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Abstract

The increasing use of key-value storage systems in
performance-critical data centre applications has moti-
vated new storage system designs that use Remote Di-
rect Memory Access (RDMA) to reduce communication
overhead. However, existing approaches that achieve
low latency and high throughput do so by dedicating en-
tire cores to RDMA message handling, including polling
local memory for incoming RDMA messages.
In this paper we describe and demonstrate why

polling-based RDMA is not suitable for many data cen-
tre applications with significant data processing and
data storage requirements. We then propose, design,
implement and evaluate an alternative communication
approach that strictly uses one-sided RDMA opera-
tions, which eliminates polling on the server-side and
is therefore a serverless (client-driven) design. This
approach is used to build Nessie, a distributed client-
driven RDMA-enabled key-value store that uses na-
tive RDMA compare-and-swap operations to coordinate
conflicting operations between clients. Nessie further
reduces communication requirements by decoupling the
key-value location from the key lookup mechanism,
which enables local write operations, thus avoiding com-
paratively expensive RDMA operations. Nessie’s one-
sided design ensures that only the clients in the system
consume any CPU, which in turn allows it to main-
tain high performance despite the need for computa-
tion by the application utilizing the key-value store or
contention from other applications.

1. INTRODUCTION

Distributed in-memory storage systems, such as
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memcached [12], Redis [5], and Tachyon [17], have be-
come a critical component in many datacenter and en-
terprise applications. By eliminating slow disk or SSD
accesses, they can reduce an application’s request ser-
vice time by more than an order-of-magnitude [19]. In
the absence of disks and SSDs, however, an operating
system’s network stack is often the next largest source of
throughput reduction and latency increase for applica-
tions. With network operations taking tens or hundreds
of microseconds to complete, the performance bottle-
neck of large-scale applications has shifted, creating a
need for better networking solutions.
The ever increasing drive for lower latencies and

higher throughput have led recent in-memory stor-
age systems to use remote direct memory access
(RDMA) [18, 11, 14], which provides kernel bypass
and zero-copy data transfers. RDMA’s ability to ac-
cess memory on other nodes, and provide over-the-
network atomic operations, make it perfectly suited for
integration into distributed in-memory storage systems.
These RDMA-based systems are able to provide far
higher throughput than those using traditional network-
ing protocols like TCP and UDP.
Most of the recently proposed RDMA-based in-

memory storage systems provide a simple key-value
store interface, but they make different design deci-
sions based on, or resulting in, different CPU, latency
and throughput tradeoffs. For example, for GET oper-
ations, Pilaf [18] leverages one-sided RDMA READ op-
erations to eliminate processing-related delays on the
server. FaRM [11] reduces PUT operation latency and in-
creases throughput by introducing a dedicated process
on each server that polls on a circular buffer to deter-
mine when a PUT request has arrived. This allows FaRM
to avoid system call and process scheduling-related de-
lays for PUT operations. In both Pilaf and FaRM, servic-
ing a GET request requires two back-to-back one-sided
READ operations; the first to perform a key lookup on
the index table, and the second to fetch the key’s as-
sociated value from the data table. HERD [14] forgoes
one-sided READ operations in order to serve GET requests
by using two RDMA WRITE operations. A HERD GET

1



consists of a WRITE from the client to the server that
carries the request, followed by a WRITE in the oppo-
site direction that carries the result. In this design, the
polling process must service both GET and PUT requests.
Although these systems provide significant improve-

ments over traditional in-memory storage system de-
signs, FaRM and HERD’s reliance on dedicated CPU
resources can make them unsuitable for multi-tenant de-
ployments, deployments with low-power “wimpy”CPUs
(increasingly common in cloud environments), or for ap-
plications where the storage servers are running on the
same machines as the compute nodes, such as Spark and
Hadoop. Without careful consideration for the place-
ment of polling threads, interference between processes
that share a CPU can dramatically reduce the through-
put of an RDMA-enabled key-value store (RKVS). Fur-
thermore, the reliance on dedicated CPU resources re-
quires a time consuming tuning period in order to de-
termine the optimal number of CPUs to dedicate to
server-side polling and request processing in order to
obtain peak performance. In this paper, we present the
design of Nessie, a distributed high-performance RKVS
which, in contrast to existing RKVS designs, uses exclu-
sively client-driven operations to avoid CPU-intensive
polling that is characteristic of server-driven designs.
Another characteristic of modern servers that an

RKVS must account for is the dramatic difference in
performance between main memory accesses, which
incur latencies on the order of tens or hundreds of
nanoseconds [16], and RDMA operations, which incur
latencies on the order of microseconds. This issue may
be exacerbated as the size of data values being stored
in an RKVS increase, thus incurring even higher laten-
cies when retrieved over the network. The ability of an
RKVS to exploit data access locality can significant re-
duce the number of remote operations that are required.
Nessie adopts a distributed design which completely de-
couples its key indexing data structure from its storage
data structure, improving locality.
This work builds upon our previous workshop paper

describing a client-driven, RDMA-enabled key-value
store [22]. In addition to extending the design described
in our previous work, we also provide a full implemen-
tation and evaluation of our prototype system. We fur-
thermore introduce an analysis to compare client and
server-driven systems. Finally, this work also intro-
duces new optimizations that are critical to providing
high performance for client-driven systems. Our contri-
butions are as follows:

• We explain and demonstrate why server-driven
RDMA operations, while appropriate for low-
latency, high-throughput operations, may not be
suitable for many data center applications with
significant data processing and storage require-
ments.

• We design, implement and evaluate Nessie, a dis-
tributed RKVS that exclusively uses one-sided
RDMA operations to make it more suitable for
use with such applications.

• We describe how our Nessie design completely de-
couples the index table from data table, thus per-
mitting values to be stored on different nodes than
their keys. We demonstrate that this permits data
values to be obtained from local memory without
requiring RDMA operations, thus obtaining signif-
icant performance benefits.

2. BACKGROUND AND RELATED WORK

In this section, we provide an overview of RDMA
technologies and survey current in-memory key-value
stores. We provide the background necessary to
compare and contrast existing designs for in-memory,
RDMA-based key-value storage systems, and to moti-
vate our design for Nessie.

2.1 RDMA

Remote Direct Memory Access (RDMA) can be used
as an alternative to traditional networking protocols
such as TCP or UDP. RDMA, with its ability to by-
pass the kernel and provide zero-copy data transfers
between local and remote memory regions, has lower
overhead than traditional protocols and, as a result,
achieves lower latency and higher throughput. These
improvements allow an application to perform remote
memory accesses within a matter of several microsec-
onds. Although RDMA is most closely associated with
Infiniband networks, two additional protocols have been
developed to support RDMA over traditional Ether-
net networks: iWARP [6] performs RDMA over the
TCP/IP network stack with processing offloaded to the
NIC, and RDMA over Converged Ethernet (RoCE) [4]
uses the Infiniband transport protocol over Ethernet.
Although converged Ethernet, a lossless enhancement
to standard Ethernet, provides performance benefits to
RoCE deployments, RoCE is also compatible with tra-
ditional Ethernet environments.
Communication over RDMA is performed using the

verbs interface, which consists of two-sided and one-
sided verbs. Two-sided verbs follow a message-based
model where one process sends a message using the SEND
verb and the other process receives the message using a
RECV verb, a process which involves CPU interaction on
both the sending and receiving side. The contents of the
sent message are passed directly into an address in the
receiving application’s memory, specified by the RECV

verb. Therefore, a SEND verb is indirectly manipulating
the receiving application’s memory.
One-sided verbs allow direct access to pre-designated

regions of a remote application’s address space, without
interacting with the remote CPU. The READ and WRITE
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verbs can be used to retrieve and modify the contents
of these regions, respectively. RDMA also provides two
atomic one-sided verbs: compare-and-swap (CAS), and
fetch-and-add (FAA). The atomic verbs both operate on
64 bits of data.
RDMA supports an asynchronous programming

model in which verbs are posted to a send and receive
queueing pair. By default, completed operations post
an event to a completion queue when finished. An ap-
plication may block or poll on this queue while waiting
for operations to finish. Alternatively, as noted by the
authors of FaRM [11], most RDMA interfaces guarantee
that an operation’s bytes are read or written in address
order. Applications may take advantage of this fact to
poll on the last byte of a region being used to service
RDMA operations, as once the last byte has been up-
dated, the operation is complete.

2.2 Key-Value Stores

Key-value stores are increasingly popular storage so-
lutions that, at a high level, map input identifiers (keys)
to stored content (values). They are frequently em-
ployed for large web applications and distributed com-
putation frameworks. A typical key-value store uses
some form of data structure, such as a hash table or
tree, to provide efficient key lookups and updates. Most
key-value stores provide an interface consisting of GET,
PUT and DELETE operations. GET accepts a key and ob-
tains it’s associated value. PUT inserts or updates the
value for a key, and DELETE removes a key and any as-
sociated values from the store.
Some key-value stores, such as Redis [5], provides per-

sistent storage while others, including memcached [12],
are used for lossy caching. Column storage systems,
such as BigTable [8] and Cassandra [15], are primar-
ily used to store large volumes of structured data such
that most requests are served from disk, whereas sys-
tems such as RAMCloud [19] store data entirely in main
memory. There are also specialized key-value stores
that provide workload-specific performance optimiza-
tions. For example, Dynamo [10] provides high avail-
ability in the event of node failures by using quorums
and hinted-handoffs, and MicroFuge [21] provides per-
formance isolation through the use of request-specific
deadlines.

2.3 RDMA Key-Value Stores

RDMA has recently been employed as a means of
increasing the performance of key-value storage sys-
tems. We differentiate the dimensions of RDMA-
enabled key-value stores (RKVSes) and characterize ex-
isting RKVSes according to these dimensions.

2.3.1 Design Space

The RKVS design space spans two primary dimen-

sions: communication mechanisms for performing re-
mote operations, and system components for indexing
and storing key-value pairs. In this section, we will
describe different points in the design space for both
attributes.

Communication Mechanisms: RKVSes can use a
client-driven (CD) communication mechanism where re-
mote operations are initiated and performed entirely by
the client using one-sided verbs; a server-driven (SD)
communication mechanism where clients instruct re-
mote servers to perform operations on their behalf; or
a combination of the two.
TCP/IP-based key-value stores are server-driven

(SD) because they require server-side interaction in or-
der to process requests. Server-driven mechanisms are
attractive because they reduce the complexity of syn-
chronizing resource access from multiple clients. The
server determines the request order and provides mutual
exclusion for key accesses. However, the SD mechanism
requires processing by the server’s CPU to handle each
request. For high-performance systems that require low
packet processing latency, one or more dedicated CPUs
are often needed to poll for incoming requests to min-
imize response latency [14]. However, this reduces the
CPU resources available on the server.
In contrast to key-value stores that use TCP/IP,

RKVSes can take advantage of RDMA’s one-sided verbs
to perform client-driven communication. CD operations
are entirely processed by the server’s NIC rather than
the server’s CPUs; the NIC performs the memory read
or write operation. Therefore, the server’s CPU does
not participate in the request handling and can instead
be used entirely for user applications. Furthermore, by
bypassing the operating system on the server side, CD
mechanisms have the added benefit of lower latencies
than SD mechanisms. However, without a server to co-
ordinate concurrent operations, CD mechanisms must
provide per-key mutual exclusion which requires dis-
tributed coordination between concurrent clients.

System Components: In order to provide efficient
key operations, most RKVSes organize their keys (or
the hash of their keys) using an O(1)-lookup data struc-
ture, such as a hash table. The lookup data structure,
also known as an index table, maps each key to a lo-
cation in a secondary storage structure. This storage
structure contains the associated value for each key and,
depending on the design, can be on the same server as
the index table or on a policy-determined server in the
system. We refer to these designs as partially-coupled
and decoupled, respectively. Alternatively, some sys-
tems combine the index and storage structures into a
single structure in order to avoid a second lookup oper-
ation per key access. We refer to this design as having
complete coupling.
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2.3.2 Existing Designs

Pilaf [18] is a partially-coupled RKVS that uses a
cuckoo hash table [20] to store its index. A Pilaf client
uses one-sided RDMA READ verbs to perform GETs, and
SEND verbs to instruct the server to perform a PUT or
DELETE on its behalf. Combining client and server-
driven mechanisms can lead to clients concurrently per-
forming conflicting operations with the server. To ad-
dress this issue, Pilaf uses consistency verification after
each GET operation: hash table entries contain check-
sums which allow the client to determine whether or
not it has retrieved a stale value.
FaRM [11] presents an RKVS design that uses a vari-

ant of hopscotch hashing [13] to store its index. FaRM
can operate using either completely or partially-coupled
design, depending on the configured size of its key-value
pairs. FaRM clients use one-sided RDMA READs to sat-
isfy GET requests, and RDMA WRITE verbs to insert PUT
and DELETE requests into a server-polled circular buffer.
Once a PUT or DELETE is serviced, the server responds to
the client using RDMA WRITEs. FaRM combines both
client and server-driven mechanisms and must therefore
manage the possibility of conflicting simultaneous oper-
ations. This synchronization is provided through the
use of version numbers on entries, which are atomically
updated using RDMA CAS verbs.
HERD [14] provides the design of a partially-coupled

RKVS that uses set-associative indexing. HERD is fully
server-driven, with clients using RDMA WRITE verbs to
post GET, PUT and DELETE requests to a server-polled
memory region. The HERD server responds to requests
using connectionless RDMA SEND verbs, which retain
no state while completing and therefore aid with scal-
ability. Because HERD uses only SD communication,
synchronization is inherent in the server-based design.
Furthermore, HERD uses RDMA optimizations to re-
duce the number of required round trips and request
latency. These optimizations include inlining data into
RDMA message headers, and using “unreliable”RDMA
connections which do not require acknowledgment pack-
ets to be sent for successful operations.

In the following section we motivate the design of
Nessie, a fully client-driven RKVS that completely de-
couples the index table from the storage structure.

3. THE CASE FOR Nessie

Table 1 summarizes the existing systems described
in Section 2.3.2 and outlines where they fit within the
RKVS design space. For simplicity, and because each
system uses the same operation for PUTs and DELETEs,
we merge both operations into the PUT column. No-
tably, all of the previously-existing systems use server-
driven operations for at least their PUTs, and none of
them are completely decoupled. In this section we show

how Nessie uses unexplored areas of the design to moti-
vate its design. In particular, Nessie uses wholly client-
driven operations to provide high performance and low
CPU utilization. Additionally, it completely decouples
the index table from the storage structure to better ex-
ploit data locality by avoiding remote memory accesses
when possible.

GET PUT Coupling
Pilaf CD SD Partial

FaRM CD SD Complete

HERD SD SD Partial

Nessie CD CD Decoupled

Table 1: Systems in the design space.

3.1 Distributed Design

We have designed Nessie to operate in a distributed
environment. Borrowing from a peer-to-peer design
each node acts as both a client and storage node. We
believe this provides for easy integration with applica-
tions that perform distributed computation while using
the RKVS to store data.

3.2 Client-Driven Operations

Despite performing well, high-performance server-
driven designs for RKVSes, like HERD, rely on polling
for incoming requests in order services them with
the lowest latencies possible. Interference from other
threads will increase latencies and decrease throughput.
To demonstrate the benefits of Nessie’s client-driven de-
sign, we conduct a series of microbenchmarks to con-
trast client-driven operations and server-driven oper-
ations under a variety of CPU load conditions. The
details of the machines and network used to conduct
these microbenchmarks are provided in Section 6 with
the exception that these microbenchmarks we use a two
nodes, one generating load and the other servicing re-
quests (this node uses 6 cores).
We start by using a single remote thread (the server

worker) containing a memory region that several local
threads (client workers) wish to access. We perform
several microbenchmarks in which the client workers use
client-driven READ verbs to retrieve data of various sizes
and the server worker sits idle Results obtained using
this approach are labeled“READ” in Figure 1. We then
examine a server-driven system, where client workers
make requests using eight byte WRITE verbs to the server
worker. The server worker polls on incoming requests,
and responds to them using WRITE verbs using various
sizes. In Figure 1 these results are labeled “WR/WR”
for write/write because they are implemented using two
WRITE verbs.
Figure 1 shows the throughput for our microbench-

marks as the data size retrieved per request is in-

4



8 16 32 64 128 256 512 1024
Size (Bytes)

0

2

4

6

8

10

12
T
h
ro
u
g
h
p
u
t 
(M

o
p
s/
se
c)

READ
WR/WR

Figure 1: Throughput for a single server node.

creased. The number of client workers for each data
point is hand-tuned to provide the result with maximum
throughput. With small data sizes, the throughput in
millions of requests per second of the client-driven de-
sign (READ) is significantly higher than that of server-
driven design (WR/WR). As the request size grows,
both techniques converge to the same throughput. In
Section 6.2 we demonstrate the benefits of Nessie’s de-
coupled design by exploiting data locality. Nessie lever-
ages the high performance of small RDMA reads to ac-
cess remote index tables and then finding and accessing
the associated values in the local data table.
We now demonstrate how server-driven mechanisms

are impacted by CPU contention. We repeat our previ-
ous microbenchmarks with an eight-byte response size
and add threads (CPU workers) to the server node.
Each CPU worker continuously computes a SHA-256
hash on a small buffer. We vary the number of CPU
workers from one to six (the number of cores in the
machine), and the number of threads servicing requests
(server workers) for server-driven runs. The number of
threads generating requests (client workers) is tuned to
provide the best throughput for each data point.
Figure 2 shows the total maximum throughput, in

millions of requests per second, achieved by all client
workers as CPU workers (and thus CPU contention) in-
crease. Each line represents a different number of server
workers. The line labeled CD uses no server workers
(i.e. it is client-driven), while the lines labeled 1, 3,
and 6 use the specified number of server workers to ser-
vice the load. The client-driven case, shows that CPU
contention has no effect on a client-driven workload.
The remaining lines, exhibit declining throughput as
CPU contention increases. Once server workers suffer
from interference from CPU workers (when the sum of
the server workers and CPU workers is greater than six
in this microbenchmark) throughput begins to decline.
This can be seen, for example, with 1 server worker and
6 CPU workers. Distributing request load across multi-
ple server workers helps mitigate the impact of shared
CPU resources on client worker throughput (for exam-
ple, line 6 with 6 CPU workers), but does not eliminate
it. We further discuss the benefits of using a client-
driven system when evaluating Nessie’s performance in
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Figure 2: RDMA throughput for a single server
node. The numbers in the legend denote the
number of server worker threads responding to
requests (with CD representing a client-driven
experiment).

Section 6.1.

3.3 Decoupling and Data Locality

The second motivating aspect of Nessie’s design is the
stark contrast in performance between RDMA opera-
tions and local memory accesses. RDMA operations,
although much faster than traditional network opera-
tions, are still up to 23 times slower than accesses to lo-
cal memory [11]. With such a large gap in performance
between the two types of operations, the advantages of
intelligently placing data to exploit local data access are
important.
Table 1 shows that previously-existing systems have

implemented partially or completely-coupled indexing
and storage data structures. Nessie, on the other hand,
uses a decoupled design. This approach provides Nessie
with complete flexibility with respect to the location of
stored values. Nessie is not bound by a launch-time par-
titioning scheme for its keys. Rather, it is free to place
data table entries on whichever nodes it wishes. In Sec-
tion 6.2 we demonstrate how Nessie exploits localized
data access to increase throughput.
In addition to the direct benefits of data locality,

Nessie is also able to use its decoupled design to im-
plement a variety of other optimizations. By employ-
ing a least recently used (LRU) cache to store recently
accessed data table entries, and using filter bits on in-
dex table entries, Nessie can further eliminate an op-
eration’s data table accesses. These optimizations are
described in detail in Section 4.1. For some workloads,
these optimizations, significantly reduce the number of
remote read operations required to obtain data values.
In these cases Nessie only requires GET and PUT opera-
tions to perform low latency remote read operations of
relatively small index table entries, which as shown in
Figure 1 are extremely efficient.

4. Nessie DESIGN

In this section, we discuss the design of Nessie, a
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high-performance RDMA-enabled key-value store. Un-
like other RDMA-enabled key-value stores, Nessie is an
entirely client-driven design that can leverage data lo-
cality to reduce network resource requirements and is
also more resistant to performance degradation that oc-
curs as a result of server CPU contention.

4.1 System Components

The Nessie architecture consists of two main com-
ponents: Index tables, which contain the mapping of
key hashes to the location of the data, and data ta-
bles, which store the key-value pairs. Each node in the
system contains both an index table and a data table.
Nessie’s decoupled approach allows index table entries
to refer to any data table entries in the deployment.
Figure 3 provides an overview of Nessie’s architecture.
An index table is implemented as an N-way cuckoo

hash table [20], where we refer to N as the hash dimen-
sionality. Each index table entry is a 64-bit integer. The
choice of using a single 64-bit integer for each entry is
to facilitate the use of atomic RDMA CAS verbs during
writes in our protocols. These RDMA CAS verbs prevent
inconsistency that could arise from simultaneous reads
and writes to the same index table entry. Because CAS

verbs are only atomic relative to other RDMA opera-
tions, all index table reads, whether local or remote, are
performed using the RDMA READ verb.
Of an index table entry’s 64 bits, the first 15 bits are

used as a data table identifier, which uniquely identifies
a specific data table in the deployment. The next 32
bits are used to determine the offset of a key-value pair
within its data table. An offset of zero is used to rep-
resent empty index table entries. Following the offset,
the next 16 bits are used as a version number to de-
termine if a set of operations are performed atomically
(explained in Section 4.2 and Section 4.3). The last bit
is used as a watermark for determining when Nessie’s
RDMA events have completed. By taking advantage of
the property that RDMA operations update their bytes
in address order, the client process can determine if an
RDMA operation has completed by polling on the wa-
termark bit. This provides a lower-latency alternative
to the event-raising model also offered by the RDMA
interface.
For small to medium size deployments where the total

number of nodes can be described in fewer than 15 bits,
we provide an optimization that repurpose bits from the
data table to reduce the number of data table accesses.
By storing the trailing bits from a key’s hash, which we
refer to as filter bits, in an index table entry, we can
determine that an index table entry is not for a partic-
ular key if the filter bits do not match. Filter bits can
help improve throughput when Nessie’s index tables are
heavily populated, especially for large hash dimension-
alities or when Nessie is storing large key-value pairs.

A data table in Nessie is implemented as a sim-
ple array of entries, each containing a key-value pair.
The maximum key and value sizes in Nessie are user-
configurable at startup, and may be set to suit the stor-
age needs of a specific workload. The last byte of a data
table entry is reserved, with 7 bits used as a valid flag
and the final bit used for watermark polling. The valid
flag is used to denote that an data table entry belongs to
an in-progress PUT operation. Upon receiving an invalid
entry, the request must be retried until in-progress PUT
operation completes, in which case the valid flag will
have been set to true.
Data table entries are accessed remotely using RDMA

READ verbs, and local memory read operations when the
data table entry is on the same node as the client. A key
concept for Nessie is that a data table entry is not mod-
ified once it has been written, unless it is being deleted
and recycled for use with a new value. This ensures
that multiple concurrent updates to a value will oper-
ate on different data table entries, which prevents data
items from being corrupted due to simultaneous writes.
Furthermore, by making data entries immutable, Nessie
only needs to check the index table to ensure that an
entry has not been updated. This enables Nessie to
cache remote data entries once they have been read
without synchronizing the cache copies. To facilitate
efficient caching, Nessie includes a small least recently
used (LRU) cache in order to reduce the number of re-
mote data table entry accesses. This optimization im-
proves performance for workloads that either exhibit
skewed popularity distributions of their keys, such as
Zipf-distributed workloads, or have data table entries
that are much larger than 64-bit index entries.

4.2 GET

During a GET operation, Nessie first determines which
index table entries the key hashes to. These index en-
tries are determined by the N different hash functions
used to determine the N slots for the cuckoo hash table.
The hash functions are ranked to determine the order-
ing of entries to access during GET, PUT and DELETE

operations. The N index entries can span multiple
Nessie retrieves the computed index table entries us-

ing RDMA READs sequentially in order of their rank
(Figure 3, step 1). Nessie will discard empty index ta-
ble entries, namely those with a data table entry offset
of zero. For non-empty entries, Nessie will determine
if there is a mismatch between the filter bits of the in-
dex and key hash, treating mismatched entries as empty
(Figure 3, step 2). If the data table entry referenced by
the retrieved index table entry is on the same node as
the client, the data is read directly from memory. For
data stored in a remote data table entry, Nessie checks
the local data cache for a data item (Figure 3, step 3).
On a cache hit, the data is directly retrieved from the
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Figure 3: Nessie architecture demonstrating the steps to access a slot in the hash table. 1) Read the
index table entry determined by the hash of the key. 2) Check if the filter bits match the desired
key. 3) Check if the local data cache contains the current version of the key. 4) Read the data table
entry according to the index table entry contents. 5) Check if the data table entry contains the value
of the desired key. 6) Check if the data table entry is valid.

cache. Otherwise, Nessie retrieves the data from the
remote node using an RDMA READ (Figure 3, step 4)
and caches it locally if its valid flag is true.
After retrieving the data table entry, its key is com-

pared against the GET’s requested key (Figure 3, step 5).
On a key mismatch, Nessie examines the next ranked
index table entry. If all of the index table entries for the
key have been examined, Nessie informs the user that
the requested value is not present in the system. In the
case where the keys match, Nessie must check the valid
flag of the data table entry (Figure 3, step 6). If the en-
try is invalid, Nessie informs the user that an operation
on the requested key is in progress. Otherwise, Nessie
returns the value to the user.
It is possible that, due to a cuckoo hash collision from

a concurrent PUT operation, the requested key’s index
table entry is migrated from a lower to higher ranked lo-
cation (described in Section 4.3.1). This can lead to GET
operation erroneously informing the user that the key
is not in the system because it scans index locations
from high to low rank. To prevent this, GETs record
the version numbers of the index table entries as they
are retrieved. After examining all the index table en-
tries and finding no matches, Nessie iterates backwards
over the index table entries, retrieves them with a sec-
ond RDMA READ, and compares their current version
numbers against the recorded ones. If no changes are
observed, then no concurrent PUT operations have oc-
curred, and the key is not resident in Nessie. Otherwise,
Nessie informs the user of the concurrent operation, and
the user can choose to retry the GET operation.

4.3 PUT

Nessie’s PUT operation, like its GET operation, is
client-driven. Because of Nessie’s decoupled design, the
client issuing the PUT operation can decide where the
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Figure 4: PUT on K1 with value Val X by a client
on Node 1: 1) Write the data to the local Data
Table. 2) Read the first hash slot (S1). 3) Read
the Data Table entry referenced by S1. 4) Read
the second hash slot (S2). 5) CAS S2 to reference
the new Data Table entry. 6) Verify that S1 has
not changed. 7) Make the data valid.

key-value pair is stored. A simple strategy to minimize
network traffic is to place the key-value pair in the local
data table if space is available. Following this strategy,
a PUT operation begins by writing the requested key-
value pair into a new data table entry in the local data
table with the valid flag set to false. The client must
then insert a reference to the new data table entry in
an index table. To determine which index table entry
is updated, the client must iterate through the N index
table entries for the key in the order of decreasing rank.
The client determines the status of a index table entry

by examining index value using an RDMA READ. In the
case where the index is empty, the client updates the
index entry to reference the new data table entry. If
the index is not empty, the client must determine if
the index entry references a data table entry whose key
matches that of the PUT operation. If filter bits are used
and they do not match the trailing bits of the key hash,
then the keys cannot be a match and the index entry
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can be skipped. Otherwise, the client must read the key
of the referenced data table entry.
If the referenced data table entry is on the same node

as the client, then the key is read directly from memory.
For cases where the data entry table is on a remote node,
the key is retrieved through the local cache if possible, or
from the appropriate data table using an RDMA READ.
The data table entry’s key is checked against the PUT

operation’s key. On a match, the index table entry is
updated with a reference to the new data table entry.
After examining all N of the index table entries, if no
available entry is found, then Nessie must perform a
MIGRATE operation that reorganizes the occupied entries
in the index tables. We discuss migration in detail in
Section 4.3.1.
Updating an index table entry requires the use of an

RDMA CAS verb. CAS ensures that the entry is atom-
ically updated, which prevents clients from reading or
writing to it at the same time that it is being changed.
Additionally, Nessie increments an index table entry’s
version number each time that it is updated. This is
used to avoid potential ABA problems [1].
Once an index table entry has been updated, Nessie

must ensure that there are no duplicate lower-ranked
index table entries which also refer to a data table entry
for the PUT request’s key. Using the same methodology
to retrieve index table and data table entries as before,
Nessie continues iterating over the key’s N index table
entries, comparing the keys of the data table entries
against the PUT request’s key. If a key match is found,
Nessie uses an RDMA CAS verb to overwrite the relevant
index table entry with an empty index value.
Before a PUT can report a successful completion to the

user, it must make a final check to ensure that its own
operations have not been superseded by another more
recent PUT request, and that it has not been interfered
with by a concurrent MIGRATE. As with a GET request,
Nessie does this by iterating over the index table en-
tries it examined in order of reverse rank, reading them
using RDMA READ verbs. It compares the index table
entries it retrieves against those that it retrieved orig-
inally. If a mismatch is found, Nessie informs the user
that there is a conflicting concurrent operation, and the
user may then re-attempt the PUT request. Otherwise,
Nessie sets the valid flag in the new data table entry to
true, and informs the user that the operation completed
successfully.
A timeline for a sample PUT across two nodes is shown

in Figure 4. For simplicity, a hash dimensionality of two
is used, and both filter bits and local caching are dis-
abled. In the sample, Nessie writes the new key-value
pair, with key K1 and value X, to the local data table.
The client uses an RDMA READ to examine the first in-
dex table entry, which is local, and sees it is non-empty.
It uses an RDMA READ to retrieve the index table en-

try’s referenced data table entry from the remote data
table, and finds a key mismatch. The client then ex-
amines the second index table entry, which is remote,
using an RDMA READ. It sees that this index table en-
try is empty, and updates it to point to the new data
table entry using an RDMA CAS. Finally, the client uses
an RDMA READ to retrieve the first index table entry
again. The first index table entry has not changed since
it was last examined, and thus the client knows that no
concurrent operations have interfered with the ongoing
PUT. The client therefore sets the new data table entry’s
valid flag to true, and returns.

4.3.1 MIGRATE

If a PUT determines that all of a key’s index table
entries are occupied by entries for other keys, a MIGRATE
operation must occur. An index table entry is selected
as a migration source, and the data table entry it refers
to is copied to a new local data table entry with the valid
flag set to false. The key associated with the source
entry has one of its alternate index table entries selected
as a migration destination. If an unoccupied destination
exists, an RDMA CAS is used to associate it with the
copied data table entry, after which the source entry is
cleared using another RDMA CAS. The valid flag on the
copied data table entry is then set to true. Figure 5
illustrates a sample MIGRATE operation.
Once an index table entry has been freed through

migration, the PUT that incurred the MIGRATE is re-
attempted. If no destination entry is available, Nessie
picks an occupied destination and recursively calls mi-
grate on it before proceeding. At a certain recursive
depth, the PUT is aborted, and the user is informed that
the system’s index tables must be made larger before
attempting further operations on the same key.
As with GETs and PUTs, MIGRATEs may be affected

by concurrent operations. Figure 6 demonstrates such
an occurrence where, during a MIGRATE, a concurrent
PUT overwrites an index table entry which Nessie is at-
tempting to migrate. The example shows how Nessie
detects and gracefully reverts the failed MIGRATE oper-
ation, before re-attempting the migration.

4.3.2 DELETE

A DELETE operation iterates over a key’s N index ta-
ble entries, retrieving them using RDMA READs. For
non-empty index table entries, the client retrieves the
corresponding data table entry. If the data table entry
contains the requested key, the client updates the index
table entry to be empty using an RDMA CAS operation.
If a concurrent PUT has updated a high-ranked index
table entry, but has not yet cleared a low-ranked index
table entry for the requested key, a DELETE could reveal
stale data to concurrent GETs. To prevent this, DELETEs
iterate over index table entries from lowest rank to high-
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est.

4.3.3 Data Table Management

Nessie’s decoupled design allows it to place new key-
value pairs in any data table in the system. For sim-
plicity, and to maximize Nessie’s ability to take advan-
tage of local memory accesses, our current data table
management scheme always places new key-value pairs
inside a node’s local data table. Future modifications
could allow Nessie to place the key-value pair in a data
table on a user-specified node.
A data table entry is considered in-use if an index

table entry contains a reference to it. When a reference
to a data table entry is removed, that data table entry
can be re-used by a future PUT. The node that removes
the reference to a data table entry lazily propagates a
notice to the data table entry’s node. However, if a par-
ticularly slow operation reads a reference to a data table
entry, and that entry is subsequently reused by another
operation, the slow operation would retrieve stale data.
We solve this issue by delaying the reuse of a data table
entry by a specified amount of time. We further stip-
ulate that successful operations must complete within
this time frame, aborting if they exceed it. This allows
Nessie to guarantee that, once the timeout has expired,
no outstanding operations will contain references to the
data table entry, and it can be safely reused.

5. IMPLEMENTATION

We have constructed a working prototype of Nessie
on top of a high-performance RDMA networking frame-

work. Nessie allows for quick and easy deployment
across a cluster of RDMA-enabled nodes. It supports
changes to the sizes of keys, values, the system’s hash
dimensionality, networking settings, data table sizes,
and index table sizes. RDMA functionality for our
networking framework is provided through the Libib-
verbs citelibibverbs and RDMA CM [3] libraries. Nessie
uses RDMA reliable connections (RC) to provide net-
work connectivity between nodes in the system. RC
connections, which guarantee reliable transmission, are
necessary for Nessie’s protocol as it requires RDMA
READ and CAS verbs. They are also appropriate for a dis-
tributed Nessie cluster, as they prevent the need to im-
plement an extra, external layer of reliability on top of
our RDMA networking framework. To provide cuckoo
hashing functionality and filter bits for keys, Nessie uses
Google’s CityHash [2], with different seeds providing the
equivalent of separate hashing functions.
In order to compare our client-driven Nessie proto-

type against an equivalent server-driven approach, we
have also used our networking framework to imple-
ment a server-driven version of Nessie, called NessieSD.
NessieSD’s server-driven communication design is in-
spired by HERD [14], as it uses RDMA WRITE verbs
to insert requests into a remote server’s request mem-
ory region. These regions are polled by server worker
threads, which service both GET and PUT requests, and
respond to them using RDMA WRITE verbs. An excep-
tion to this occurs when the data a client is requesting
is managed by the same node that the client is running
on. In this case, the request and response are writ-
ten directly, without using RDMA. Although HERD is
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described and evaluated within the context of a sin-
gle server node, we expand the design of NessieSD to
run with multiple nodes. NessieSD employs a partially-
coupled index and data table design. Like Nessie,
NessieSD’s index table is implemented as a cuckoo hash
table. Unlike Nessie, however, an index table entry in
NessieSD only ever refers to data table entries on the
same node.
Despite NessieSD being inspired by HERD, we have

eschewed some of the low-level RDMA optimizations
examined in HERD, including using RDMA unreliable
connections (UC) and data inlining (which allows small
messages to avoid a copy over the PCIe bus). While we
do understand and value the performance benefits of
using unreliable connections and inlining demonstrated
in the HERD paper, we avoid using unreliable connec-
tions to focus on environments that require guaranteed

reliable delivery. Additionally, our goal is to build a
storage system that is not designed specifically for very
small sizes and as a result we have not been concerned
with obtaining the benefits of inlining. In some regard,
such optimizations are orthogonal to our exploration of
the design space, in particular the need to use CPUs
for other computation besides the continuous polling
required by low-latency, high-throughput server-driven
designs.
The implementations of Nessie and NessieSD share

several portions of the same code base. Together with
the underlying RDMA networking framework, they
were implemented using 11,000 lines of C++11.

6. EVALUATION

We conduct experiments using 10 nodes, where each
node is a Supermicro SYS-6017R-TDF server contain-
ing one Mellanox 10GbE SFP port, 64 GB of RAM, two
Intel E5-2620v2 CPUs, each containing 6 cores with a
base frequency of 2.1 GHz and a turbo frequency of 2.6
GHz. To simplify experiments and to ensure repeatabil-
ity we have disabled hyperthreading. This also ensures
that we avoid situations where threads responsible for
handling server-driven requests might be scheduled onto
hyperthreads of the same core, thus significantly reduc-
ing the processing power available. Each node is con-
nected to a Mellanox SX1012 10/40 GbE switch. All
nodes run an Ubuntu 14.04.1 server distribution with
Linux kernel version 3.13.0.
All results presented in this section use 2 million key-

value pairs with 128 byte keys and 879 byte values.
Together, the key, value and ancillary data add up to
1024 bytes, which is the size of a PUT, to match the
YCSB [9] workload specification. Additionally, roughly
1 million index table entries are provisioned on each
node; this achieves a load factor of about 20% which
works well with cuckoo hashing. We also provision
enough data table entries to avoid reuse during experi-

ments.
Because the performance of server-driven systems re-

lies on being able to use a CPU to poll for requests,
their performance is sensitive to other demands on those
CPUs. We conducted several experiments, the results
of which are not shown, to determine the number of
server-worker threads that maximizes the performance
of NessieSD. We found that 3 server workers, each
pinned to their own dedicated core, and 9 client work-
ers pinned to the remaining 9 cores provided the highest
throughput.

6.1 Client-Driven Operations

We first isolate the performance properties of a client-
driven design versus a server-driven design. While a
client-driven protocol requires more network operations,
all of these extra network operations are small READs
from the index table (64 bits), and eliminate the need
to have active server workers for handling requests. To
demonstrate the trade-offs, we exercise the RDMA key-
value store in the presence of computation, both in sep-
arate processes that share the machines, as well as pro-
cessing within the client workers (emulating an appli-
cation that, in order to obtain efficient access to data,
is executing on the same nodes that are used for the
RKVS).
We first consider the impact of external processing

on the performance of the key-value store. To do so,
we introduce CPU workers, which are external to the
client workers and server workers but run on the same
machine and consume CPU for unrelated tasks. These
CPU workers may be from another application sharing
the same machine or other tenants entirely in a data
center environment. In the case of a client-driven de-
sign, the CPU workers interfere with the client worker’s
ability to issue GETs and PUTs.
In contrast, in a server-driven design, a CPU worker

may compete with both client and server worker
threads. To demonstrate why a server-driven design
is not viable in a shared computing environment, Fig-
ure 7 shows a comparison of the throughput achieved by
Nessie and NessieSD when there is contention for CPU
resources. As shown by the line labeled“NessieSD– Un-
pinned”, although there are three server workers, the
performance of NessieSD is substantially impacted with
as few as one competing process. This is because when
server workers do not have full access to CPUs, the
performance of every client in the cluster that needs to
communicate with that particular server worker is in-
hibited. In contrast the throughput of the client-driven
design degrades much more slowly as competition for
CPUs increases.
In order to prevent the severe degradation that oc-

curs when server workers have to compete for CPU re-
sources, we sequester CPUs for exclusive use by server

10



0 1 2 3 4 5 6
CPU Workers

0
1
2
3
4
5
6
7
8

T
h
ro
u
g
h
p
u
t 
(M
o
p
s/
se
c)

Nessie
NessieSD - Pinned
NessieSD - Unpinned

Figure 7: 90% GETs, under uniform random ac-
cess

0 2 4 6 8 10 12
SHA's per operation

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
o
rm

a
liz
e
d
 T
h
ro
u
g
h
p
u
t

Nessie

Figure 8: 90% GETs, under uniform random ac-
cess

workers. This is done by pinning each server worker
to its own core and pinning the client workers to the
remaining cores. The line labeled “NessieSD– Pinned”
in Figure 7 shows that this significantly improves the
throughput of the server-driven approach. However, as
the number of CPU workers increases, the throughput
of the client-driven design approaches 1.33 times that
of NessieSD. This is because the client-driven design is
able to make use of all 12 cores to perform client work,
while the server-driven design has only 9 cores to per-
form client work (because 3 cores are reserved for the
server workers to handle client requests).
We next consider the case where client workers, in

order to efficiently access data used in computations,
are performing computation on the same nodes that
are used to host the RKVS. Figure 8 shows that Nessie
provides as much as a 33% improvement over a server-
driven approach when processing is introduced in the
client workers. Again, this is the expected performance
improvement, as the server-driven approach has 9 of 12
cores available to perform computations (3 are reserved
for server workers), while the client-driven approach can
utilize all 12 cores.
In our environment, with 10 Gbps network links,

3 server workers are necessary to achieve the peak
throughput in the server-driven design. However, a de-
ployment with faster NICS (e.g., 40 Gbps) would re-
quire more server workers to fully utilize the network.
For example, HERD requires 6 server workers to fully
saturate a 56 Gbps link [14]. This would increase the
ratio of cores dedicated to server workers, which fur-

ther increases the benefits obtained when comparing a
client-driven and server-driven design.
In summary, high throughput in a server-driven en-

vironment requires dedicated CPU resources for the
server workers. Dedicating CPUs to server workers re-
duces the CPU resources available for other computa-
tion which results in reduced performance for applica-
tions that require those resources.

6.2 Leveraging Local Memory

RDMA is a low-latency, high-throughput mechanism
for accessing memory from any machine in a cluster.
However, despite the order of magnitude improvement
over alternative remote data access mechanisms such as
TCP, it still has much higher latency compared to local
memory access. By decoupling the data table entries
from the index table entries, and adding a small cache,
we are able to demonstrate substantial performance im-
provements by reducing network transfers wherever pos-
sible without introducing inconsistency.
The first scenario that we consider is when groups

of client workers have a shared working set. That is,
groups of clients perform GETs and PUTs to a subset of
keys with greater frequency than all of the other keys in
the system. An example of such a situation is a graph
clustering algorithm, where each vertex is a key, and the
access and manipulation is localized by the connectivity
in the graph.
To evaluate the performance of workloads that ex-

hibit working sets, we divide the key space into 10
equal part (one for each node) and have client work-
ers on a node access or modify their subset of keys with
greater probability than the remaining keys in the sys-
tem. Figure 9 presents the throughput at various GET

percentages and an increasing portion of access from
the working set. In this graph, a locality value of 0 rep-
resents a fully uniform access pattern and 80 represents
a workload where 80% of the key accesses come from
the working set.
Nessie leverages the fact that PUTs place the data ta-

ble entry into the local data table, enabling subsequent
GETs to retrieve the value from local memory. Due to
the relatively large size of data table entries compared
to index table entries, avoiding the network overhead of
retrieving a large data table entry significantly reduces
the pressure placed on the network, and allows for more
small index table lookups to be handled. The result is a
1.8 times increase in overall throughput of Nessie when
80% of the data accesses are from the working set.
A portion of the performance comes from using the

filter bits to avoid data table accesses. If a hash of the
key does not match the filter bits stored in the index
table entry, then the key can not reside in the associ-
ated data table entry and therefor does not need to be
fetched. This optimization is very similar to accessing

11



0 40 60 80 0 40 60 80
0

2

4

6

8

10

12

14
T
h
ro
u
g
h
p
u
t 
(M

o
p
s/
se
c)

Nessie NessieSD

100%
99.9%
95%
90%

Figure 9: Increasing access from working sets.

0 40 60 80
0

2

4

6

8

10

12

T
h
ro
u
g
h
p
u
t 
(M

o
p
s/
se

c) 0 Filter Bits
7 Filter Bits
11 Filter Bits
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increasing access from working sets.

the data table entries from local memory, but does not
rely on the data table entry being on a particular node.
Figure 10 shows performance as an increasing num-

ber of index table entry bits are reserved for filter-
ing, demonstrating an increase in throughput of up to
1 Mops/sec. Notably, there is no statistically significant
gain from reserving 11 bits instead of 7 bits for filter-
ing. Because the bits of the index table are a limited
resource, it is advantageous that only a small number
of bits are needed to provide the benefits, so that the
rest can be used to maximize the number of data entries
that can be indexed.
Many workloads have a small subset of keys that are

globally more popular than all of the other keys in the
system. The most common distribution is Zipf, which
can be found prominently in web applications. Fig-
ure 11 presents the throughput of Nessie and NessieSD
under 0.7 and 0.9 Zipf workloads. Due to the skew in
popularity, a few nodes see more network traffic than
all of the others in both the client-driven and server-
driven scenarios, which results in an overall decrease
in performance when compared to the uniform random
workload.
Caching is a well-understood technique for improving

the performance of a storage system that is accessed
with a Zipf distribution [7]. By introducing an LRU
cache, which stores a copy of up to 1% of the data en-
tries on each node, the performance of the key-value
store improves dramatically in the case of 100% and
99.9% GETs, where 99.9% GETs is typical of a workload
distribution for Wikipedia [23]. With a 99.9% GET work-
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Figure 11: Comparison of Nessie, with and with-
out caching, to NessieSD on a Zipf distribution.

load and a Zipf parameter of 0.9, Nessie performs over
200% better than NessieSD. However, as the number
of PUTs are increased, Nessie must perform an increas-
ing number of back-offs due to contention over updates
to the most popular keys. The clients become bottle-
necked on PUTs, and so caching has little impact on
performance in these cases.

7. CONCLUSIONS

In this paper we design, implement and evaluate the
performance of Nessie, a high-performance key-value
store that uses RDMA. The novelty of this work derives
from its exclusively client-driven operations, in addition
to its completely decoupled indexing and storage data
structures. Nessie’s client-driven architecture elimi-
nates the heavy loads placed on CPUs by the polling
threads used for low latency server-driven designs. The
decoupling of the location of the index table and data
table allows Nessie to perform write operations to local
memory, significantly reducing the costs of key-value
pair writes and subsequent reads.
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