. Let J = JU(0,0). Then G;(V - VT) has range space equal to Sy = {X € S¥*! .
Xij=0if (i,5) ¢ J}.
A
Now, the final SDP relaxation is
Pry = m}%n tr ((VTLQV> R)
S. t. QJ (VRVT> = EOO (26)

R > 0.
12
Note that we reduce the search space from Sf“ to SS:L D
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2.2 The New ADMM Algorithm

To apply ADMM to the SDP relaxation (2.6), we need an additional primal variable since
the objective function is non-separable. In the previous section, we facially reduce Y to
VRVT and obtain a smaller problem. Here, we can add Y back as a primal variable and
write (2.6) equivalently as

Pry = 1}{11;1 tr(LoY)
s.t. G;(Y) = Ey
Y =VRV' (2.7)
R 0.

Now, let Z be the matrix of multipliers for ¥ = VRVT. The augmented Lagrangian of
(2.7) can then be written as

Lo(RY.Z) = t(LoY) + Z7(Y — VRVT) + §|\Y VRV (2.8)

We denote R,Y, and Z to be the primal reduced, primal, and dual variables before the
ADMM updates. The new ADMM algorithm for the SDP relaxation (2.7) performs the
following updates for R, Y., and Z,:

R, = argmin Lz(R,Y,Z), (2.9a)
Res{"~D*+1
Y, =arg min L3(R.,Y, Z), (2.9b)
Yep;
Zy =Z+4B(Y, —VR V"), (2.9¢)

where P; is the polyhedral constraints for Y, e.g., P; can be the linear manifold from the
gangster constraints:

P ={Y e S¥H:G,(Y) = Ey}.

Let V be normalized so that VTV = I. The explicit solution for the R update is

Ry = arg min tx(Lq¥) +27(Y = VRVT) + S|y — VRV
Resﬁf’l)2+1 2

2

Y VRV + %Z

= arg min
Res(rD

15



2

~ 1 ~
= arg min ||R — VT(Y + —Z)V
Resﬂf’1>2+1 p
N 1 N
=P vz (VI (Y +=2)V ], (2.10)
sy B

2+1

where PS(n,l)zﬂ(-) is the projection onto S(f_l) . We can use P; to write an explicit

+
solution for the Y update as well:

Y, = arg min t(Lq¥) + Z7(Y ~ VR.VT) + 2|y - VRV

YeP1
o Lo+ Z|
—arg min [|[Y — VR, V" + Lot 2
YeP,
.o Lo+ Z
=Ep + Ge (VR+VT - %) : (2.11)

Note that Y, is not necessarily positive semidefinite since we do not impose such condition
in Py. Hence, Y, is usually infeasible for (2.7). We could have maintained the positive
semidefinite condition by projecting Y, onto Sf“ at each iteration. Unfortunately, the
SDP projection is not cheap since it involves calculating eigenvalues. Besides, we show
later that we actually do not need Y, € Sf“ to get the lower and upper bound.

We can tighten (2.7) further by adding the constraint 0 <Y < 1:
Pry1 = T tr(LqY)

s. t. QJ(Y) = EOO
0<Y <1 (2.12)

Y =VRV'
R > 0.

Then the Y update becomes

Y] = arg min Lg(R4,Y, Z),

YePo

where Po= PN {0 <Y < 1}, and the corresponding explicit solution is

Y, = min (1, max (0,Y})) .
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We observe that the above non-negativity constraint only slightly increases the complex-
ity, which is a huge advantage of the ADMM. Although the less-than-one constraint is
redundant, the algorithm converges faster when both constraints are present. We postpone
the discussion of stopping criteria to Section 3.5 in a branch and bound setting.

2.3 Lower Bound

A successful branch and bound algorithm requires the lower bound to be tight and com-
putationally efficient. Since the SDP relaxation is very tight, we would get a decent lower
bound if we solve (2.12) to optimality. Nevertheless, the obsession with exact solution or
even high accuracy would lead to horrible runtime in practice. Although it is not common
in the bounding phase, we can actually control the quality of the lower bound by modifying
the stopping criteria in the ADMM. While we do not discuss such stopping criteria in
this section, we provide a way to get the lower bound after the ADMM is terminated.

Theorem 2.3. [2/, Lemma 3.1] Let Y :={Y : G;(Y) = Eg, 0 <Y <1}, and Z :={Z:
VTZV <0}. The dual function of (2.12) is

9(Z) = min (Lo + Z,Y).

Then the dual problem of (2.12) is defined as follows and satisfies weak duality:

Y = 7)< D
dy gleagg( )_ Pry1

A

Using the above theorem, we can take g(Z) as the lower bound for (2.12) as well as for
(1.3). However, the output from the ADMM, Z°“ does not necessarily belong to Z since
we do not impose such condition in the Z update. Therefore, we need to project Z°“ to Z
and use g( Pz(Z°")) as the lower bound. Fortunately, Z is symmetric since both ¥ and
R are symmetric, and so we can get Pz(Z°“") using the following method.

Let V| be the orthonormal basis of null(V)). Then V = (V, V) is an orthogonal matrix.

Let VT zouty — 7 = | Wi Wi , where Wy, € S~2°+1. Now, we have
Wor Way
VTZoy 20 VIZo = VIVWVTV = Wy < 0.
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Hence,
Pz(Z°") =arg min || Z — Z°|?
Zez

=arg min |[VWVT — Zo4|?

W11 =20

=arg min |W — VT Z2V|?
W11=0

. 7D§n—2ﬂ+4<vvql> LLHZ

VVEl L®32

Note that P22 (Wi1) = — PST_Q)QH(—WH), and we do not require Y € Sf“ to get

the lower bound.

2.4 Upper Bound (Feasible Solution)

The upper bound is used in a branch and bound algorithm to update the incumbent value
until it reaches optimality. Let Y°“ be the output from the ADMM; X and v be the
largest eigenvalue and its eigenvector. Although it is likely that Y°u & Sf“, Y°ut should
only be slightly infeasible with few small negative eigenvalues due to the Y update in the
ADMM. We can then recover X°“ from Y°“ using the block matrix form in Theorem
2.1, in which X% = Mat(z). We obtain z by taking the second through the last element
of the first column of Avv". The recovered X°* is usually not a permutation matrix, and
so we need to find its closest feasible counterpart.

min || X — X2 (2.13)
Xell,

Using the Frobenius norm, we can write the objective function as || X% + || X% —
2(Xut XM and write (2.13) equivalently as

max (X X', (2.14)

XUell,

Theorem 2.4. (Birkhoff’s Theorem) The set of doubly-stochastic matrices is identical with
the convex hull of the set of permutation matrices. A
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We can replace the permutation matrix constraint in (2.14) by (1.4) and Theorem 2.4.
Then we can solve the following linear programming problem using simplex method, and
get the approximated feasible solution.

H;(%X<Xout’Xn>

s.t. XUe=¢
XTe=e¢ (2.15)
X1 >0.

Instead of finding a feasible solution through (2.15), we can add the rank-one constraint
to the R update and modify the update as follows:

A AN
R, = PS?,DQHHRI <vT (Y + E)V) : (2.16)

where Ry = {R : rank(R) = 1} denotes the set of rank-one matrices. Since rank(AB) <

min(rank(A), rank(B)), Y = VRV should also be rank-one. For Y € $**+! with largest

eigenvalue A > 0 and corresponding eigenvector w, we have Pgnzﬂmal (You) = hww?'.
+

Then X°“ = Mat(x), where z is obtained from Aww', is a permutation matrix up to
machine epsilon. In our implementation, we get two upper bounds using the above two
methods and use the smaller one to update the incumbent value.
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Chapter 3

Branch and Bound for the QAP

A branch and bound algorithm for the QAP recursively divides the current unsolved prob-
lem into a few subproblems, which are then solved or divided again. Depending on the
branching strategy, some subproblems start with a partial permutation matrix that re-
sults in a smaller QAP. When the algorithm begins, the original QAP are solved by the
ADMM algorithm using the SDP relaxation. Either the optimal value is reached, in which
case we stop and get the solution for the QAP, or we have an upper and lower bound of
the QAP. If at any given node, the lower bound exceeds the global optimal upper bound
(the incumbent value), then further branching on that node could not lead to a solution
that is as good as the incumbent value. Therefore, the node is pruned from the search tree.
The algorithm gradually visits all nodes of the search tree that are not pruned, trying to
find a better solution and prove optimality.

The algorithm is guaranteed to find the optimal solution if both the branching and
bounding phases are correct.

Lemma 3.1. [15, 2.1] Let F(p%) denote the feasible set of a QAP, and p%,,..., D%
denote the subproblems of p%. The branching is valid if :

1. Ewvery feasible solution of p% is a feasible solution of at least one of the subproblems

Dxis- - PxXr-
2. Every feasible solution of any of the subproblems pk4,...,px, 15 a feasible solution
of P -

A
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The above two conditions ensure that F'(p%) = F(pk,)U---UF(p%,), and so we should
find the the same set of solutions at the end of the algorithm. We show in Section 3.2 that
our branching strategy fulfills those conditions.

The credibility of the lower bound depends on the relaxation.

Lemma 3.2. [15, 2.2/ A SDP relazation py,y of the original QAP p% is only valid when
the following requirements are met:

1. If phy has no feasible solutions, then the same is true of p.
2. The minimal value of p is no less than the minimal value of pry .

3. If an optimal solution of phy is feasible in p%, then it is an optimal solution of p%.
A

The first requirement does not necessarily apply here since the relaxation and the
original QAP always have feasible solutions unless a subproblem starts with an infeasible
matrix, e.g., a facility is mistakenly assigned to two locations. The SDP relaxation is a
lower bound to the QAP and so it satisfies the second requirement. Besides, the QAP is
a minimization problem, and if a lower bound solution is feasible for the QAP, it is also
the optimal solution.

In the next section, we introduce some existing strategies to select subproblems. Al-
though the way we choose subproblems does not affect the correctness of the algorithm,
it affects the runtime and efficiency of the algorithm. We discuss the branching rules in
Section 3.2, and provide a way to get the bounds from a reduced problem in Section 3.3.
Our complete branch and bound algorithm is presented in Section 3.4. Then we discuss
how the stopping criteria in ADMM affect the runtime of the algorithm in Section 3.5,
where we also propose a new rule using the incumbent value. In Section 3.6, We conduct
a grid search on combinations of some parameters in ADMM, and we end this chapter
with an experiment on node selection strategies.

3.1 Node Selection Strategy

When the algorithm decides to branch on a particular node, a few subprobelms are added to
the queue and waiting for inspection. As the size of the problem grows larger, or the depth
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of the current node becomes larger, the number of subproblems would be enormous. The
order of processing those nodes turns into a non-trivial matter at that point. Although the
order does not affect the correctness of the algorithm, it directly affects the incumbent value
and ultimately the efficiency of the algorithm. Like other tree-based models, branch and
bound for the QAP has two commonly used and problem-independent strategies — breadth
first search and depth first search. In fact, most branch and bound implementations use
depth first search to control the size of the queue. We are aware of other strategies such as
instance related, max lower bound, and min number of nodes strategies, but as Burkard
et al. point out in [8], there is no dominant strategy. Therefore, we decide to implement
breadth first search and depth first search, and briefly discuss other possibilities at the end
of this section.

In breadth first search, the node with a smaller depth is always visited before others that
are deep in the branch and bound tree. The search rule is usually enforced using a first-in-
last-out (FIFO) queue. When the algorithm decides to further divide a problem into a few
subproblems, all of those subproblems are added to the queue immediately. Then we pop
one subproblem from the queue and get its bounds by using the ADMM algorithm. If that
subproblem is divided again, all of its sub-subproblems are added to the queue without
any processing. As the name FIFO suggests, the node who comes first is processed first.
Therefore, problems of smaller depth are processed before others.

We notice that the above strategy is not very popular among existing implementations
because the size of the queue grows very fast. Nevertheless, the problem is ultimately due
to the poor quality of lower bounds, especially the GLB that are used by many algorithms.
Breath first search is more efficient when the time spent on a solved or pruned node is less
than the time spent on processing the subtree originated from that node. Since we are
able to control the quality of the lower bound obtained by the ADMM, we have the
opportunity to balance the time spent on one node and the tightness of its lower bound.

In depth first search, the algorithm always processes node with the largest depth first.
The search rule is usually enforced using a last-in-first-out (LIFO) queue. When a node
is processed, if it is not solved and its lower bound is less than the incumbent value, the
algorithm first puts the node back to the queue, and then add one of its subproblems to the
queue. The LIFO queue sends the subproblem to the ADMM algorithm and so forth. In
this way, some deep nodes are visited early on in branch and bound. Those nodes contain
smaller problems that are easy to solve, and thus the incumbent value is more likely to be
improved very fast. In addition, the size of the queue are relatively smaller since it only
contains visited nodes and one additional node.

We understand that controlling the size of the queue is a big problem for many pre-
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vious implementations of branch and bound. The algorithm in [6] produces 239,449 to
360,148,026 nodes for nug20 depending on different bounding methods. Our implementa-
tion, on the other hand, produces fewer than 1,000 nodes for nug20. Hence, depth first
search does not provide us with the advantage of a smaller queue as it does to previous
branch and bound algorithms, which is confirmed by our experiment in Section 3.7.

Other node selection strategies generally involve some node ranking criteria in the hope
of finding the optimal solution as soon as possible. If the incumbent value reaches optimal-
ity early in the algorithm, the nodes would be pruned more often at small depths, reducing
the size of the queue as well as the runtime. However, such strategies bring some overhead
to node processing. The accumulation of the overhead is an inevitable drawback of this
kind of strategies and often contradicts the intention to find the optimal solution quickly.
Since the size of the queue is not a pressing matter in our implementation, we probably
would not benefit that much from ranking nodes according to some rule. Therefore, we
only consider breadth first search and depth first search in our implementation.

3.2 Branching Strategy

In the branching phase, a subproblem is further divided into a few sub-subproblems. Ide-
ally, the work required to process those sub-subproblems should be substantially less than
that for the subproblem. However, bad branching strategy might lead to sub-subproblems
that are as difficult as the subproblem. Empirical tests in [8, 26] have shown that single
assignment branching and polytomic branching are more efficient than other branching
strategies.

Branching strategies generally answer two questions — how many subproblems to create
and how to divide the search space [6]. Single assignment branching creates two branches by
assigning a facility to a location and preventing such assignment. The assignment branch is
an one-size smaller QAP while the other one is a similar problem with some modification.
Therefore, the repeated assignment branch would be much easier to solve than others deep
in the tree. Although the work load is terribly skewed, this branching strategy was used in
[25] to solve some previously unsolved QAPLIB instances and enjoyed general applause
over others for a long time. Depending on the assignment prevention method used to
create a subproblem, that subproblem might not be feasible if a facility happens to be
banned from all locations, or vice versa. Many branch and bound algorithms using single
assignment branching have to keep track of the assignment in order to guarantee feasibility.

Two major drawbacks of single assignment branching, the infeasibility problem and
the imbalance workload, are addressed by polytomic branching. This branching strategy
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was first used in [27] and later in [20], and now it is the most commonly used strategy for
algorithms capable of solving large scale QAPs [6]. The implementation can either be row
branching, assigning an available facilities to all possible locations, or column branching,
using an available location to host all facilities. Based on previous successes, we decide to
use polytomic branching in our branch and bound algorithm. The conditions for a valid
branching rule in Lemma 3.1 are satisfied by polytomic branching since the search space is
divided equally among all branches. We demonstrate polytomic branching rule in Figure
3.1. Suppose we have a QAP of size 4 and we branch on facility 3 (row branching) at the
first level. Then four subproblems are created at this level where facility 3 is assigned to

Figure 3.1: [6, Figure 3.5] Polytomic Branching Strategy

o

X3+

Xi2=1 le:l X 4—1 X12=1

location 1 to 4 (The gray bar in the top-left grid illustrates the corresponding entries in
X). We present a mix of row and column branching at the second level. The black bars
represent the forbidden location, e.g., if facility 3 is assigned to location 1 before, then
row 3 and column 1 are fixed with 1 at (3,1) and 0 at other places. The nodes spawn
from node 1, 3 and 4 perform column branching, e.g., location 2 is chosen at node 1 and
now facility 1, 2 and 4 are assigned to that location, resulting in three children. On the
other hand, node 2 at the first level performs row branching again and assigns facility 1
to location 1, 3 and 4. Note that all child problems are exactly one size smaller than their
parent problems.

3.3 Bounding Reduced QAP

Polytomic branching always creates subproblems that are smaller than the original QAP.
Although they are easier to solve, we cannot use the ADMM directly on them partially
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due to the connection between the assigned facilities and the unassigned ones. We present
a way to modify the inputs of the reduced QAP and to restore the lower and upper bound
of the reduced problem to their counterparts in the corresponding full-sized QAP using
the example below.

I.| 0
0| X
the reordered solved part and is an identity matrix of size r < n —1, and X’ € I1,,_, is the
unsolved part. We reorder F, D, and C' in a similar fashion, and our objective function is

Pi = Iin tr (FXDXT + QCXT)
— win [ E 0 Lo 7"
A e X’ 0 X

C’T\CT. !
+2tr({CTC’ OX’})

F.D, + F.X'D} | F,D,.X'" + F,X'D'X""
FID. + F'X' DT \ FID. X"+ F'X'D'X'T

r:

Example 3.1. Suppose we have obtained a partial solution X = where [, is

‘= min tr
X'€llp_y

T ‘CT:X/T
+2tr ([ CT ‘ C/X/T

= min tr (FX'D'X"+2(F!D.+C) X" +FD,+C,).
X'€llp—r
We can now solve minyrer,_, tr (F/X'D'X'T +2 (F.!D,, + C') X'") using the ADMM
algorithm from the previous chapter. After we obtain the lower and upper bound of the

reduced problem, we can restore them to the corresponding bounds of the full-sized problem
by adding tr (F,.D, + C,.). O

Note that the above example can be easily generalized to any QAP with existing as-
signments through index manipulation. Suppose we have a QAP of size n with r ex-
isting assignments. Let (Fa,La) = {(Fa,La) : X(Fa;,La;) = 1 Vi = 1,...,r} be the
set of indices in which facility Fla; is assigned to location La; for all + = 1,...,r. Let
Fu={1l,...,n} \ Fa and Lu = {1,...,n} \ La. Note that those four sets are used as
row/column indices instead of indices of an entry in X. We now define the reduced QAP as

vk, = min tr (Fpyru X DruruX, +2 (FropuDrasu + Cropu) X, ) - (3.1)

Xr€llp—r

The constant to be added to the reduced lower and upper bound is tr(Frg reDra ra +
CFa,La)-
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3.4 Algorithm

We present two algorithms below. The first one uses breadth first search with a FIFO
queue. The original QAP is wrapped in a node and appended to the queue in the beginning,
and the incumbent value is set to infinity. Then the algorithm visits the first node in the
queue and gets the appropriate lower and upper bound on that node. If the lower bound
is less than or equal to the incumbent value, then we update the incumbent value use the
upper bound and proceed to decide if further branching is needed. If the node is solved
by ADMM, i.e., the lower bound equals the upper bound, we add it to the solution list;
otherwise, we add all of its subproblems to the queue. No matter which case this node falls
into, it is deleted from the queue when the processing finishes. When the queue becomes
empty, we use the incumbent value to remove previously solved but not optimal solutions
from the list. Then the solution list contains only optimal solutions to the original QAP.

Algorithm 1: Branch and Bound with Breadth First Search
FIFOq={QAP (F,D,C)};
incumbent = oo;
while FIFOq is not empty do
p = the first node of FIFOgq;
modify F, D, and C if there is any existing assignment in p;
get lower bound (Ib) and upper bound (ub) from ADMM (p);
restore (b and ub if there is any existing assignment in p;
if b < incumbent then
incumbent = min(incumbent, ub);
if [b = ub then
‘ add p to the solution list;
else
‘ create all subproblems and add them to F'IFOgq;
end

end

remove p from FIFQOgq;

end

delete non-optimal solution from the solution list.

The second algorithm uses depth first search with a LIFO queue. The steps are mostly
the same as the above algorithm. However, only one subproblem is selected to visit next
instead of all subproblems, and a node can only be deleted if either it fails the incumbent
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value test or all of its subproblems are visited.

Algorithm 2: Branch and Bound with Depth First Search
LIFOq={QAP (F,D,C)};
incumbent = oo;
while LIFOq is not empty do
p = the last node of LIFOg;
modify F, D, and C' if there is any existing assignment in p;
get lower bound ({b) and upper bound (ub) from ADMM (p);
restore [b and wub if there is any existing assignment in p;
if [b > incumbent or all subproblems of p are created then
‘ remove p from LIFOgq;
else
incumbent = min(incumbent, ub);
if [b = ub then
add p to the solution list;
remove p from LIFQOgq;

else
‘ create one subproblem and add it to LIFOgq;
end

end
end
delete non-optimal solution from the solution list.

3.5 Stopping Criteria of the ADMM

The implementation of the ADMM for the SDP relaxation in [24] has three stopping con-
ditions for the ADMM updates — limiting the maximum number of iterations, controlling
the Y update, and controlling the feasibility of Y. Limiting the number of iterations is the
simplest way to control the amount of time spent on one node. If a problem has difficulty
converging after running for a very long time, it is probably more efficient to move on to its
subproblems. However, a small allowance may lead to poor lower bounds and eventually
slows down the branch and bound algorithm due to the inability to prune any branch. We
explore the effect of the limit on the performance of our algorithm in Section 3.6.

The other two stopping criteria are based on the change of variables after the ADMM
updates. Let r, = Y, — VR, VT denote the primal residual and r; = Y, — Y the dual
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residual. Note that r, corresponds to the feasible condition of ¥ and ry is the change of
Y at each iteration. The tolerance is set on ||r,|| and 5||r4|. The ADMM terminates if
both norms falls below the tolerance for five consecutive times. It is, however, difficult
to interpret those two norms in a branch and bound setting. The branch and bound
algorithm generally does not require high precision. In particular, obtaining better bounds
on one node is a terrible goal that forces the algorithm to spend too much time on difficult
problems. We show in Section 3.6 that smaller tolerance dramatically slows down our
branch and bound algorithm.

Besides the above three stopping criteria, we propose another check that can potentially
terminate the ADMM much earlier. We pause the ADMM update every N iterations and
calculate the lower bound from the newly updated Z, using Lemma 2.3. Instead of using
Yy, we generate Y (Pz(Z;)) using the following rule:

1 it (i,7) & J,(5,7) € J,or (Lg+Z+);; <0
Y(Pz(Z4))s :{ 0 otflegviii e (Fe +)i

Note that Y(Pz(Z;)) € Y, and the lower bound is g(Pz(Z1)) = (Lo+Pz(Z1),Y (Pz(Z4))).
The ADMM can then compare the incumbent value and terminates if the lower bound
is already larger than that value. The early termination not only saves us the remaining
iterations to reach one of the previous three stopping criteria, but also relieves us from
calculating any upper bound at all. This new stopping criterion is actually triggered very
often in our branch and bound algorithm since we are able to obtain tight lower bound from
the SDP relaxation, and the incumbent value reaches optimal value very fast in general.

3.6 Parameter Tuning for the ADMM

We conduct grid search on a few combinations of the maximum number of iterations and
the tolerance using nuglb. Note that parameter tuning is only applicable to the high-rank
ADMM, while the parameters for the low-rank case can be set based on the fact that
Y is rank-one with only (0,1) entries. We use computer 2 (see Appendix A) and fix the
maximum number of iterations to 500 and the tolerance to 0.1 for the low-rank case. Since
breadth first search and depth first search have similar performance for nugl5, we only use
depth first search in our experiment.

The results in Table 3.1 are consistent with our expectations in Section 3.5. The optimal
maximum number of iterations is 800 and the optimal tolerance is 0.01. In general, a small
maximum number of iterations forces the stopping criterion based on that number to be
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triggered more frequently, while a large one essentially voids that stopping criterion. If the
tolerance is too small, then all lower bounds are not very tight, causing the algorithm to
visit a larger portion of the tree. Note that the optimal maximum number of iterations are
more dependent on specific instances, but the tolerance can be a more universal criterion.
The former essentially sets a limit to the maximum amount of time the algorithm can
spend on a particular node. This limit should be adaptable to size and depth for optimal
performance. However, due to resource and time constraints, we do not incorporate such
idea in our algorithm and simply use the above optimal combination for all experiments
in this paper.

Table 3.1: Runtime comparison for parameter tuning

Tol.
le—1 le — 2 le—3 le—4 le—5 le—6
Num. of Iter:

500 3,327.57 | 1,274.21 | 1,269.73 | 1,275.86 | 1,310.49 | 1,312.14
600 3,290.97 927.78 966.95 878.73 | 1,017.87 | 869.29
700 3,133.40 725.85 730.44 715.27 713.45 724.38
800 3,002.75 | 449.66 | 468.10 | 520.24 | 498.94 | 487.99
900 3,093.60 476.35 498.81 522.51 522.56 542.85
1,000 3,107.68 506.74 568.56 576.50 573.05 518.61
2,000 3,074.21 546.60 709.45 753.74 750.15 762.94
3,000 3,061.69 607.36 881.35 963.78 981.25 | 1,004.60
4,000 2,926.89 584.86 950.19 | 1,001.46 | 1,114.57 | 1,093.87
5,000 3,099.89 581.44 997.61 | 1,095.88 | 1,257.40 | 1,312.19
6,000 3,136.70 597.26 | 1,111.89 | 1,225.33 | 1,492.08 | 1,418.40
8,000 3,155.58 581.68 | 1,133.15 | 1,209.60 | 1,543.59 | 1,625.89
10,000 3,135.98 629.11 | 1,107.37 | 1,268.23 | 1,466.63 | 1,699.88
20,000 3,049.96 577.05 | 1,107.32 | 1,228.51 | 1,484.13 | 2,025.60
40,000 3,168.35 598.35 | 1,080.00 | 1,230.47 | 1,491.18 | 2,108.75

3.7 Experiment on Node Selection Strategies

We test breadth first search and depth first search on a few QAPLIB instances of size up
to 15. We use computer 5 (see Appendix A) and set the maximum number of iterations
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to 800 and tolerance to 0.01 for the high-rank ADMM; 500 and 0.1 for the low-rank case.
The parameters for the high-rank case are explored in Section 3.6, in which we use nuglh
to conduct a grid search, while those for the low-rank case are determined based on the
fact that Y is rank-one with only (0, 1) entries.

We compare the number of solutions, runtime, and the number of nodes between those
two strategies. In Table 3.2, the two strategies are able to find the same number of solutions
except for scrl2, in which depth first search find one fewer solution. The runtime of the
two strategies are also similar except for roul5. Breadth first search terminates at the first
level, while depth first search visits 195 nodes before termination, 13 times the number of
nodes as the other method does. Again, due to the good quality of our lower bounds and
fast convergence, it appears that depth first search is not better than breadth first search
in our algorithm.

Table 3.2: Breadth first search v. depth first search

Number of Time (s) Number of | Number of Time (s) Number of

Dataset | Solutions (BF) Nodes Solutions (DF) Nodes
(BF) (BF) (DF) (DF)
nugl?2 4 48.54 12 4 39.29 23
nugl4 1 55.62 14 1 37.85 14
nuglh 4 184.91 15 4 104.02 15
roul2 1 34.49 68 1 35.16 68
roulb 1 91.21 15 1 244 .88 195
scrl2 8 128.68 218 7 126.41 294
scrlb 2 269.02 79 2 348.81 222
tailb 1 549.79 326 1 694.92 576

Next, we examine closely the number of nodes by depth for tailba in Table 3.3. Both
strategies are able to prune most branches early on in the algorithm due to the advantage
of the tight lower bound. Depth first search goes deeper in the search tree and visits a few
more nodes, resulting in a slightly longer runtime. The results, however, do not necessarily
indicate that depth first search works less effective than breadth first search. The latter
performs surprisingly well because first, the ADMM is able to find the optimal value at
the first level of the search tree, and second, the lower bounds on all nodes are very tight.
Unfortunately, as the size of the problems grows, it is less likely for breadth first search
to achieve either condition at smaller depth. In such case, depth first search would work
better by finding the optimal value deep in the tree.
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Table 3.3: Number of nodes by depth for tail5a

Number of | % Nodes | Number of | % Nodes
Depth Maximum Nodes Visited Nodes Visited
(BF) (BF) (DF) (DF)
1 15 15 1.00E+02 15 1.00E+02
2 210 210 1.00E+02 210 1.00E+02
3 2,730 26 9.52E-01 91 3.33E400
4 32,760 24 7.33E-02 60 1.83E-01
5 360,360 11 3.05E-03 44 1.22E-02
6 3,603,600 10 2.78E-04 40 1.11E-03
7 32,432,400 9 2.78E-05 36 1.11E-04
8 259,459,200 8 3.08E-06 32 1.23E-05
9 1,816,214,400 7 3.85E-07 21 1.16E-06
10 10,897,286,400 6 5.51E-08 18 1.65E-07
11 54,486,432,000 0 0.00E+400 5 9.18E-09
12 217,945,728,000 0 0.00E+4-00 4 1.84E-09
Total | 285,441,552,075 326 1.14E-07 576 2.02E-07
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Chapter 4

Numerical Experiments

We test our two branch and bound algorithms in Section 3.4 on a selection of QAP instances
of size up to 28, all of which have known optimal values and are shown in the second col-
umn. Our implmentation uses some MATLAB files from [24]. The ADMM algorithm
(ADMM_QAP.m) is modified to add a new stopping criterion proposed in Section 3.5.
We check the new criterion every 200 iterations in ADMM (N = 200) since it evokes
grand eigin MATLAB, which does incur some overhead. We write our own function for
calculating lower and upper bounds based on the original test script (quicktest.m). We
keep v = 1.618 and 8 = § in ADMM, which is previously used in [24]. The maximum
number of iterations are set to 800 and the tolerance to 0.01 for the high-rank ADMM as
determined by the grid search in Section 3.6. Those parameters for the low-rank case are
kept at 500 and 0.1. All results in this paper are produced using seed 39 to randomly select
a facility in the branching phase, and the verbose option in our test scripts is turned off.

Halfway through our initial experiment, we suffered from occasional failure of the
eig function in MATLAB when updating R for the high-rank case. We try to avoid such
situation by smoothing the matrix if eig does not converge for the original one. Neverthe-
less, the smoothing method does not always work. The error seems to happen exclusively
on Linux servers running MATLAB R2015a (computer 1 to 4, see Appendix A), since such
error did not occur in a trial run using nuglb on a PC with MATLAB R2016a. Unfor-
tunately, the majority of our tests are done using those Linux servers. Since we do not
completely understand why the eig function fails in our test, we have no choice but to
give up on a particular node if such error happens. Instead of solving the bad node, we
simply set its upper bound to infinity and lower bound to negative infinity so that all of
its subproblems are inspected by our algorithm.
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The number of solutions obtained by the algorithm is given in column 3. The runtime,
presented in column 4, is timed from the moment after the test problem is loaded to the
termination of the branch and bound algorithm after the solution list is finalized. The total
number of nodes visited by the algorithm is presented in column 5. Although the number
of nodes by depth is also recorded, we do not show such information due to space limit.
The last column indicates the computer used in solving a particular problem (see Appendix
A). Note that computer 1 to 4 are shared servers, and so there are some inconsistencies in
the runtime across all tests. Experiments that take longer are especially prone to sudden
burst of jobs on the server. Readers are advised to regard the runtime as a rough idea of
the performance instead of a metric for cross comparison.

Our results demonstrate that our bounding strategy, the ADMM algorithm for the
SDP relaxation, provides very strong bounds that are extremely effective in the pruning
phase of the branch and bound algorithm. When comparing our results with [1, 6], we
observe that our algorithm produces similar results, in terms of the number of nodes, as
the RLT1/RLT2 method in [1]. The quadratic-programming-bound based branch and
bound algorithm in [4] generates more than 2 billion nodes for nug28; the RLT1/RLT2
method generates 202,295 nodes, while our algorithm generates only 31,463 nodes using
breadth first search with parallel computing. This dramatic reduction in the number of
nodes makes it possible to apply our algorithm to large QAP instances.

4.1 Results for Depth First Search

We present the results in Table 4.1, all of which are produced on the two newest servers of
the fastlinux.math pool of the MFCF. The runtime grows exponentially as the size becomes
larger. This growth rate is mostly due to the expansion of the search space, which is the
set of all feasible solutions. A problem of size 10 has 10! = 3, 628, 800 feasible solutions; of
size 15 has more than a trillion; of size 20 has more than 2 x 10'®; of size 25 has more than
10%° — a poorly designed algorithm would take an insane amount of time enumerating all
possible solutions. In our experiment, we were able to test problems of size up to 25 in a
reasonable amount of time. Due to the growth of the runtime, parallel computing is the
only possible way to solve large QAP instances of size greater than 25.

33



Table 4.1: Numerical results for branch and bound with depth first

search
Optimal Num. of ' Num. of
Dataset Value Opt. Solns | Time (s) Nodes Computer
Found Visited

had16 3,720 1 289.22 16 1
had18 5,358 2 2,588.88 178 1
had20 6,922 7 9,517.94 832 1
nugl2 578 4 43.74 23 1
nugl4 1,014 1 49.56 14 1
nugld 1,150 4 147.85 15 1
nugl6a 1,610 1 144.84 16 1
nugl6b 1,240 8 419.06 31 1
nugl? 1,732 1 1,151.46 188 1
nugl8 1,930 2 5,071.32 805 1
nug20 2,570 4 12,272.13 793 1
nug21 2,438 4 13,346.15 788 1
nug24 3,488 8 98,094.79 3,637 1
nug25 3,744 8 724,262.47 19,916 1
roul2 235,528 1 40.26 68 1
roulb 354,210 1 303.89 195 1
rou20 725,522 1 74,114.27 8,942 1
scrl2 31,410 7 131.46 294 1
scrlb 51,140 2 1,607.98 745 1
scr20 110,030 4 11,217.48 1,356 1
tailba 388,214 1 874.64 576 1
tail7a 491,812 1 5,789.18 1,370 1
tai20a 703,482 1 143,114.56 12,883 1
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4.2 Results for Breadth First Search with Parallel
Computing

Instead of running the breadth first search sequentially, we decide to implement a relatively
simple parallel computing version using the parallel computing toolbox in MATLAB. In
the original algorithm in Section 2, we only examine the first node in the FIFO queue.
By replacing the for-loop with parfor-loop, we are able to simultaneously examine all
nodes in the FIFO queue and then append all subproblems to the queue after finishing
processing all nodes at the same depth. This is, however,not a complete parallel computing
implementation, in which a supervisor distribute the node in the queue to an empty worker
while the worker can add new nodes to the queue concurrently. Most of our results are
produced on the newest server in the biglinux.math pool of the MFCF using 23 workers.
Note the surprising results from escl6h. Our algorithm works terribly on this problem
probably due to the inability to explore the hidden group symmetry feature as noted in
[10] — a subset of facilities can be put in any location of a subset of locations to achieve
optimality.

Our results indicate that parallel computing is more effective for large QAP instances,
while its performance is similar or even worse than sequential computing for small ones. In
Table 4.1, had16, had18, and had20 take 289, 2589, and 9518 seconds to finish execution,
while in parallel computing they take 184, 291, and 738 seconds. We expect breadth first
search produce fewer nodes as shown in Section 3.7, and our results here are consistent
with the previous experiment. This is largely due to our powerful bounding strategy, which
is able to prune nodes of small depth in the beginning of the algorithm.

It does not make much sense, however, to compare the runtime from the parallel com-
puting implementation directly to that from the sequential version. Some runtime conver-
sion methods are proposed by [1, 6, 19], but they are still case dependent and not easily
adaptable in a different setting. A notable reason that prevents such direct comparison is
that parallel computing involves large I/O transmission that is much less effective than the
I/O within one process. As the size of the problem grows, the I/O operation contributes
a non-trivial amount of time to the actual runtime of the algorithm.
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Table 4.2: Numerical results for branch and bound with breadth first
search and parallel computing

Optimal Num. of ' Num. of
Dataset Value Opt. Solns | Time (s) Nodes Computer
Found Visited

escl6h 996 6,121,489 | 656,088.55 | 22,444,642 4
hadl6 3,720 1 183.56 16 3
hadl8 5,358 1 290.76 102 3
had20 6,922 11 738.22 817 3
nugl?2 578 4 29.43 12 3
nugl4 1,014 1 58.92 14 3
nuglb 1,150 4 91.72 15 3
nugl6a 1,610 1 205.14 16 3
nugl6b 1,240 8 118.78 16 3
nugl7 1,732 1 210.45 97 3
nugls 1,930 2 417.59 435 3
nug20 2,570 4 939.63 724 3
nug21 2,438 4 929.66 667 3
nug22 3,596 4 2,448.12 939 3
nug24 3,488 8 8,973.21 3,086 3
nug25 3,744 8 47.397.03 | 18,572 3
nug27 5,234 8 120,750.28 9,936 4
nug28 5,166 4 496,225.14 | 31,463 4
roul?2 235,528 1 76.96 20 3
rould 354,210 1 85.19 15 3
rou20 725,522 1 3,418.73 6,187 3
scrl?2 31,410 7 74.39 172 3
scrld 51,140 2 108.89 57 3
scr20 110,030 4 1,274.70 1,094 3
tailda 388,214 1 86.79 225 3
tail7a 491,812 1 441.64 304 3
tai20a 703,482 1 4,448.48 7,342 3
tai2ba 1,167,256 1 896,627.35 554,701 3
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Chapter 5

Conclusion and Future Work

In this paper, we proposed a new branch and bound algorithm based on the new ADMM
method for solving the SDP relaxation of the QAP. We used both depth first search and
breadth first search in our node selection process. Our experiment on node selection strate-
gies show that the depth first search does not have a relative advantage in our algorithm,
which contradicts with many previous works in favor of such strategy. We believe the ad-
vantage of the depth first search is not evident due to the sharp lower bound obtained from
the ADMM. Since the algorithm is able to prune nodes at smaller depth early on in the
process, breadth first search actually visits fewer nodes using a comparable amount of time
than the depth first search does. We added a new stopping criterion in the ADMM that is
able to use the incumbent value from the branch and bound algorithm. This early termi-
nation improves the efficiency of the overall algorithm by avoiding unnecessary iterations
in the ADMM. We modified two parameters, the maximum number of iterations and the
tolerance, according to our grid search on a few combinations.

Our numerical experiments demonstrate that our new branch and bound algorithm
provides comparable results as do some of the best existing algorithms. This is largely due
to the tight lower bounds that are extremely effective in the pruning phase of the branch
and bound algorithm. In particular, the dramatic reduction in the number of visited nodes
makes it possible to apply our algorithm to large QAP instances.

We are unable, however, to compare the runtime of our algorithm directly with others
due to the difficulty in runtime conversion. Ideally, all algorithms should be tested on the
same machine or computational grid. Due to time and resource constraints, the runtime
in our numerical experiments are not consistent, let alone to compare them with others.

Our work can be extended in many directions. Heuristics in [2, 8, 23] can be used as
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a warm start for the ADMM algorithm. The group symmetry structure of the QAP can
be exploited to improve the efficiency of the algorithm, see [10, 11]. The idea of strong
branching in [2] can potentially boost our branch and bound algorithm, in which cheap
bounds for potential subproblems are used to make the branching decision. Last but not
the least, a proper parallel computing implementation with depth first search, as described
in [6, 8], can push the limit of our algorithm and enable us to test our algorithm on even
larger QAP instances.
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Appendix A

Computer Specifications

Index Name Make/Model CPUs Memory MATLAB
version
Dell P Bd Intel Xeon E5-2637 v3
1 | cpul3smath |~ LOWCIRCEE 1y core 3.5 GHz (Haswell) | 64 GB | R2015a
M630 % 9
Dell P Bd Intel Xeon E5-2637 v3
2 cpul37.math O LOWETEAEE | 4 core 3.5 GHz (Haswell) 64 GB R2015a
M630 % 9
Dell P Bd Intel Xeon E5-4660 v3
3 cpul39.math G LOWETRESE | 14-core 2.1 GHz (Haswell) | 256 GB | R2015a
MS830 % 4
AMD Opteron 6276 16-core
4 | cput3tmath | PellPowerEdse | 3 o (nterlagos) 512 GB | R2015a
R815 % 4
Abble MacBook Intel Core i7-3635QM
5 Personal Mac | “PPIC¢ MACLOOKH 10 2.4 Ghy (Ivy Bridge) | 8 GB R2015b

Pro 15

x 1
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Index

C, The fixed cost matrix, 3

D, The distance matrix, 3

F, The flow matrix, 3

J, The gangster index set, 14

K, 12

Lo, 12

V, 13

Y, 12

Z, 15

II, The set of permutations, 8

I1,,, The set of n x n permutation matrices,
8

St S, St 8

G s, The gangster operator, 13

P, 15

Po, 16

P;, The polyhedral constraints, 15

o, The Hadamard product, 8

diag(-), Diag(-), 8

v, B, parameters for the ADMM, 32

>, <, element-wise logic operator, 9

vec(-), Mat(-), 8

v, 13

&, The set of doubly stochastic matrices, 8

N, The set of non-negative matrices, 8

O, The set of orthogonal matrices, 8

Z, The set of (0,1) matrices, 8

w, 11

®, The Kronecker product, 9

=, =, The Lowner partial order, 9

Arrow, 12

B° Diag, 12

0° Diag, 12

arrow, 12

b" Diag, 12

o? Diag, 12

tr(-), trace, 8

d},, The dual problem of (2.12), 17
dy, The dual problem of (2.1), 12
9(Z), The dual function of (2.12), 17
g(Pz(Z"")), The projected lower bound,

17

DPr1, The SDP relaxation after facial reduc-
tion, 14

DPry, The SDP relaxation for the ADMM,
15

p%, The trace formulation, 3

Do, The SDP relaxation, 12

Pry1, The non-negative SDP relaxation, 16

PY,, The reduced QAP, 25

x, 13

y, 11

ADMM update, 15

ADMM, alternating direction method of mul-
tipliers, 7

GLB, Gilmore-Lawler bound, 6

QAPLIB, a quadratic assignment problem
library, 1

adjoint operator, 8
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bounding phase, 6
branch and bound, 5
branching phase, 5
branching rule, 5
breadth first search, 22

depth first search, 22

facial reduction, 13
Frobenius norm, 18

group symmetry, 35

Koopmans-Beckmann formulation, 2
Koopmans-Beckmann formulation for the TSP,
3

minimal face, 13
node selection strategy, 5

pair assignment branching, 5
parallel computing, 35

polytomic or k-partite branching, 5
pruning phase, 6

relative positioning branching, 5

seed, 32
single assignment branching, 5

the incumbent value, 6
the maximum number of iterations, 27
tolerance, 28
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