
Assertion Absorption in Object Queries over

Knowledge Bases

Jiewen Wu, Alexander Hudek, David Toman, and Grant Weddell
{j55wu, akhudek, david, gweddell}@uwaterloo.ca

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario Canada

Technical Report CS-2012-04

Abstract. We present a novel optimization of evaluating object queries,
especially instance queries, over description logic knowledge bases. The
method is designed to perform well for large ABoxes and expressive
TBoxes, e.g., where background knowledge requires the use of disjunc-
tion and negation. The method significantly improves the performance
of answering object queries, and particularly so in cases where a large
number of concrete feature values are included. We also report on the
results of an experimental evaluation that validates the efficacy of the
optimization.

1 Introduction

Description logics (DLs) knowledge bases, often formalized as ontologies, have
received substantial attention as a means of knowledge representation and rea-
soning. In general, a DL knowledge base K describes an application domain as
a set of axioms (known as a TBox T) and a set of assertions (an ABox A).
These knowledge bases, authored by various domain experts, are prone to in-
consistencies emerging in the phase of construction; therefore, a fundamental
task over DL knowledge bases is to determine if they are consistent. Among the
diverse uses of a knowledge base K, answering queries over K is of paramount
importance, typically when the data, i.e., A, consists of a large volume of objects
(called instances in DL terminology). In particular, instance queries for deter-
mining if an object a instantiates a concept C w.r.t a knowledge base K, written
K |= a : C, are pivotal for more complex queries. Instance queries, considered to
be the basic object queries, are the focus of this paper.

Usually, instance queries are assumed to include consistency checking of K.
However, typical workloads for a reasoning service will include far more instance
checking tasks than knowledge base consistency tasks. In practice, most of the
knowledge bases that queries are issued against are indeed consistent. Thus,
the resulting “separation of concerns” can therefore enable technology that is
considerably more efficient for such workloads.

We contribute to this development by introducing a novel adaptation of bi-
nary absorption for DL knowledge bases and demonstrate that the technique is
efficacious for cases that contain thousands of instance checking tasks, particu-
larly so in the case of non-Horn DL T that precludes the possibility of computing
so-called canonical ABoxes A′ from A (e.g., when disjunction is used in T). Our
novel technique can substantially improve performance for instance queries over
consistent knowledge bases because it allows for a tableaux algorithm to only ex-
plore a (potentially much smaller) subset of A, achieved by the so-called guarded
reasoning to be elaborated in later sections. To consider performance issues for
instance queries in the new optimization, we first consider how one can map in-
stance checking problems to concept satisfaction problems in which consistency
is assumed, and then revisit absorption in this new setting.

To date, work on absorption has focused on the concept satisfaction problem,
a simple case of the instance checking problem for knowledge bases with an ABox
consisting of a single assertion a : ⊤. Indeed, it has been known for some time
in this case that lazy unfolding is an important optimization technique in model
building algorithms for satisfiability [BFH+94]. It is also imperative for a large
TBox to be manipulated by an absorption generation procedure to maximize the
benefits of lazy unfolding in such algorithms, thereby reducing the combinatorial
effects of disjunction in underlying tableaux procedures [Hor98].

In particular, we present an absorption generation procedure that is an adap-
tation of an earlier procedure reported in [HW06]. This earlier procedure was
called binary absorption and was itself a generalization of the absorption the-
ory and algorithms developed in [HT00a,HT00b]. The generalization makes it
possible for lazy unfolding to be used for parts of terminologies not handled by
earlier absorption algorithms and theory.

Binary absorption combines two key ideas. The first makes it possible to
avoid internalizing (at least some of the) terminological axioms of the form
(A1⊓A2) ⊑ C, where the Ai denote primitive concepts and C a general concept.
The second is an idea relating to role absorptions developed by Tsarkov and
Horrocks [TH04]. To illustrate, binary absorption makes it possible to completely
absorb the inclusion dependency

A1 ⊓ (∃R−
1 .A2) ⊓ (∃R2.(A3 ⊔ A4)) ⊑ A5.

In this case, the absorption would consist of a set of dependencies with a single
primitive concept on the left-hand-side

{A2 ⊑ ∀R1.A6, A3 ⊑ A7, A4 ⊑ A7, A7 ⊑ ∀R−
2 .A8}

and a second set of dependencies with a conjunction of two primitive concepts
on the left-hand-side

{(A1 ⊓ A6) ⊑ A9, (A9 ⊓ A8) ⊑ A5},

in which A6, A7, A8 and A9 are fresh atomic concepts introduced by the binary
absorption procedure. (Hereon, we refer to an instance of the latter set as a

binary axiom.) A key insight and contribution of this paper is that it is not
necessary for both concepts occurring in the left-hand-side of such a dependency
to be atomic. In particular, we show that binary absorption raises the possibility
of reducing assertion membership problems to concept satisfaction problems via
the introduction of nominals in such dependencies, but without suffering the
consequent overhead that doing so would almost certainly entail without binary
absorption.

Note that there are other reasons that binary absorption is useful, beyond
the well-documented advantages of reducing the need for internalization of gen-
eral terminological axioms. In particular, it works very well for the parts of a
terminology that are Horn-like, as illustrated by the above example.

Our contributions are as follows:

1. We introduce the notion of guards in the context of a knowledge base for the
DL dialect ALCIQ(D). In particular, we show how instance retrieval in this
dialect can map to concept satisfaction problems in the dialectALCIOQ(D),
but where binary absorption in combination with guards can usefully avoid
reasoning about irrelevant ABox individuals and concrete facts with the
assumption of knowledge base consistency.

2. We propose a generalization of binary absorption. In particular, we now allow
nominals in place of one of the two left-hand-side concepts in an absorbed
binary axiom.

3. We report on the results of an experimental evaluation that validates the
efficacy of the proposed optimization.

This paper is organized as follows: Section 2 introduces some preliminary
definitions. Then, Section 3 elaborates the mapping from instance queries to con-
cept satisfaction problems and the generalized binary absorption together with
its correctness proof. Section 4 details a procedure for general binary absorp-
tion that is capable of absorbing the mapped knowledge bases. An experimental
evaluation follows in Section 5 and we present summary comments of this paper
in Section 6.

1.1 Related Work

Query answering over DL knowledge bases has been studied extensively in the
research community, ranging from investigating query answering complexity over
knowledge bases with varying expressiveness to practical optimization techniques
for large ontologies. In general, the size of the ABox, viewed as data from a
relational database perspective, dominates that of the knowledge base and the
query. It is therefore reasonable to consider data complexity as the complexity
measure for query answering in knowledge bases, i.e., fixing the TBox and the
query.

Instance retrieval over DL knowledge bases is in general more difficult to
deal with than concept satisfaction, for example, for ALE the (data) com-
plexity of instance queries is coNP-hard, while that of concept satisfaction is

coNP-complete [DLNS94]. However, for many other DLs the complexity of in-
stance retrieval is in the same complexity class as that of concept satisfaction, i.e.,
PSpace-complete for ALC [BCM+03b]. Because of such intrinsic complexity,
reasoners requires effective optimization techniques to answer instance queries.

Traditionally, an instance query of the form K |= a : C is answered by
first computing a clash free pre-completion, via exhaustive application of non-
generating expansion rules, that captures some relevant information regarding
a w.r.t. K. For DLs without disjunctions, only one pre-completion can be ob-
tained, otherwise, a pre-completion has to be guessed non-deterministically for
disjunctions. A similar idea, called model merging technique, was also presented
in [Hor97] for more expressive DLs, which uses pre-completion obtained by con-
junction and disjunction rules. The model merging strategy has been further
refined as pseudo model merging in [HM08], which appeared to be indispensable
for answering queries over large ABoxes.

Notably, the pseudo model merging technique separates consistency checking
of A from instance checking by avoiding exploring other instances occurring in
A. Specifically, given a consistent A, a pseudo model of an instance a captures
the deterministic information relevant to a in one model of A computed by the
tableaux algorithm, which exhibits the interaction between other instances and a.
Pseudo models are then used to exclude obvious non-instances of a given concept,
based on the observation that an instance usually belongs to a small number of
concepts. The experimental evaluation of [HM08] demonstrated the usefulness
of pseudo model merging, however, it is a sound but incomplete optimization for
instance queries.

Recent advances in scalable query answering focus on “lightweight” DLs
in terms of expressiveness. These approaches, instead of answering queries in
knowledge bases, leverage relational technology to scale to large ABoxes, pro-
vided that the DLs satisfy certain conditions. In addition, the queries sup-
ported in such a setting, often referred to as ontology-based data access (OBDA)
[CDGL+09,KLT+11], go beyond instance retrieval to conjunctive queries. The
main idea of OBDA for conjunctive query answering is to rewrite the original
query into another query, which can then be evaluated in relational databases
that consist of the data (ABoxes) alone, instead of relying on DL reasoning over
the knowledge bases. The advantage of OBDA is evident: conjunctive query an-
swering in plain databases is AC

0 [AHV95], making it scalable with the data.
However, several restrictions are imposed on the KBs, for example, only queries
in certain DLs can be rewritten into FOL formulae (i.e., SQL) that can be eval-
uated efficiently by a relational DBMS, such as the logics DL-Lite. In reality,
knowledge bases adopts expressive logics to model application domains, which
consequently requires novel optimizations in place of relational technology to
enable efficient query answering.

In this paper, absorption is used to map instance queries into concept sat-
isfaction problems. Absorption aims at transforming general concept inclusions
(GCIs) into axioms that can be exploited by lazy unfolding. The basic absorp-
tion [BCM+03a] rewrites an axiom into the form A ⊑ C where A is atomic, with

its counterpart transforming axioms into the form ¬A ⊑ C. [HW06] extends the
above absorption to axioms of the form A1 ⊓ A2 ⊑ C, called binary absorption.
Furthermore, axioms of the form ∃R.⊤ ⊑ C could be absorbed by role absorption
[TH04]. To our knowledge, Hypertableaux [MSH09], a special reasoning calcu-
lus that reduces nondeterminism for expressive DLs, is the first to provide an
absorption framework, instead of using a single absorption technique presented
above.

2 Preliminaries

We consider instance checking problems in the context of knowledge bases ex-
pressed in terms of the DL dialect ALCIQ(D). However, such problems will be
mapped to concept satisfaction problems in the more general dialectALCIOQ(D).

Definition 1 (Description Logic ALCIOQ(D)).
ALCIOQ(D) is a DL dialect based on disjoint infinite sets of atomic concepts
NC, atomic roles NR, concrete features NF and nominals NI. Also, if A ∈ NC,
R ∈ NR, a ∈ NI, f, g ∈ NF, n is a non-negative integer and C1 and C2 are
concept descriptions, then A, ¬C1, C1 ⊓ C2, C1 ⊔ C2, ⊤, ⊥, ∃R.C1, ∀R.C1,
∃R−.C1, ∀R−.C1, {a}, ∃≤nR.C1, ∃≥nR.C1, ∃≤nR−.C1, ∃≥nR−.C1, f < g and
f = k, where k is a finite string, are also concept descriptions.

An interpretation I is a pair I = (∆I ⊎ DI , ·I), where ∆I is a non-empty
set, DI a disjoint concrete domain of finite strings, and ·I is a function mapping
each feature f to a total function fI : ∆ → D, the “=” symbol to the equality
relation over D, the “<” symbol to the binary relation for an alphabetic ordering
of D, a finite string k to itself, NC to subsets of ∆I, NR to subsets of ∆I ×∆I,
and NI to elements of ∆I . The interpretation is extended to inverse roles as
follows: (R−)I = {(o2, o1) ∈ ∆ × ∆ | (o1, o2) ∈ RI}. The interpretation is
further extended to compound concept descriptions in the following way:

⊤I = ∆

⊥I = ∅

¬CI = ∆ \ CI

(C ⊓D)I = CI ∩DI

(∃S.C)I = {o1 ∈ ∆ | ∃o2 ∈ CI : (o1, o2) ∈ SI}

(∀S.C)I = {o1 ∈ ∆ | ∀o2 : (o1, o2) ∈ SI → o2 ∈ CI}

(∃≤nS.C1)
I = {o1 ∈ ∆ | |{o2 ∈ ∆ | (o1, o2) ∈ SI ∧ o2 ∈ CI}| ≤ n}

(∃≥nS.C1)
I = {o1 ∈ ∆ | |{o2 ∈ ∆ | (o1, o2) ∈ SI ∧ o2 ∈ CI}| ≥ n},

where S is either an atomic role R or its inverse R−.

Some abbreviations are used in this paper: ∀S.C is considered to be a shorthand
for ∃≤0S.¬C; concrete domain concepts such as f < k are an abbreviation for
(f < g) ⊓ (g = k); (t1 op t2) generalizes concrete domain concepts by allowing
t1 and t2 to be either a concrete feature or a finite string and op ∈ {<,=}.

Definition 2 (TBox, ABox, and KB Satisfiability).
A TBox T is a finite set of axioms of the form C1 ⊑ C2 or C1

.
= C2. A TBox

T is called primitive iff it consists entirely of axioms of the form A
.
= C with

A ∈ NC, each A ∈ NC appears in at most one left hand side of an axiom, and
T is acyclic. Acyclicity is defined as follows: A1 ∈ NC directly uses A2 ∈ NC
if A1

.
= C ∈ T and A2 occurs in C; “uses” is the transitive closure of “directly

uses”. Then T is acyclic if there is no A ∈ NC that uses itself. A ∈ NC is defined
in T if T contains A ⊑ C or A

.
= C. An ABox A is a finite set of assertions of

the form a : A, a : (f op k) and R(a, b).

Let K = (T ,A) be an ALCIOQ(D) knowledge base (KB). An interpretation
I is a model of K, written I |= T , iff CI

1 ⊆ CI
2 holds for each C1 ⊑ C2 ∈ T ,

CI
1 = CI

2 holds for each C1
.
= C2 ∈ T , aI ∈ AI for a : A ∈ A, (aI , bI) ∈ RI,

and fI(aI) op k for a : (f op k) ∈ A. A concept C is satisfiable with respect
to a knowledge base K iff there is an I such that I |= K and such that CI 6= ∅.

Observe that in Definition 2 ABox assertions of the form a : A and a :
(f op k) disallow the use of compound concepts. Any ABoxes that violate the
stipulation can be rectified by introducing fresh atomic concepts in the corre-
sponding assertions and appropriate axioms in the TBoxes. Once an ABox A
is normalized as in the definition, it can then be converted using the technique
presented in the next section.

3 On Absorbing an ABox

The absorption of an ABox A proceeds in two steps. First, guards that allow a
DL reasoner to ease the exploration of A are added to the assertions (which are
in turn converted into TBox axioms via the use of nominals). During the first
step, A will be converted to a TBox TA and the original TBox T to a new TBox
T ∪ TT . Second, we adapt binary absorption to deal with the resulting TBox
T ∪ TT ∪ TA.

3.1 Mapping instance checking to concept satisfaction

In this section we convert an ALCIQ(D) knowledge base K to a TBox by rep-
resenting individuals in K’s ABox by nominals (i.e., in a controlled fragment of
ALCIOQ(D)):

Definition 3 (ABox Conversion). Let K = (T ,A) be a knowledge base. We
define a TBox TA for the ABox of K:

TA = {{a} ⊓Defa ⊑ A | a : A ∈ A}
∪ {{a} ⊓Deff ⊑ (f op k) | a : (f op k) ∈ A}
∪ {{a} ⊓DefR ⊑ ∃R.({b} ⊓Defb), {a} ⊓Defa ⊑ ∃R.⊤,

{b} ⊓DefR− ⊑ ∃R−.({a} ⊓Defa), {b} ⊓Defb ⊑ ∃R−.⊤ | R(a, b) ∈ A}

Note that all the axioms resulting from ABox assertions are guarded by auxiliary
primitive concepts of the form Defa, DefR, and Deff . Intuitively, these concepts,
when coupled with an appropriate absorption allow a reasoner to ignore parts
of the original ABox: all the constants for which Defa is not set. Similarly, for
any instance, a reasoner only examines the relevant concrete domain concepts
that have the guard Deff set and only explores the relevant instances that have
the guard DefR or DefR− set. We show later that the guarding concepts with
the extended binary absorption can yield considerable performance gains.

To make guarding fully functional, it is necessary (without loss of generality)
that the TBox of K only use qualified at-most number restrictions of the form
A ⊑ ∃≤nR.B where A and B are atomic concepts or their negations. Axioms of
the form ∃≥nR.A ⊑ B are also considered to be at-most number restrictions and
have to be rewritten in the form of ¬B ⊑ ∃≤nR.A and that nested qualified num-
ber restrictions must be unnested. It is easy to see that every ALCIQ(D) TBox
can be transformed to an equi-satisfiable TBox that satisfies this requirement
by introducing new auxiliary atomic concepts. If the TBox T satisfies the afore-
mentioned requirement, additional axioms have to be introduced to manipulate
the guards:

Definition 4 (TBox Augmentation). Let K = (T ,A) be a knowledge base.
We define a TBox TT for the ABox of K as follows:

TT = {A ⊑ DefR,B ⊑ DefR− | A ⊑ ∃≤nR.B ∈ T }
∪{(t1 op t2) ⊑ Deff | f appears in t1 or in t2, (t1 op t2) appears in T }.

Intuitively, an instance guard is generated on the fly only if that particular in-
stance interacts with other guarded instances via guarded roles, as shown in Def-
inition 3. The augmentation of the original TBox (Definition 4) further supplies
guards for concrete domain concepts and roles to be used in guarded reasoning.

In the following, we present the main theoretical result that enables a DL
reasoner to view instance checking tasks as concept satisfaction problems. We
write TK for T ∪ TT ∪ TA. To ease the presentation, we define a derivative guards
DC w.r.t. C as follows: DA = ⊤, D(t1 op t2) = Deff1 ⊓ · · · ⊓ Deffn where fi,
1 ≤ i ≤ n, appears in t1 or t2, D∃R.C = D∃≤nR.C = DefR ⊓∀R.DC , DC1⊓C2

=
DC1

⊓DC2
, and D¬C = DC .

Theorem 1. Let K = (T ,A) be a consistent knowledge base. Then

K |= a : C if and only if TK |= {a} ⊓D ⊑ C,

where D = Defa ⊓DC .

Proof. The only-if direction is equivalent to the following claim to be proven:
if TK 6|= {a} ⊓ D ⊑ C, then K 6|= a : C. Assume that there is an interpretation
I0 that satisfies TK such that ({a})I0 ⊆ (D)I0 but ({a})I0 ∩ (C)I0 = ∅ and an
interpretation I1 that satisfies K in which all at-least restrictions are fulfilled by
anonymous objects. Hence, we do not need to consider at-least restrictions, no
matter how expressed, in the construction below. Without loss of generality, we

assume both I0 and I1 are tree-shaped outside of the ABox (converted ABox).
Our proof proceeds by building an interpretation J such that J satisfies K and
(a)J 6∈ (C)J .

The construction of the interpretation J for K∪{a : ¬C} follows. Let Γ I0 be
the set of objects o ∈ ∆I0 such that either o ∈ ({a})I0 and ({a})I0 ⊆ (Defa)

I0 or
o is an anonymous object in ∆I0 rooted by such an object. Similarly let Γ I1 be
the set of objects o ∈ ∆I1 such that either o ∈ ({a})I1 and ({a})I0 ∩(Defa)

I0 = ∅
or o is an anonymous object in ∆I1 rooted by such an object. We stipulate the
following protocols for constructing J :

1. ∆J = Γ I0 ∪ Γ I1 ;
2. (a)J ∈ ({a})I0 for (a)J ∈ Γ I0 and (a)J = (a)I1 for (a)J ∈ Γ I1 ;
3. o ∈ AJ if o ∈ AI0 and o ∈ Γ I0 or if o ∈ AI1 and o ∈ Γ I1 for an atomic

concept A (similarly for concrete domain concepts of the form (t1 op t2));
4. (o1, o2) ∈ (R)J if

(a) (o1, o2) ∈ RI0 and o1, o2 ∈ Γ I0 , or (o1, o2) ∈ RI1 and o1, o2 ∈ Γ I1 ; or
(b) o1 ∈ ({a})I0 ∩ (Defa)

I0 , o2 ∈ ({b})I1 and R(a, b) ∈ A (or vice versa).

It should be noted that a is in the initial query, hence, (a)J ∈ Γ I0 and
(a)J ∈ (Defa)

I0 . In addition, we have ({a})I0 ⊆ (D)I0 and ({a})I0 ∩ (C)I0 = ∅
as our assumption. We show that (a)J 6∈ (C)J holds using structural induction,
considering the query concept C to be in NNF. Observe that the induction
hypothesis is that, for any a, if ({a})I0 ⊆ (D′)I0 and ({a})I0 ∩ (C′)I0 = ∅ then
(a)J 6∈ (C′)J .

– C = A or C = (t1 op t2), then (a)J 6∈ (C)J holds trivially by protocol 3:
(a)J ∈ Γ I0 and (a)J 6∈ CI0 (due to our assumption that ({a})I0 ∩ (C)I0 = ∅).

– C = ∃R.C′. By way of contradiction, we assume (a)J ∈ (∃R.C′)J , which
means there is an individual b such that (b)J ∈ (C′)J and ((a)J , (b)J) ∈ (R)J .
1. If (b)J ∈ Γ I0 , then (b)J ∈ ({b})I0 , (({a})I0 , ({b})J) ∈ (R)I0 . By our ini-

tial assumption, ({a})I0 ⊆ (Defa ⊓DC)
I0 , where DC = DefR ⊓∀R.DC′ ,

hence, we have ({b})I0 ⊆ (DC′)I0 , which, together with ({b})I0 ⊆ (Defb)
I0 ,

implies that ({b})I0 ⊆ (D′)I0 . However, by the induction hypothesis and
(b)J ∈ (C′)J , either ({b})I0 6⊆ (D′)I0 or ({b})I0 ⊆ (C′)I0 , so the latter
must hold. The latter, nevertheless, contradicts our original assumption
that ({a})I0 ∩ (C)I0 = ∅, with C = ∃R.C′.

2. If (b)J ∈ Γ I1 , then ({b})I0 ∩ (Defb)
I0 = ∅. By our initial assumption,

({a})I0 ⊆ (Defa ⊓DC)
I0 , where DC = DefR ⊓∀R.DC′ , hence, ({a})I0 ⊆

(Defa ⊓DefR)
I0 . Since R(a, b) ∈ A, by Definition 3 it is easy to see that

({b})I0 ⊆ (Defb)
I0 : a contradiction.

– C = ∀R.C′. Observe that ∀R.C′ is a shorthand for ∃≤0R.¬C′, so D∀R.C′ =
D∃R.C′ . Assume, by way of contradiction, that (a)J ∈ (∀R.C′)J . Because
({a})I0 6⊆ (∀R.C′)I0 , there is a nominal {b} such that (({a})I0 , ({b})I0) ∈
(R)I0 and ({b})I0 6⊆ (C′)I0 . Thus, by definition ({b}) ∈ Γ I0 and by proto-
col 4a (({a})J , ({b})J) ∈ (R)J . Since (a)J ∈ (∀R.C′)J , it must be that (b)J ∈
(C′)J . However, ({a})I0 ⊆ (D)I0 implies that ({a})I0 ⊆ (∀R.DC′)I0 , which
means ({b})I0 ⊆ (DC′)I0 , hence, by the induction hypothesis, (b)J 6∈ (C′)J :
a contradiction.

– C = ∃≤nR.C′. The proof follows immediately from the cases C = ∀R.¬C′

if n = 0. Otherwise, by assuming (a)J ∈ (∃≤nR.C′)J , the case analyses are
the same as that of the case C = ∃R.C′.

– C = ¬A. Because ({a})I0 ∩ CI0 = ∅, we have ({a})I0 ⊆ (A)I0 , which by
protocol 3, together with (a)J ∈ ({a})I0 and (a)J ∈ Γ I0 , implies that (a)J ∈
AJ , i.e., (a)J 6∈ (C)J .

– C = C1 ⊓ C2. Assume, by way of contradiction, that (a)J ∈ (C)J , then
(a)J ∈ (C1)

J and (a)J ∈ (C2)
J . By the induction hypothesis and (a)J ∈

(C1)
J , we have either ({a})I0 6⊆ (D1)

I0 or ({a})I0 ⊆ (C1)
I0 . Because it holds

that ({a})I0 ⊆ (Defa)
I0 , ({a})I0 ⊆ (DC)

I0 and DC ⊑ DC1
, it follows that

({a})I0 ⊆ (Defa ⊓DC1
)I0 = (D1)

I0 , so it must be the case that ({a})I0 ⊆
(C1)

I0 . For the same reason, ({a})I0 ⊆ (C2)
I0 . Hence, ({a})I0 ⊆ (C1⊓C2)

I0 ,
i.e., ({a})I0 ⊆ (C)I0 , which contradicts the initial assumption that ({a})I0 ∩
(C)I0 = ∅.

To show J |= K, it suffices to consider only the R edges crossing the two
interpretations as defined in protocol 4b, i.e., when o1 ∈ ({a})I0 , o2 ∈ ({b})I1

and R(a, b) ∈ A. Note that none of these edges need to fulfill existential re-
strictions, which are already fulfilled (potentially redundantly) by anonymous
objects whenever possible. Therefore, only at-most restrictions (including uni-
versal restrictions) need to be considered.

For any inclusion axiom expressing an at-most restriction A ⊑ ∃≤nR.B ∈ T ,
we can conclude that o1 6∈ (A)I0 as otherwise o1 ∈ (DefR)

I0 by Definition 4
and thus o2 ∈ (Defb)

I0 by Definition 3 which contradicts our assumption that
({b})I0 ∩ (Defb)

I0 = ∅. Hence the axiom is satisfied vacuously. The remaining
edges in protocol 4a satisfy all axioms in K as the remainder of the interpretation
J is copied from one of the two interpretations that satisfy K. Hence all inclusion
axioms in K are satisfied by J .

The if direction, equivalent to the claim that if K 6|= a : C then TK 6|= {a}⊓D ⊑
C, holds by observing that if K ∪ {a : ¬C} is satisfiable then the satisfying
interpretation I can be extended to (Defa)

I = (Deff)
I = (DefR)

I = ∆I and
({a})I = {aI} for all individuals a, concrete features f , and roles R. This ex-
tended interpretation then satisfies TK and ({a})I ⊆ (D)I ∩ (¬C)I .

✷

In ALCIQ(D), which on its own cannot equate constants, we do not need
to rely explicitly on the unique name assumption (UNA). However, we could
allow explicit equalities and inequalities in the ABox and then process them
similarly to Definition 3, e.g., a ≈ b to {a} ⊓ Defa ⊑ {b} ⊓ Defb and vice versa
and so on. This is sufficient for the construction of the interpretation J in the
proof of Theorem 1 to go through. Note that the interpretations of constants
(nominals) for which Defa is not set in I0 are irrelevant for constructing the
interpretation J even though there could be axioms of the form ⊤ ⊑ C that
are applicable to such constants (one could even augment all such axioms by
adding guards to avoid this effect). Therefore those constants (nominals) can
be ignored completely during reasoning and, thus, nodes corresponding to the

constant symbols can be generated lazily on demand driven by the guarding
concept Defa.

The guarding concepts is effective only if they are “observed” simultane-
ously with a constant. Binary absorption, when properly extended, ensures that
guarded constants are reasoned about only if a guard is seen. Nevertheless, us-
ing other absorption algorithms is unable to retain the effects of guards. Conse-
quently, Section 3.3 expands on an extension to binary absorption that functions
on the converted knowledge base TK. To define such an extension, the notion
of witnesses needs to be introduced prior to absorption, as shown in the next
section.

3.2 On witnesses

Model building algorithms for checking the satisfaction of a concept C operate
by manipulating an internal data structure (e.g., in the form of a node and edge
labeled rooted tree with “back edges”). The data structure “encodes” a partial
description of (eventual) interpretations I for which CI will be non-empty. Such
a partial description will almost always abstract details on class membership for
hypothetical elements of ∆I and on details relating to the interpretation of roles.
To talk formally about absorption and lazy evaluation, it is necessary to codify
the idea of a partial description. This has been done in [HT00b] by introducing
the notion of a witness, of an interpretation that stems from a witness, and of
what it means for a witness to be admissible with respect to a given terminology.

Definition 5. (Witness) Let C be an ALCIOQ(D) concept.1 A witness W =
(∆W , ·W ,LW) for C consists of a non-empty set ∆W , a function ·W that maps
NR to subsets of ∆W × ∆W , and a function LW that maps ∆W to sets of
ALCIOQ(D) concepts such that:

(W1) there is some x ∈ ∆W with C ∈ LW (x),
(W2) there is an interpretation I that stems from W, and
(W3) for each I that stems from W, x ∈ CI if C ∈ LW(x).

An interpretation I = (∆I , ·I) is said to stem from W if ∆I = ∆W , ·I |NR =
·W , for each A ∈ NC, A ∈ LW(x) implies x ∈ AI and ¬A ∈ LW(x) implies
x /∈ AI , for each a ∈ NI, {a} ∈ LW(x) implies x ∈ {a}I and ¬{a} ∈ LW(x)
implies x /∈ {a}I, for each (f op k), (f op k) ∈ LW(x) implies x ∈ (f op k)I

and ¬(f op k) ∈ LW(x) implies x /∈ (f op k)I.
A witness W is called admissible with respect to a TBox T if there is an

interpretation I that stems from W with I |= T .

The properties satisfied by a witness are presented in the following lemmas,
originally shown in [HT00b].

Lemma 1. Let L be a DL. A concept C ∈ L is satisfiable w.r.t. a TBox T iff it
has a witness that is admissible w.r.t. T .
1 The definition of witness can be abstracted for any DLs that have ALCIO as a
sublanguage and that satisfy some criteria on the interpretations stated in [HT00b].

{a} ∈ LW(x) and {a} ∈ LW(y) implies x = y

{{a}, A} ⊆ LW(x) , and ({a} ⊓A) ⊑ C ∈ Tu implies C ∈ LW(x)
(x, y) ∈ RI and ∃R.⊤ ⊑ C ∈ Tu implies C ∈ LW(x)

(x, y) ∈ RI and ∃R−.⊤ ⊑ C ∈ Tu implies C ∈ LW(y)

{A1, A2} ⊆ LW(x) and (A1 ⊓A2) ⊑ C ∈ Tu implies C ∈ LW(x)
A ∈ LW(x) and A ⊑ C ∈ Tu implies C ∈ LW(x)

¬A ∈ LW(x) and ¬A ⊑ C ∈ Tu implies C ∈ LW(x)
C1 ⊑ C2 ∈ Tg implies ¬C1 ⊔ C2 ∈ LW(x)
C1

.
= C2 ∈ Tg implies ¬C1 ⊔ C2 ∈ LW(x)

C1

.
= C2 ∈ Tg implies C1 ⊔ ¬C2 ∈ LW(x)

Fig. 1: Absorption witness conditions

Lemma 2. Let L, C, T and W be a DL, a concept in L, a TBox for L and a
witness for C, respectively. Then W is admissible w.r.t. T if, for each x ∈ ∆W :

C1 ⊑ C2 ∈ T implies ¬C1 ⊔ C2 ∈ LW(x),
C1

.
= C2 ∈ T implies ¬C1 ⊔ C2 ∈ LW(x) and

C1
.
= C2 ∈ T implies C1 ⊔ ¬C2 ∈ LW(x).

A generalization of an absorption developed in [HT00a,HT00b] has been given
in [HW06], dubbed binary absorption. We further extend binary absorption
[HW06] to accommodate the absorbed ABoxes as shown in Section 3.1.

3.3 On binary absorption

Definition 6. (Binary Absorption) Let K={T ,A} be a KB. A binary ab-
sorption of T is a pair of TBoxes (Tu, Tg) such that T ≡ Tu∪Tg and Tu contains
axioms of the form A1 ⊑ C, ¬A1 ⊑ C, ∃R.⊤ ⊑ C (resp. ∃R−.⊤ ⊑ C), and the
form (A1 ⊓ A2) ⊑ C and ({a} ⊓ A) ⊑ C, where {A,A1, A2} ⊆ NC and a ∈ NI.

A binary absorption (Tu, Tg) of T is called correct if it satisfies the follow-
ing condition: For each witness W and x ∈ ∆W , if all conditions in Figure 1
are satisfied, then W is admissible w.r.t. T . A witness that satisfies the above
property will be called unfolded.

The distinguishing feature of our extension of binary absorption is the addition of
the first four implications in Figure 1. Binary absorption itself allows additional
axioms in Tu to be dealt with in a deterministic manner, as illustrated in our
introductory example. ABox absorption, treating assertions as axioms, extends
binary absorption to handle nominals in binary axioms. In addition, domain and
range constraints are also absorbed in a manner that resembles role absorption
introduced in [TH04].

Lemmas 3, 4 and 5 originally presented in [HT00b] hold without modification.
We show in Lemma 6 that the generalized binary absorption is also a correct
absorption.

Lemma 3. Let (Tu, Tg) be a correct binary absorption of T . For any C ∈ L, C
has a witness that is admissible w.r.t. T iff C has an unfolded witness.

Lemma 4. Let T be a primitive TBox and Tu defined as

{A ⊑ C,¬A ⊑ ¬C | A
.
= C ∈ T }.

Then (Tu, ∅) is a correct absorption of T .

Lemma 5. Let (Tu, Tg) be a correct absorption of a TBox T .

1. If T ′ is an arbitrary TBox, then (Tu, Tg ∪ T ′) is a correct absorption of
T ∪ T ′.
2. If T ′ is a TBox that consists entirely of axioms of the form A ⊑ C, where
A ∈ NC and A is not defined in Tu, then (Tu∪T ′, Tg) is a correct absorption
of T ∪ T ′.

Lemma 6. Let (Tu, Tg) be a correct absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms of the form (A1⊓A2) ⊑ C and ({a}⊓A3) ⊑ D, where
{A1, A2, A3} ⊆ NC and where none of A1, A2, A3 are defined in Tu, a ∈ NI, then
(Tu ∪ T ′, Tg) is a correct absorption of T ∪ T ′.

Proof. We only show the proof for axioms of the form (A1 ⊓ A2) ⊑ C, and the
proof of axioms of the form ({a} ⊓ A3) ⊑ D follows, viewing {a} as a primitive
concept.

Observe that Tu ∪ Tg ∪ T ′ ≡ T ∪ T ′ holds trivially. Let C ∈ L be a concept
and W be an unfolded witness for C w.r.t. the absorption (Tu∪T ′, Tg). From W ,

define a new witness W ′ for C by setting ∆W′

= ∆W , ·W
′

= ·W , and defining
LW′

to be the function that, for every x ∈ ∆W′

, maps x to the set

LW(x) ∪ {¬A1,¬A2 | (A1 ⊓ A2) ⊑ C′ ∈ T ′, {A1, A2} ∩ LW (x) = ∅}
∪ {¬A1 | (A1 ⊓A2) ⊑ C′ ∈ T ′, A1 /∈ LW (x), A2 ∈ LW(x)}
∪ {¬A2 | (A1 ⊓A2) ⊑ C′ ∈ T ′, A1 ∈ LW (x), A2 /∈ LW(x)}.

It is easy to see that W ′ is also unfolded w.r.t. the absorption (Tu∪T ′, Tg). This
implies that W ′ is also unfolded w.r.t. the (smaller) absorption (Tu, Tg). Since
(Tu, Tg) is a correct absorption of T , there exists an interpretation I stemming
from W ′ such that I |= T . We show that I |= T ′ also holds. Assume I 6|=
T ′. Then there is an axiom (A1 ⊓ A2) ⊑ C1 ∈ T ′ and an x ∈ ∆I such that
x ∈ (A1 ⊓ A2)

I but x /∈ CI
1 . By construction of W ′, x ∈ (A1 ⊓ A2)

I implies
{A1, A2} ⊆ LW′

(x) because otherwise {¬A1,¬A2} ∩ LW′

(x) 6= ∅ would hold in
contradiction to (W3). Then, since W ′ is unfolded, C1 ∈ LW′

(x), which, again,
by (W3), implies x ∈ CI

1 , a contradiction.
Hence, we have shown that there exists an interpretation I stemming from

W ′ such that I |= Tu ∪ T ′ ∪ Tg. By construction of W ′, any interpretation
stemming from W ′ also stems from W , hence W is admissible w.r.t. T ∪ T ′.

4 A Procedure for ABox Absorption

In this section, we present a procedure for ABox absorption that works on arbi-
trary axioms obtained from an initial knowledge base as shown in Section 3.1,
extending binary absorptions [HW06] with the following notable features, which

– maximally absorbs a TBox that results from a knowledge base as shown in
Section 3, and

– retains the guarding constraints as much as possible by prioritizing binary
absorptions, and

– allows a DL reasoner to reason with restricted uses of nominals without
introducing extra computational overhead, and

– makes it possible to absorb domain and range constraints in such a way that
guards for domain and range axioms become unnecessary.

The procedure is given in Section 4.1, which also serves as a general framework
for absorption. Its correctness proof follows in Section 4.2.

4.1 The procedure

The algorithm is given a TK that consists of arbitrary axioms. It proceeds by
constructing five TBoxes Tg, Tprim, Tuinc,, Tbinc, and Trinc such that: T ≡ Tg ∪
Tprim∪Tuinc∪Tbinc∪Trinc, Tprim is primitive, Tuinc consists of axioms of the form
A1 ⊑ C, Tbinc consists of axioms of the form (A1 ⊓ A2) ⊑ C and ({a} ⊓A) ⊑ C
and none of the above primitive concept are defined in Tprim, and Trinc consists
of axioms of the form ∃R.⊤ ⊑ C (or ∃R−.⊤ ⊑ C). Here, Tuinc contains unary
inclusion dependencies, Tbinc contains binary inclusion dependencies and Trinc
contains domain and range inclusion dependencies.

In the first phase, we move as many axioms as possible from T into Tprim.
We initialize Tprim = ∅ and process each axiom X ∈ T as follows.

1. If X is of the form A
.
= C, A is not defined in Tprim, and Tprim ∪ {X} is

primitive, then move X to Tprim.
2. If X is of the form A

.
= C, then remove X from T and replace it with axioms

A ⊑ C and ¬A ⊑ ¬C.
3. Otherwise, leave X in T .

In the second phase, we process axioms in T , either by simplifying them or
by placing absorbed components in Tuinc, Tbinc or Trinc. We place components
that cannot be absorbed in Tg. We let G = {C1, . . . , Cn} represent the axiom
⊤ ⊑ (C1⊔. . .⊔Cn). Axioms are automatically converted to (out of) set notation.
In addition, ∀R.C (resp. ∀R−.C) is considered a shorthand for ∃≤0R.¬C (resp.
∃≤0R−.¬C).

1. If T is empty, then return the binary absorption

({A ⊑ C,¬A ⊑ ¬C | A
.
= C ∈ Tprim} ∪ Tuinc ∪ Tbinc ∪ Trinc, Tg).

Otherwise, remove an axiom G from T .

2. Simplify G.
(a) If there is some ¬C ∈ G such that C is not a primitive concept, then

add (G ∪ NNF(¬C) \ {¬C} to T , where the function NNF(·) converts
concepts to negation normal form. Return to Step 1.

(b) If there is some C ∈ G such that C is of the form (C1 ⊓ C2), then add
both (G ∪ {C1}) \ {C} and (G ∪ {C2}) \ {C} to T . Return to Step 1.

(c) If there is some C ∈ G such that C is of the form C1 ⊔ C2, then apply
associativity by adding (G∪{C1, C2})\{C1⊔C2} to T . Return to Step 1.

3. Partially absorb G.
(a) If {¬{a},¬A} ⊂ G, and A is a guard, then do the following. If an axiom

of the form ({a} ⊓ A) ⊑ A′ is in Tbinc, add G ∪ {¬A′} \ {¬{a},¬A} to
T . Otherwise, introduce a new concept A′ ∈ NC, add (G ∪ {¬A′}) \
{¬{a},¬A} to T , and ({a} ⊓ A) ⊑ A′ to Tbinc. Return to Step 1.

(b) If {¬A1,¬A2} ⊂ G, (A1 ⊓ A2) ⊑ A′ ∈ Tbinc, then add G ∪ {¬A′} \
{¬A1,¬A2} to T . Return to Step 1.

(c) If {¬A1,¬A2} ⊂ G, and neither A1 nor A2 are defined in Tprim, then
do the following. If an axiom of the form (A1 ⊓ A2) ⊑ A′ is in Tbinc,
add G ∪ {¬A′} \ {¬A1,¬A2} to T . Otherwise, introduce a new concept
A′ ∈ NC, add (G ∪ {¬A′}) \ {¬A1,¬A2} to T , and (A1 ⊓ A2) ⊑ A′ to
Tbinc. Return to Step 1.

(d) If {∀R.C} = G (resp. {∀R−.C} = G), then do the following. Add
∃R−.⊤ ⊑ C (resp. ∃R.⊤ ⊑ C) to Trinc. Return to Step 1.

(e) If ∀R.¬A (resp. ∀R−.¬A) ∈ G, then do the following. Introduce a new
internal primitive concept A′ and add both A ⊑ ∀R−.A′ (resp. A ⊑
∀R.A′) and (G∪{¬A′}) \ {∀R.¬A} (resp. \{∀R−.¬A}) to T . Return to
Step 1.

4. Unfold G. If, for some A ∈ G (resp. ¬A ∈ G), there is an axiom A
.
= C in

Tprim, then substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ¬C), and add
G to T . Return to Step 1.

5. Absorb G. If ¬A ∈ G and A is not defined in Tprim, add A ⊑ C to Tuinc
where C is the disjunction of G \ {¬A}. Return to Step 1.

6. If none of the above are possible (G cannot be absorbed), add G to Tg.
Return to Step 1. ✷

In the above procedure, Step 3a is prioritized to ensure the pairing of a nom-
inal concept and a guarding concept for the purpose of guarded reasoning, which
in addition guarantees that nominals never occur on the right hand side of an
axiom. Step 3b is performed before Step 3c to reduce nondeterminism of bi-
nary absorption and to minimize the number of fresh concepts to be introduced.
In practice other heuristics may be applied for such purposes, for instance, a
strict ordering can be imposed on all concept names such that binary absorption
absorbs axioms in specific ways.

4.2 Correctness of the procedure

Termination of our procedure can be established by a counting argument. We
now prove the correctness of our algorithm using induction. Lemmas 7 and 8

prove, in combination, that Steps 3a, 3b and 3c of our algorithm are correct.
Lemmas 9 and 10 prove Step 3d correct and Lemmas 11 and 12 prove Step 3e
correct, respectively.

Lemma 7. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, and
A a primitive concept not used in C or T . If T1 is of the form

T1 = T ∪ {(C1 ⊓C2 ⊓ C3) ⊑ C4}, (1)

then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = T ∪ {(C1 ⊓ C2) ⊑ A, (A ⊓ C3) ⊑ C4}. (2)

Proof. First we prove the only-if direction. Assume C is satisfiable with respect
to T1. For each interpretation I such that I |= T1 and CI 6= ∅, we extend to
an interpretation I ′ such that I ′ |= T2 and CI′

6= ∅. First, set I ′ = I. For each
x ∈ ∆I such that x ∈ CI

1 and x ∈ CI
2 , add x to AI′

. Then, I ′ |= T2.
For the if direction, assume C is satisfiable with respect to T2. For each

interpretation I ∈ Int(L) such that I |= T2 and CI 6= ∅, we show that I |=
T1. The proof is by contradiction. Assume I 6|= T1. It must be the case that
(C1 ⊓ C2 ⊓ C3) ⊑ C4 ∈ T1 does not hold, since the rest of T1 is a subset of T2.
Therefore, there exists x ∈ ∆I such that x ∈ CI

1 ∩ CI
2 ∩ CI

3 , and x /∈ CI
4 . But,

in this case either (C1 ⊓ C2) ⊑ A ∈ T2 or (A ⊓ C3) ⊑ C4 ∈ T2 must not hold. A
contradiction.

Lemma 8 proves that instead of introducing a new primitive concept every time
we execute Steps 3a, 3b and 3c of our algorithm, we may instead reuse a previ-
ously introduced primitive concept. We use H to denote an arbitrary axiom.

Lemma 8. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a
primitive concept not used in C or T , and A1, A2, primitive concepts introduced
by Steps 3a, 3b and 3c of our algorithm modified such that a new primitive is
always introduced. If T1 is of the form

T1 = T ∪ {(C1 ⊓ C2) ⊑ A1, (C1 ⊓ C2) ⊑ A2}, (3)

then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = {H where A is substituted for A1 and A2 | H ∈ T }
∪{(C1 ⊓ C2) ⊑ A}

(4)

Proof. First we prove the only-if direction. We have two cases.

– Let I be an interpretation such that I |= T1, CI 6= ∅, and AI
1 = AI

2 . We
construct an interpretation I ′ from I such that I ′ |= T2 and CI′

6= ∅. First,
set I ′ = I. Then, set AI′

= AI
1 and remove any references to A1 and A2 in

I ′.

– Let I be an interpretation such that I |= T1, CI 6= ∅, and AI
1 6= AI

2 . We
construct an interpretation I ′ from I such that I ′ |= T1, CI′

6= ∅, and
AI

1 = AI
2 . For x ∈ ∆I such that x ∈ AI

1 ∪ AI
2 and x 6∈ AI

1 ∩ AI
2 , we show

that we can remove x from either AI
1 or AI

2 so that x /∈ AI
1 ∪ AI

2 without
causing any axiom in T1 to fail to hold. Without loss of generality, assume
x ∈ AI

1 and x 6∈ AI
2 . If x ∈ C1 and x ∈ C2, then we have a contradiction.

Otherwise, we remove x from AI
1 . Since either x 6∈ CI

1 or x 6∈ CI
2 , the axiom

(C1 ⊓ C2) ⊑ A1 holds. No other axiom in T1 has A1 on the right hand side,
therefore removing x from AI

1 does not cause any other axiom to fail to hold.
Since the above is true for all x such that x is in only one of AI

1 and AI
2 , we

may remove individuals from AI
1 and AI

2 until AI
1 = AI

2 . Then the first case
applies.

Now we prove the if direction. Let I be an interpretation such that I |= T2
and CI 6= ∅. We construct an interpretation I ′ from I such that I ′ |= T1 and
CI′

6= ∅. First set I ′ = I. Then, set AI′

1 = AI′

2 = AI . Due to the construction
of T2, I ′ |= T1 and CI′

6= ∅.

Lemma 9. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, and
R a role. If T1 is of the form

T1 = T ∪ {⊤ ⊑ ∀R.C1}, (5)

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {∃R−.⊤ ⊑ C1}. (6)

Proof. First we prove the only-if direction. Assume C is satisfiable with respect
to T1. For an interpretation I ∈ Int(L) such that I |= T1 and CI 6= ∅, we extend
I to an interpretation I ′ such that I ′ |= T2 and CI′

6= ∅. First set I ′ = I. For
each x ∈ ∆I , we add x to (∀R.C1)

I′

. Then, I ′ |= T2 and CI′

6= ∅.
Now we prove the if direction. Assume C is satisfiable with respect to T2.

For each interpretation I ∈ Int(L) such that I |= T2 and CI 6= ∅, it is also the
case that I |= T1. The proof is by contradiction. Assume I 6|= T1. It must be
the case that axiom ⊤ ⊑ ∀R.C1 does not hold. Then for some x ∈ ∆I , there is
y ∈ ∆I such that (x, y) ∈ RI and y /∈ CI

1 . However, from axiom ∃R−.⊤ ⊑ C1

and the fact that (y, x) ∈ (R−)
I
, it follows that y ∈ (∃R−.⊤)I , thus, y ∈ CI

1 : a
contradiction.

Lemma 10. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, R
a role and R− an inverse role of R. If T1 is of the form

T1 = T ∪ {⊤ ⊑ ∀R−.C1}, (7)

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {∃R.⊤ ⊑ C1}. (8)

The proof of this lemma is similar to that of Lemma 9.

Lemma 11. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A
a primitive concept not used in C or T , and R a role. If T1 is of the form

T1 = T ∪ {∃R.C1 ⊑ C2}, (9)

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 ⊑ ∀R−.A,A ⊑ C2}. (10)

Proof. First we prove the only-if direction. Assume C is satisfiable with respect
to T1. For an interpretation I ∈ Int(L) such that I |= T1 and CI 6= ∅, we extend
I to an interpretation I ′ such that I ′ |= T2 and CI′

6= ∅. First set I ′ = I. For
each x ∈ ∆I such that x ∈ (∃R.C1)

I ∩CI
2 , we add x to AI′

. Then, I ′ |= T2 and
CI′

6= ∅.
Now we prove the if direction. Assume C is satisfiable with respect to T2. For

each interpretation I ∈ Int(L) such that I |= T2 and CI 6= ∅, it is also the case
that I |= T1. The proof is by contradiction. Assume I 6|= T1. It must be the case
that axiom ∃R.C1 ⊑ C2 does not hold as all other axioms in T1 are also in T2.
Then there exists x ∈ ∆I such that x ∈ (∃R.C1)

I and x /∈ CI
2 . However, this

implies that there exists y ∈ ∆I such that (x, y) ∈ RI and y ∈ C1. From axiom
C1 ⊑ ∀R−.A, it must be the case that x ∈ AI . From axiom A ⊑ C2, it must be
the case that x ∈ CI

2 . A contradiction.

Lemma 12. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A
a primitive concept not used in C or T , and R a role. If T1 is of the form

T1 = T ∪ {∃R−.C1 ⊑ C2}, (11)

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 ⊑ ∀R.A,A ⊑ C2}. (12)

The proof of this lemma is similar to that of Lemma 11.

Theorem 2. For any TBox T , the ABox absorption algorithm computes a cor-
rect absorption of T .

Proof. The proof is by induction on iterations of our algorithm. We abbreviate
the pair ({A ⊑ C,¬A ⊑ ¬C | A

.
= C ∈ Tprim} ∪ Tuinc ∪ Tbinc ∪ Trinc, Tg ∪ T) as

T and claim that this pair is always a correct binary absorption. Initially, Tuinc,
Tbinc, Trinc and Tg are empty, primitive axioms are in Tprim, and the remaining
axioms are in T . By Lemma 3, Lemma 4, Lemma 5, and Lemma 6, T is a correct
absorption at the start of our algorithm. Assume we just finish iteration i and
now perform iteration i+ 1. By our induction hypothesis, T is a correct binary
absorption after iteration i. We have a number of possible cases below.

– If we perform Step 3a, Step 3b or Step 3c then iteration i + 1 is finished.
Therefore, a newly introduced primitive concept only appears on the right
hand side of an axiom once and Lemma 7 and Lemma 8 apply. We conclude
that T is a correct binary absorption.

– If we perform Step 3d, then iteration i+ 1 is finished and by Lemma 9 and
Lemma 10, T is a correct binary absorption.

– If we perform Step 3e, then iteration i+1 is finished and by Lemma 11 and
Lemma 12, T is a correct binary absorption.

– If we perform any of Steps 1, 2, 4, 5, or 6, then T is a correct binary ab-
sorption at the end of iteration i + 1. This is because these steps use only
equivalence preserving operations.

After the final iteration of our algorithm, T is a correct binary absorption
by induction.

5 Empirical Evaluation

The proposed absorption technique has been implemented in our CARE As-
sertion Retrieval Engine (CARE)2 based on a DL reasoner. We elaborate the
implementation details of CARE and the experimental setting below.

5.1 Implementation and Experimental Setup

The DL reasoner implements a standard tableaux algorithm [HS02] forALCI(D)
knowledge bases. The reasoner also features a limited number of optimizations,
including absorption presented in Section 4.1, optimized double blocking in
[HS02], and dependency-directed backtracking in [BCM+03b]. Moreover, the
reasoner is also capable of reasoning with restricted (“safe” use of) nominals,
where nominals appear only in binary axioms introduced in conversion steps. At
present, string is the only supported data type in the reasoner and a transitive
closure algorithm [Nuu95] is used to find clashes among concrete concepts.

All times, given in seconds, were averaged out over five independent runs on a
Ubuntu 12.04 Linux server. A time out of 2000 seconds was set for state-of-the-art
DL reasoners, which were run on a single core of a 2.6GHz AMD Opteron 6282
SE processor, with the virtual memory for Java programs set to 4GB. Queries
were evaluated in the latest releases of these DL reasoners. For instance, queries
were posed via OWL API 3 for FaCT++ 1.6.03, Pellet 2.3.04 and HermiT 1.3.65,
and via JRacer API for RacerPro 2.06 using the nRQL query language. Observe
that these highly optimized reasoners often pre-compute information w.r.t. the
loaded KBs for later query answering; therefore, the times given in this section
are the sums of the query response time and the amortized, i.e., divided by the
number of queries, preprocessing time (including KB loading time).

A suite of datasets (KBs) about digital cameras has been built and used
in the experiments. The KBs consist of digital camera model specifications ex-
tracted from DPreview.com and pricing information from Google Product Search

2 http://db-tom.cs.uwaterloo.ca
3 http://code.google.com/p/factplusplus/
4 http://clarkparsia.com/pellet/
5 http://www.hermit-reasoner.com/
6 http://www.racer-systems.com/

as of July 2012. The ABox (data) of each KB contains a set of camera models
described by a substantial number (around 70) of concrete feature concepts, in
addition to other concepts. Every camera model has n (0 ≤ n ≤ 10) products for
sale through various sellers. The TBox (schema) has 34 axioms, which remains
the same for all KBs. Table 1 expands on the size of the KBs, i.e., the number of
camera models, individuals, concept assertions and role assertions, respectively.
Observe that DPC1 has all the available digital cameras on DPreview.com, as-
suming there is only one product available for sale through each seller for a
particular model. DPC2 correspondingly assumes there are two products for
sale through each seller.

CMs Inds CAs RAs Q1 Q2 Q3 Q4 Q5 Q6 Q7

HP 577 8774 4926 12101 0 530 2 37 3737 8 0

Oly 1198 18354 10161 25705 1 1067 4 110 7906 183 3

DPC1 1895 28017 15445 39453 11 1673 7 181 12095 183 3

DPC2 1895 40595 15445 64510 11 1673 7 181 24190 183 6

Table 1: Description of KBs

Queries are shown in Table 2, which were designed to vary in query forms
and selectivity. The result size of each query over every KB is also given in
Table 1. These instance queries abbreviate assertion retrieval queries of the form
(C,Pd), where C is a query concept in each row of Table 1 and the projection
decription Pd is always ⊤ (cf. [PTWW11] for details about assertion retrieval).
Q1 is a selective query that retrieves a specific subclass of SLR cameras, which
may be answered without assuming any hierarchy information. Q2, contrary to
Q1, is less selective and must be answered using class hierarchy. Q3 is a selective
query involving concrete facts. Q4 negates the concrete fact in Q3 to make it
a range query. Q5, involving roles and negated concrete facts, is subsumed by
a primitive concept (Available Digital Camera), which was used as the query
concept instead. Q6 has a disjunction occurring in the scope of an existential
restriction. Q7 consists of a conjunction, of which the first (second) conjunct is
a one-level (two-level) existential restriction involving concrete facts.

5.2 Comparing Guarding Strategies

Definition 3 effectively develops two types of guarding strategies, one being par-
tial guarding (PG) and the other full guarding (FG). Intuitively, the PG strategy
guards all individuals so that only individuals relevant to the individuals appear-
ing in a query will be explored by reasoners. The FG strategy, in addition to
PG, further guards concrete features so that only query-relevant feature concepts
participate in reasoning. A näıve tableau-based implementation, however, tends

Q1 Digital SLR mirrorless

Q2 Compact Camera

Q3 Digital SLR ⊓ (user review = “5.00”)

Q4 Digital SLR ⊓ (¬(user review = “5.00”))

Q5 ∃hasSale.(¬(inventory status = “outOfStock”))

Q6 ∃hasManu.((manu name = “Kodak”) ⊔ (∃locatedIn.Europe Country)))

Q7 (∃hasInstance−.(Lens mount = “Nikon F mount”)) ⊓
(∃hasSale.∃hasSeller.(seller name = “Walmart”))

Table 2: Sample queries

to explore all ABox individuals for each reasoning request, which is dubbed no
guarding in our context.

NG PG FG

Q1 Q2 Q3 Q4 Q5 Q6 Q7

102

103

Fig. 2: Different Guarding Strategies (logarithmic scale)

Our first experiments evaluated all queries over the HP KB under different
guarding strategies. Table 2 shows that CARE timed out under the NG strategy
for all queries, because it has to explore the whole ABox for each K |= a : C
(note that CARE implements a “linear” instance retrieval for a given query
concept). By adopting the PG method, CARE managed to answer all queries.
The query response times for almost all queries (except Q2) have been improved
by one order of magnitude under the FG strategy. Thus, the comparison suggests
the efficacy and the potential of the proposed guarding strategies. It should
be noted that full guarding is extremely helpful in our experiment data sets
due to the sheer number of features employed to describe camera models. The
general performance gains of FG may not be as significant as in this example,
nevertheless, we can expect the tendency of modelling feature-rich object in
many applications.

CARE FaCT++ Pellet HermiT

syn1 syn2 syn4 syn6 syn8 syn10
101

102

103

(a) Query: B

syn1 syn2 syn4 syn6 syn8 syn10
101

102

103

(b) Query: ∃R.B

Fig. 3: Effectiveness of Partial Guarding (logarithmic scale)

It might be argued that the effectiveness of guarding may be limited for highly
optimized reasoners. We, thus, performed another series of experiments, which,
as plotted in Figure 3, demonstrated that partial guarding (PG) alone can result
in significant performance gains for state-of-the-art reasoners. We synthesized a
seed KB that has two axioms and a number of ABox assertions replicated from
the following assertions:

(∃R−.⊤ ⊓ ∃S1.⊤) ⊑ B E ⊑ (B ⊔ C)

R(am, bi) S1(am, ci)

S1(bm, ei) S2(cm, ej)

R−(dm, ck) S1(em, di)

C(cm) E(em)

. Initially, m = 1000 in the seed KB (syn1), which generates 5k instances, 6k role
assertions and 2k concept assertions, as the second individual in a role assertion
is randomly selected, e.g., 1 ≤ i ≤ m. All other synthetical KBs were generated
by repeat the seed KB k times, thus, named synk. Because these KBs contain no
concrete facts, partial guarding (PG) was adopted during reasoning. The results
in Figure 3 are remarkable in that these highly optimized DL reasoners were, in
most cases, at least one order of magnitude slower in answering simple, positive
instance queries, compared to CARE. It, therefore, implies that guarding is an
essential optimization technique for query answering over DL knowledge bases,
complementary to existing ones.

5.3 Comparing DL Reasoners

As numerous optimization techniques have been developed in state-of-the-art DL
reasoners, we juxtaposed them with CARE for answering queries over realistic

KBs about digital cameras. The purpose here is not to compare reasoners, but to
validate the efficacy of our proposed guarding optimization for instance retrieval,
because CARE is a research prototype with limited optimizations. Figure 4
depicts the performance of the five reasoners over four KBs with increasing
complication.

There are several interesting observations regarding the results. All reasoners
computes certain useful information prior to the actual query answering, either
during the KB loading phase or after receiving explicit request. For instance,
Racer spent a significant amount of time in building indices when instructed,
which made answering the first two queries extremely fast, e.g., the actual query
response time is far less than the illustrated time in Figure 4. Racer, however, was
even unable to finish preprocessing for KB DPC2 within the specified timeout
interval. The preprocessing phase in CARE is devoted to converting KBs, and
the runtime cost is, as we have observed, one fourth of that in other reasoners.

When the queries are positive, i.e., neither negation nor disjunction occur
in them, almost all reasoners demonstrated satisfactory performance, e.g., for
Q1-3 and Q7. In answering these queries, CARE was much faster than all others
except Pellet. However, when the queries turned to be non positive, e.g., Q4-6,
the runtime performance of Pellet, HermiT and Racer has been adversely af-
fected. Under these circumstances, CARE outperformed all other reasoners in
large KBs. FaCT seemed to perform consistently well over all queries, yet CARE
was at least two-fold faster in most cases, except that FaCT had slightly better
runtime performance than CARE for Q1. It can be observed from the exper-
iment results that CARE, while adopting the guarding optimization, enjoys a
consistent, superior runtime performance over different knowledge bases and ob-
ject queries. Given that CARE is not as optimized as any of the other reasoners,
the results are indeed significant.

6 Conclusions and Future Work

We have shown how, given a consistent knowledge base, one can avoid rea-
soning with irrelevant ABox individuals for an instance query, while preserv-
ing correctness of answers. This goal is achieved by instrumenting the origi-
nal ABox with additional guards that are represented by auxiliary primitive
concepts, and then by developing an extension to absorption theory and algo-
rithms in [HT00a,HT00b]. This extension, called binary absorption, originally
designed for TBox reasoning alone [HW06], allows terminological axioms of the
form ({a} ⊓ A) ⊑ C to qualify for lazy unfolding in model building satisfac-
tion procedures for description logics, such as those based on tableaux technol-
ogy. Such lazily unfolded axioms with binary left-hand sides are essential when
(translations of) ABox assertions are to be processed by such algorithms since
they prevent exploring concepts and roles associated with irrelevant ABox in-
dividuals (indeed, a simple modification to said tableaux algorithms will avoid
creating instances of such individuals altogether.) Such an optimization cannot
be achieved when only unary absorption is available.

The nature of guarded reasoning resembles the idea of model merging (and
its predecessor pre-completion) in that both use certain mechanism to reflect the
interaction among individuals. The difference is that the latter exploits pseudo
models for determining answers to queries K 6|= a : C, i.e., showing “obvious
no-insatnces”[HM08]. If it fails to exclude a from the answers to C, then it
resorts to standard ABox consistency checking. Note that due to its relying on
pre-completion, the technique is sound but incomplete. Nevertheless, guarded
reasoning fully reflects the possible interaction of instances and is both sound
and complete for instance retrieval.

Our experiments show that in realistic situations arising, e.g., in implementa-
tions of assertion retrieval [PTWW11] in which a number of instance checking
queries are needed to answer a single user query, or in the case of ontology-
based query answering [LTW09,KLT+10,RA10,KLT+11], when non-Horn DLs
are used (and thus the above techniques cannot be applied), our technique makes
querying often feasible. The experiments show, on relatively simple examples,
that, while using the proposed technique allows answers to be computed in a few
seconds, attempting the same tasks without the optimization is infeasible. To
be effective, the technique relies on absorption procedures that have at least the
capabilities of binary absorption. An interesting avenue of further work would be
to explore how highly optimized DL reasoning procedures with more powerful
capabilities for absorption such as procedures based on hypertableau [MSH09]
could further improve performance.

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[BCM+03a] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. Implementation and Optimisation Techniques, chap-
ter 9, pages 306–346. Cambridge Univserity Press, 2003.

[BCM+03b] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The description logic handbook:
theory, implementation, and applications. Cambridge University Press,
New York, NY, USA, 2003.

[BFH+94] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An
empirical analysis of optimization techniques for terminological represen-
tation systems, or: Making KRIS get a move on. Applied Artificial Intel-
ligence, 4:109–132, 1994.

[CDGL+09] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo
Rosati. Ontologies and databases: The DL-Lite approach. In Sergio Tes-
saris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried Hand-
schuh, Marie-Christine Rousset, and Renate Schmidt, editors, Reasoning
Web. Semantic Technologies for Information Systems, volume 5689 of Lec-
ture Notes in Computer Science, pages 255–356. Springer Berlin / Heidel-
berg, 2009.

[DLNS94] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Deduction in concept languages: From subsumption to instance
checking. Journal of Logic and Computation, 4(4):423–452, 1994.

[HM08] Volker Haarslev and Ralf Möller. On the scalability of description logic
instance retrieval. J. Autom. Reason., 41(2):99–142, August 2008.

[Hor97] Ian Horrocks. Optimising Tableaux Decision Procedures For Description
Logics. PhD thesis, the University of Manchester, 1997.

[Hor98] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In
KR’98, pages 636–647, 1998.

[HS02] Ian Horrocks and Ulrike Sattler. Optimised reasoning for shiq. In ECAI’02,
pages 277–281, 2002.

[HT00a] I. Horrocks and S. Tobies. Optimisation of terminological reasoning. In
Description Logics’00, pages 183–192, 2000.

[HT00b] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice.
In KR’00, pages 285–296, 2000.

[HW06] Alexander K. Hudek and Grant E. Weddell. Binary absorption in tableaux-
based reasoning for description logics. In Description Logics’06, 2006.

[KLT+10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. The combined approach to query answering in
DL-Lite. In KR’10, 2010.

[KLT+11] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. The combined approach to ontology-based data
access. In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence, pages 2656–2661,
2011.

[LTW09] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query an-
swering in the description logic EL using a relational database system. In
IJCAI’09, pages 2070–2075, 2009.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning for
description logics. J. Artif. Intell. Res. (JAIR), 36:165–228, 2009.

[Nuu95] Esko Nuutila. Efficient transitive closure computation in large digraphs.
Acta Polytechnica Scandinavia: Math. Comput. Eng., 74:1–124, July 1995.

[PTWW11] Jeffrey Pound, David Toman, Grant E. Weddell, and Jiewen Wu. An
assertion retrieval algebra for object queries over knowledge bases. In
IJCAI’11, pages 1051–1056, 2011.

[RA10] Riccardo Rosati and Alessandro Almatelli. Improving query answering
over DL-Lite ontologies. In KR’10, 2010.

[TH04] D. Tsarkov and I. Horrocks. Efficient reasoning with range and domain
constraints. In Description Logics’04, 2004.

CARE FaCT++ Pellet HermiT Racer

HP Oly DPC1 DPC2

102

103

(a) Query 1

HP Oly DPC1 DPC2

102

103

(b) Query 2

HP Oly DPC1 DPC2

102

103

(c) Query 3

HP Oly DPC1 DPC2

102

103

(d) Query 4

HP Oly DPC1 DPC2

102

103

(e) Query 5

HP Oly DPC1 DPC2

102

103

(f) Query 6

HP Oly DPC1 DPC2

102

103

(g) Query 7

Fig. 4: Runtime Performance Comparison(logarithmic scale)

