
A Modular Notation for Monitoring Network
Systems

Prashant Raghav and Richard Trefler

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada

{praghav,trefler}@uwaterloo.ca

Abstract. Design of next generation network systems with predictable
behavior in all situations poses a significant challenge. Monitoring of
events happening at different points in a distributed environment can de-
tect the occurrence of events that indicates significant error conditions.
We use Modular Timing Diagrams (MTD) as a specification language
to describe these error conditions. MTDs are a component-oriented and
compositional notation. We take advantage of these features of MTDs
and point out that, in many cases, a global MTD specification describ-
ing behaviors of several system components can be efficiently decomposed
into a set of sub-specifications. Each of the sub-specifications describes
a local monitor that is specific to the component on which the moni-
tor is intended to run. We illustrate the compositional nature of MTDs
in describing several network monitoring conditions related to network
security.

Keywords: Distributed Systems, Network Security, Data Mining, For-
mal Methods, Apache Spark

1 Introduction

Multi-component, network services, such as banking and financial services, may
be delivered across large disparate networks. These services need to be delivered
reliably and robustly. Although simulators and network analyzers can detect
some network errors, due to the potentially large state space associated with
the network size, analysis may be infeasible. We use network analysis to detect
unauthorized access. However network analysis is a difficult, complex and de-
manding task. Therefore we describe monitors designed to detect and report the
occurrence of significant network events.

Providing a mathematically precise notation for describing essential aspects
of distributed systems - in this case, system requirements - may be a complex
task. Temporal logic[8] is often used in this regard. Typically, specifications for
distributed systems are written from a global perspective, while event moni-
toring at the individual process locations is necessarily a local concern. Thus
it is important to adopt a notation for writing global specifications that also
characterizes the local events of interest.

2 A Modular Notation for Monitoring Network Systems

Modular Timing Diagrams (MTD) [3], which is a component-oriented and
compositional notation, is used as a specification language for describing the
occurrence of significant error events during the system operation. We take ad-
vantage of the two aforementioned properties of the notation and point out that,
in many cases, global MTD specifications can be efficiently decomposed into a set
of sub-specifications in a straightforward manner. Each of the sub-specifications
describes a local monitor that is specific to the component on which the mon-
itor runs. A separate, standalone component maybe used to collect the result
of several distributed monitoring components. In this regard, we make use of
this compositional nature of MTD to translate the single specifications into
distributed sub specifications of several parts. Each part in itself is an MTD
describing the occurrence of error conditions at a particular location in the net-
work. MTD components are designed to monitor all events and messages local
to the network nodes they are running on and raise alarms to notify network
administrators of the occurrence of a specified error event.

Our MTD components are designed to monitor all events and messages local
to the network nodes they are running on and raise alarms to notify network
administrators of the occurrence of a specified error event. When the mtd’s
are decomposed into component monitors, all the monitors are described by
deterministic automata.

Modular Timing Diagrams was proposed as a notation that ties together vi-
sual specification and modular reasoning of asynchronous system. MTD notation
can be used to represent universal properties of asynchronous system. Universal
properties are properties that hold for all computation in the system. MTD is
an extension to timing diagrams[2] used frequently in the hardware industry to
specify timing and ordering properties of hardware protocols. Timing diagrams
are simple and intuitive but are unable to express iterations and disjunctions.
MTD on the other hand not only provides a way to represent those properties,
but is also expressive enough to describe any ω-regular property.

High level specifications of a network system are described using MTD no-
tation. These specifications are error conditions which can result in data loss or
unauthorized access. The individual MTDs are then transformed into a modular
specification file, which is described later. Once the file is generated based on
the previous attacks on the system, it is easy to analyze the new requests with
Apache Spark[25] and classify them as attacks or normal requests. As part of
the framework we describe an approach to monitor network system using MTD.
Our experience of using MTD with Spark to monitor network system is very en-
couraging and we were able to perform the monitoring task with minimal lines
of code.

Data transfer in network protocols can lead to security vulnerabilities in the
system. Transmitting data over a network allows third parties to access the data
resulting in data loss. One approach in mitigating this is user authentication
where a user is verified before they are provided access to the resources. Section
4 describes how user authentication can be represented and monitored using
MTD.

A Modular Notation for Monitoring Network Systems 3

Various tools have been developed for monitoring network systems. They de-
tect anomaly in the network by matching the network state to patterns or set
of rules describing characteristics of anomalies[20]. Yu Gu et al. [12] proposed a
technique to detect anomalies in network traffic using maximum entropy estima-
tion. Brutlag et al [6] used Holt Winter Forecasting[7] model to predict future
traffic based on the history of network traffic. Bro et al [19] monitored network
system by monitoring network link over intruders traffic transit. Yuh Huang and
Thomas Wicks [13] gave a distributed intrusion detection framework using at-
tack strategy analysis. Sekar et al[21] gave a specification language for network
intrusion detection system which enables a strict static and dynamic checking.
This work introduces the use of compositional nature of MTD’s in conjunction
with Apache Spark for monitoring network systems.

Our paper is divided into five sections. In Section 2 we describe the syntax
and semantics of MTD. Section 3 looks at various security issues in the system
and how they are monitored using MTD. Section 4 talks about our experiments
where we look at how we used Spark with our framework and we conclude with
Section 5.

2 Modular Timing Diagrams

In this section, the syntax and semantics of modular timing diagrams is dis-
cussed. Modular timings diagrams (MTD) are an extension of the regular timing
diagram[1] notation. A regular timing diagram (RTD) module is defined over a
finite time period and represents timing dependencies between events that oc-
cur in the time period. These RTD modules are linked together by constructs
to form an MTD. The constructs can denote forking, deterministic choices or
iteration. An example MTD with symbols is shown in Figure 1.

2.1 Informal Description

MTD semantics are represented by sequences of change events. Each event se-
quence is described by a precondition and postcondition. As shown in Figure
1, a precondition is denoted by dashed rectangle that indicates the initiation
sequence of an event. A postcondition is represented by solid rectangle indicat-
ing the outcome of an MTD condition. Filled node at the beginning indicates
an initial precondition node represented by an empty RTD. Precondition and
postcondition are linked together by a connector. Terminal nodes are subset of
postnodes and are not associated with an outgoing connector. A connector can
be a conjuctor or a disjunctor based on the event. Symbol ∨ with guards speci-
fies a disjunctor denoting deterministic choices. Symbol ∧ indicates a conjunctor
and represents branching.

MTD checks begin at the initial node which can be an empty node, a precon-
dition or a postcondition. Edges between nodes are labelled by Guard condition.
The successors of precondition nodes are only validated or checked if the guard
condition on the edge of precondition node holds. What successors of the current

4 A Modular Notation for Monitoring Network Systems

Fig. 1. An example MTD

node are to be checked is determined by the connectors. An ∨ connector with
guards indicates selection of a unique successor while ∧ requires that all succes-
sor nodes are checked. Iterations are allowed in MTD by looping. An example of
looping shown in Figure 1 can be represented by an arrow from initial node back
to the empty node. If a precondition is satisfied its associated postcondition node
must be satisfied. All postcondition nodes used in current work are represented
by RTD’s with no looping conditions. Therefore each of the post condition can
be represented by a deterministic finite automaton.

2.2 Modular Timing Diagrams: Syntax & Definition

An MTD is specified by a number of variables, each taking a finite set of values.
An MTD models sequences of change events over time. Event MTD specifies
the ordering and dependencies between different events with respect to time. An
event can be denoted by a pair (n, i) where n is the variable linked to a domain
Dn, and i denotes the position of an event.

If one event is sequentially dependent on another event, such dependencies
are called sequential dependencies and are represented by a curved line as shown
in Figure 2. The transition or dependency of one event to another consumes
clock cycles, denoted by a pair(a,b) where a occurs before b. Vertical lines in the
diagram denote disjoint sets of concurrent dependencies.

A Waveform denotes changes in value of an event variable(see Figure 2).
Each component RTD is specified by waveforms and timed dependency between

A Modular Notation for Monitoring Network Systems 5

Fig. 2. A component RTD

points on the waveform. The values could be 0 (Low), 1 (High) and X. X denotes
unspecified values. The (a, b) waveform is shown in Figure 2.

Modular timing diagrams are formed by composing together RTDs. The def-
inition of an event, RTD and MTD are discussed in the next few paragraphs.

Definition 1: Regular Timing Diagrams A Regular Timing Diagram is
defined by a tuple of the form (p, S,E, SD,CD) where

– p is a set of point defined over the waveform, WF .
– S represents a finite set of variable names associated with the events over a

period of time. A single variable name is denoted by s.
– For every s there is a finite set of events E(s) represented as [s, 0], [s, 1],...,

[s,ns].
– SD denotes a set of sequential dependency on points in the waveform, WF.

Each SD is denoted by (p, i)
[a,b)−−−→ (q, j), where (p, i) and (q, j) denotes two

points in WF . The value a, b represents a timing dependency. Here a ∈ N
is a natural number and b ∈ N ∪ ∞ and 1<a<b. Figure 2 gives a simple
example of sequential dependency, at points c and d.

– CD is a set of disjoint points called concurrent dependency. Figure 2 shows
concurrent dependencies at point e and point f .

Another import term for understanding MTD is an event. An event is a
change in value of a variable wrt. time. Example of events can be the change in
state of a button, a user logging activity or a click on the webpage.

Definition 2: Event An event in an RTD (p, S,E, SD,CD) is defined as
follows.

– E denotes an event.
– If s denotes a variable, linked to an event then (s,0) is an event.
– For an event (s, i), if there is a change in value from s(i) to s(j) then (s, j)

as event.
– If (s, i) is in concurrent dependency with an event, then (s,i) is an event.

– For a sequential dependency (p, i)
c,c−−→ (q, j) if (p, i) is an event then (q, j) is

an event.

Definition 3: Modular timing Diagram A modular timing diagram is
specified by a tuple (N,C, I, F) where,

– N denotes the finite set of nodes. The set consist of two types of nodes Npre

and Npost where Npre denotes a set of pre nodes and Npost denotes a set of
post nodes.

6 A Modular Notation for Monitoring Network Systems

– C represents a set of connectors, C ∈ (∨, ∧). ∨ connector ∈N×2G×N . Where
G is set of guards or boolean expressions. These guard are set of intersection
constraints. Further, ∧ connector is an element of N × 2N . Figure 1 shows
an example MTD with all the components labelled.

– I ⊆ Npre is a set of initial nodes.
– F is a set of fair nodes that defines co-Buchi acceptance condition.

2.3 Semantics

This section describes the semantics of MTD’s as mentioned in the original
paper [3]. The semantics of an MTD is a set of infinite sequences over a vector
of variable values declared in the component RTD’s. Each of the vector values
represent a state. The semantics is specified using a ∀-automaton. The language
of the automaton is the semantics for an MTD.

2.4 RTD Language

The language for, r, for a non empty RTD, is specified by a DFA, (S, ζ, SD,
CD). The language for the automaton is a set of finite strings z in, Σ∗ that
satisfy the following condition. For each string there is a locator function, which
determines the position of the events in the string. The locator function for z is
specified by λz : ζ → [0..|z| − 1] such that

– The value of each event in ζ can be located in z and has a value consistent
with that in r. If λz(s, i) has a value p then value of s at the p position on
z, zp(s) = v(s, i).

– Let value of λz(s, i) = k and λz(s, i + 1) = l, then for every j that lies in
[k, l), the value of s at jth position of z, zj(s) = v(s, i).

– For each sequential dependency specified as, (s, i)
c−→ (t, j), where c denotes

the timing constraint of the form (clock, [a, b)). The number of events be-
tween λz(s, i) and λz(t, j) is in [a, b).

– For each pair of events, (s, i) and (t, j) in concurrent dependency cd ∈ CD,
λz(s, i) = λz(t, j).

2.5 MTD Language

An MTD, T composed of RTD’s {ri} is denoted by a tuple (N,C, I, F). The
∀-automaton, BT for T is defined as follows: For RTD ri, let Bi =(Σ, Qi, {q0},
δi, Fi) where Qi finite set of states; {q0} is a nonempty set of initial state; Fi

is the set of final states. The set of states for ∀-automaton, BT , is (∪iQi)∪{ti
|i ∈Nterm}. A transition of BT includes the transitions of each Bi along with
new transitions in the given order.

– If ri denotes a terminal post node, then for each q ∈ Fi and a ∈ Σ, add
δ(q, a) = {ε(ti)}, add δ(ti, a) = {(ti)}. This represents a transition from
final state of terminal nodes to the state that accepts any subsequent set of
values.

A Modular Notation for Monitoring Network Systems 7

– If ri ∧-connected to rj ,, rk then for each q ∈ Fi and a ∈ Σ, add δ(q, a) =
{ε(q0i), ..., ε(q0k)}. This represents forking, and every node is accepting.

– If ri is ∨-connected to guards gj ,, gk to RTD’s rj ,, rk then for each
q ∈ Fi and a ∈ Σ, add δ(q, a) = {ε(q0l)}, where gl(a) is the unique guard
that holds for a. This denotes deterministic choices.

The acceptance condition ensures that any infinite path should get stuck in
prenodes or should be in infinitely often accepting states for post nodes. Thus
whenever a run enters nodes of MTD, it must either satisfy all the pattern in
the post nodes, or it should exit at the prenode.

3 Security Vulnerability

Security vulnerabilities are network communication flaws that may result in
sharing secure information or in denying users access to information which they
must be able to access. Our testing dataset contains attacks that can be classified
into four broad categories wide enough to encompass the major attacks. We
describe them below.

– Denial of Service[14] (DoS) is an attack where the attacker floods the server
with requests affecting its performance. Examples include Syn flood[18] and
teardrop attacks [15]. A DoS attack on a system, called land[11], is when
the attacker sends spoofed SYN packets with source and destination having
the same address.

– Remote to Local (R2L) attacks concerns unauthorized access from a remote
machine. Eg. password guessing[10].

– User to Local (U2L) attacks involve unauthorized access to local superuser
privileges. The attacker exploits the vulnerability to gain access to the root
account despite having only normal user privileges. Eg. buffer overflow at-
tacks[9].

– Probing[26] is gathering information about a network system to breach its
security. Eg. portscanning.

Some of the security vulnerabilities that cause modern data breaches and their
specification are highlighted below.

3.1 User Authentication

Organisations need to know the identity of a user before allowing them access
to the system. This prevents misuse of data, forging emails and keeps the sys-
tem secure. Before logging into the system the user is requested to enter his
credentials. This process is termed authentication.

An attack on this kind of system generally falls under R2L where a remote
machine tries to gain access to a forbidden resource.

To verify that the system’s authentication is not violated we represent the
user authentication process using our MTD notation shown in Figure 3. Authen-
tication process on the server side can be represented as a sequence of events in

8 A Modular Notation for Monitoring Network Systems

MTD and the outcome of logging after verification is a post condition in MTD.
MTD can also represent two-way verification process by synchronizing the verifi-
cation process at each level and linking it through an MTD node. We present the
steps of authentication/verification process but not the details of cryptographic
calculations since their verification is beyond the scope of this work. To illustrate
our work, a detailed MTD for user authentication is given in Figure 3.

There are different ways to identify each kind of attack. DoS attack can be
identified using the number of requests from a given host. Some probe attacks
can be identified based on number of port accessed in a particular time period.
However attacks on user authentication, such as R2L, are mostly content based
[22]. To detect these attacks, content features such as the number of failed login
attacks are used to look for any suspicious behaviour in the data field of the
packets. For experiments, our dataset contains attacks marked by the type of
R2L attack. We used those attacks as error conditions and generated MTD’s
from them for user authentication. Our experiments are further discussed in the
next chapter.

A specification for user authentication can be described as:

– Webpage displays a form for user login, in Figure 3 denoted by page.
– User enters the login id and password.
– Database loginDb contains a database of all registered users, all incoming

login request with valid id and password is matched with .
– If the password is valid, user is given access to the system.
– If invalid password, user is asked thrice to enter the password, failure to enter

correct password after three trials results in an alarm and admin is notified.

The main entities involved in the user authentication process is the user
account, a webpage to display the login, a database of registered users and a
server that directs the request to the database. The user account represented
by user are identified by two variables, id and pwd. The webpage provides a
view to the system where the user enters details. The webpage is handled by
two variables cmd and detail. Server consists of two variables request and db.
These variables ensures that each login request is directed to the database for
verification. In the current case the database that maintains the list of users is
represented by loginDb.

We have specified the following features for verification: the basic user login
with valid username and password; the retry password request; specific account
access for a particular user. The retry password feature enables the user to
reenter password if the password in the database does not match with the valid
user account. The user can retry entering the password three times. Failure to
enter correct password after the three trials results in blocking the requesting IP
to further access the network. In the current example the blocking period is 20
sec represented by server.block. The administrator is notified of the suspicious
activity by the variable admin.notify.

MTD diagrams are read from left to right. The ∧ connector at the start
indicates that the event has to be validated at any point along the computation
provided by a left arrow pointing to the initial node. The precondition node

A Modular Notation for Monitoring Network Systems 9

of MTD presents a webpage to the user represented by page and user enters
the required details to access the account. A clock represented by clk represents
the time frame at which the specific event occurs. It can be seen from Figure 3
that verification requests starts just after the server.request variable is set. The
database consist of all users registered with their encrypted passwords and user
name.

The server verifies the details with the database. If the details entered by the
user matches the one in the system the user is given student access. The access
level varies according to the user id - a professor access or a student access or
an administrative access. Although the login page is the same for all users, what
portion of the system is accessible to the user is determined based on credentials.
In Figure 3 the node after the execution is a postcondition node. The exclusive-
or connector above the condition ensures only one active state at a given time.
Also it can be seen in the postcondition that server.db.cmd variables ensures
that user can enter the password at most thrice but after that the server.request
variable is set to false.

Fig. 3. MTD of User Login - Password verification

If the username and password do not match then the user is asked to re-
enter the password in the error message displayed. The postcondition verifies
the username and password and passes to the next step of IP verification. A
∨ connector indicates the selection of a unique successor while in case of ∧ all

10 A Modular Notation for Monitoring Network Systems

successor nodes are checked. The user is given a limited number of trials set
by server.retry. If these trials end in failure then the user is asked to register
and the account is temporarily blocked for a short period of time specified by
server.db.cmd.

Once the user details are verified the next task is to verify the IP address as
shown in Figure 4. Such location specific monitoring may be required in financial
service companies, for instance. The main task of IP verification is to prevent
suspicious account activity. This usually occurs when some malware is installed
in the system resulting in remote access from a false location. If the user is logged
in from a location, say L1, at a point of time and from a far-away location L2

after a short period, then the activity is considered suspicious. In such a case,
the user is not given access to the system despite providing correct login details.
This verification is done by perusing through the last few login activities of the
user to find a match with the user’s current location. On failure, the user is
blocked with a message saying suspicious activity detected.

Fig. 4. MTD of User login - IP Verification

In the example shown in Figure 4 we assume that the user is located in
Germany denoted by variable user.loc and all of their requests are coming from
Germany. In the preprocessing phase, the loc variable provides the location of the

A Modular Notation for Monitoring Network Systems 11

request. Initially the server retrieves the location of the user and then compares
it with their account’s previous locations obtained from the log file, useractiv-
ity.log. The MTD connector verifies the condition that the variable user.valid
holds. user.valid compares the locations to provide access to the user. In our
example, the postcondition indicates that a suspicious activity is detected since
the account login is requested from Canada while the last few accesses were from
Germany.

3.2 Email Filtering

Email is critical to any organisation. Emails can serve as delivery system for
spyware, worms and viruses. Email is sometimes used as a tool for DoS attack.

Email bomb[4] is a form of DoS attack where attacker sends large number
of emails in order to overload the server where the email is hosted. We show
that our MTD framework is capable of detecting email bombs. MTD constantly
monitors emails coming from different sources by distributing the specifications
across different machines. Specifications contain sender’s address, destination
address along with the mail domains. Any form of email bombing will result in
overloading of server by mails.

Our dataset contains connection string marked with attack and normal. Error
conditions are generated from our the testing dataset, discussed later with con-
nection strings marked with DoS. These error conditions are further enhanced
considering security for financial institutions, and an MTD shown in Figure 5 is
generated from it.

Fig. 5. MTD of Email Filtering

12 A Modular Notation for Monitoring Network Systems

As soon as the mail enters the system it is verified to see if it is coming from
a registered domain. Since the mail is not stored unless verified another variable
called server starts the verification process. Server checks the database to verify
if the mail adheres to RFC standards, and is coming from registered user. Server
replies back with a command to indicate weather the mail is valid or not. If the
guard condition denoted by mail.valid is true the mail is accepted in the system.
If the domain is not valid then the mail is discarded and network administrator
is notified, denoted by network.notfiy. Variable server.request.max denotes the
maximum number of request a server can handle at a particular instance of time.
This is just a error condition and can very according to the specification. To keep
the count of number of request the MTD maintains a variable mail.num. If the
number of mails from a particular user exceeds the server.req.max limit, this
might be a case of email bombing, so the administrator is notified about it. In
Figure 5 as soon the user receives more then four mails from the sender per
second labeled by mail.num the variable mail.acceptbecomes false and the mail
is discarded.

4 Observations

To demonstrate the compositional nature of MTD, we performed various exper-
iments on a cluster computing framework called Apache Spark[25]. One of the
main reasons for choosing Apache Spark was its performance in handling large
amount of real time data.

Fig. 6. Data Format

4.1 KDD dataset

For testing purposes, we used a popular intrusion detection dataset by KDD
[23]. The dataset is captured from DARPA[17] 98 intrusion detection system
evaluation program. DARPA is about 4 gigabytes of compressed raw TCP dump

A Modular Notation for Monitoring Network Systems 13

data from seven weeks of network traffic. The data consists of around 5 million
connections, each of around 100 bytes. A connection represents a sequence of
TCP packets from a source IP to target IP address, number of bytes sent, types
of connection etc. Each row in the dataset is marked with either normal or
attack.

A row from the dataset is shown in Figure 6. The main fields are labeled.
The connection shown in Figure 6 denotes a TCP connection with 215 bytes sent
and 45076 bytes received. We see that the last field specifies the type of request -
type of attack or normal. This field is used to separate normal connections from
suspicious ones marked by a type of attack. During the monitoring process, a
request to the system or network is observed by monitors immediately.

The KDD dataset is analyzed and all requests marked by a type of attack
are extracted. The attacks belong to the four categories of attacks mentioned
above. For our system, we extracted all the attacks marked DoS and R2L. The
IP addresses associated with these attacks are termed blocked. The connection
strings associated with the attacks are then explored. Error conditions are gen-
erated from these strings which in turn generate the specifications and hence the
MTDs. This dataset is only used to test our approach and should not be used
for building real time systems as the dataset reflects traffic pattern more then a
decade ago and quite a few newer types of attack have come up since then.

Fig. 7. Distributed Monitoring System

However, in practice, the network administrators provide their own specifi-
cations. Figure 7 above summarizes the key step in the distributed monitoring
process. Initially the system administrator generates high level specification from
previous data. This can be log files or datasets of previous user activity. These
high level specification contains error conditions associated with the network.

14 A Modular Notation for Monitoring Network Systems

Examples of error conditions include blocked IP addresses, the maximum num-
ber of requests per time unit a user is allowed, the number of incorrect password
attempts etc.

4.2 MSF File

To make the system compatible with Spark and utilize MTD’s compositional
nature, the MTD specifications are translated into a text file. The text file is re-
ferred as MTD specification file (MSF). Currently, this file is generated manually
from the MTDs but a tool for converting diagram to text, written specifically
for MTD could be useful for this task. A sample format of MSF is shown in
Figure 8. The MSF file corresponds to one of the attack marked R2L in the
KDD dataset, which is represented by the MTD in Figure 3.

The generated MSF file is used as a specification input to Apache Spark on
the given dataset. Data is ingested in Apche Spark using the streaming API’s.
Spark receives stream of TCP communication data which is then processed by
the spark engine. Each connection is then classified as attack or normal based
on the specifications provided. Apache Spark’s streaming APIs make it easy to
process the live stream of data. The tool analyses the real-time data looking for
irregular patterns or fluctuation that might suggest a security breach. As soon
as an attack is inferred, the administrator is notified of the security breaches.

Fig. 8. MSF file

A Modular Notation for Monitoring Network Systems 15

MTD specification files contain several keywords.Pre represents a precondi-
tion in MTD and post represents a postcondition. The connector to be used is
indicated in the MSF by the keyword Connector. The command tag indicates the
messages exchanged in the system. To handle the events that occur at a certain
point in time, we associate a time variable with each command. This variable
is assigned either discrete values or indicators such as ’mid’, ’end’, ’start’ etc.
In the given MSF, the messages exchanged are verfiylogin, errormessage and
verifylocation. The postcondition, which is determined by the guard conditions,
is the final state of the system. In our case, the guard conditions are denoted by
a variable called server.db.valid. When a new user enters the system, the gener-
ated MSF is parsed to extract essential information including password, mailid
and IPaddress along with the messages that are associated with each user. Here,
user denotes not only a person entering the system but also various entities such
as a database, a system and a server.

4.3 Clustering and Live Streaming of Data

All the experiments were performed on Amazon Elastic Compute Cloud(Ec2).
Five machines were used to work as a cluster. The cluster contains all five
m1.small instances. One of the nodes is the master node responsible for schedul-
ing tasks to the rest four slave nodes. The operating system was Ubuntu Server
14.04 LTS.

Spark provides API to access data from different data sources such as HDFS
[5], Cassandra [16] and Hive [24]. In our current system we store the data in
Hadoop Distributed File System(HDFS).

In the Hadoop Distributed File System, the master node is called namenode.
All other nodes are called datanodes and all data processing are performed on
them. The MSF files generated from KDD dataset are copied to HDFS. These
MSF files are then loaded to Spark as an RDD. The file is then parsed using the
Spark API’s available. Due to the compositional nature of MTD, the generated
MSF files can be distributed across different slave machines for faster processing.
To avoid loading data from disk every time, Spark caches the data in memory.
To monitor network on a cluster of machines we followed the algorithm described
below:

– Generate a large MTD with blocked IP addresses and specifications for mon-
itoring the network system.

– Generate smaller sub-specifications from the MTD. This is possible owing
to the compositional nature of MTD.

– Decide the range of IP addresses for each data node based on the previous
datasets.

– Each smaller MTD is then converted to an MSF file: in our case, four MSF
files containing different ranges of IP addresses are generated.

– Create a Spark cluster, or a cluster of four data nodes and one name node
in our case.

– Copy MSF file to the corresponding datanode.

16 A Modular Notation for Monitoring Network Systems

– Channel the new requests to the concerned data node for verification based
on the IP address of the incoming request.

The range of IP addresses at each data node is decided based on the test
dataset. Each incoming request is directed to the data node associated with its
IP address. Once the request is directed, the MSF file is parsed to match the
incoming IP address with the list of blocked IP addresses at that node. In the
case of a match, an alarm is raised to notify the administrator of the possible
attack.

Our framework is able to detect unregistered IP addresses and blocked IP
address from the requesting connections. We are also able to monitor cases where
the number of requests to a particular server from single machine exceeds a cer-
tain threshold and thus we could prevent any basic dos attack. We also found
that the MSF files after parsing, contains the error conditions associated with
the four types of attacks and, hence, we conclude that the method of generat-
ing MTDs from specifications is effective. Furthermore, our experiments were
conducted on a small cluster; we plan to perform them on multi-user network
systems.

5 Conclusion

In this paper we show how to monitor network systems using compositional
MTD notation. The main advantage of MTD is its is its clear graphical interface
and its compositional nature making it easier to represent system specifications
of network systems. More specifically, we show how to use modular reasoning
with MTD properties along with asynchronous compositional reasoning rule to
monitor the network. From the error conditions, we generate specifications that
describe the attack. We show that converting these diagrams to text, allows
us to effectively check the user information for forbidden conditions and detect
attacks. To evaluate our approach, we performed our experiments using a dis-
tributed framework called Apache Spark. Our MTD components are designed
to monitor events and messages across the network nodes and to notify network
administrator of the occurrence of a specific error event.

For future work, we plan to test our monitoring approach on an IP based
network system. We aim to extend the RTDT [1] tools to MTD to design a
graphical editor for them. A tool to generating MSF file from MTD is the next
step in our MTD notation. We also want to consider how to combine specification
into an optimal representation. Another important future work could be to use
machine learning algorithms to predict abnormal behaviour.

A Modular Notation for Monitoring Network Systems 17

References

1. Nina Amla, E Allen Emerson, Robert P Kurshan, and Kedar Namjoshi. Rtdt: A
front-end for efficient model checking of synchronous timing diagrams. In Computer
Aided Verification, pages 387–390. Springer, 2001.

2. Nina Amla, E Allen Emerson, and Kedar S Namjoshi. Efficient decompositional
model checking for regular timing diagrams. In Correct Hardware Design and
Verification Methods, pages 67–81. Springer, 1999.

3. Nina Amla, E Allen Emerson, Kedar S Namjoshi, and Richard J Trefler. Vi-
sual specifications for modular reasoning about asynchronous systems. In Formal
Techniques for Networked and Distributed SytemsFORTE 2002, pages 226–242.
Springer, 2002.

4. Tim Bass, Alfredo Freyre, David Gruber, and Glenn Watt. E-mail bombs and
countermeasures: cyber attacks on availability and brand integrity. Network, IEEE,
12(2):10–17, 1998.

5. Dhruba Borthakur. Hdfs architecture guide. HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

6. Jake D Brutlag. Aberrant behavior detection in time series for network service
monitoring. In InProc. of the 14th Systems Administration Conference, page 13.

7. Chris Chatfield. The holt-winters forecasting procedure. Applied Statistics, pages
264–279, 1978.

8. Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS), 8(2):244–263,
1986.

9. Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In Usenix
Security, volume 98, pages 63–78, 1998.

10. Yun Ding and Patrick Horster. Undetectable on-line password guessing attacks.
ACM SIGOPS Operating Systems Review, 29(4):77–86, 1995.

11. Scott Dubal, Douglas Boom, Patrick Connor, and Mark Montecalvo. Detecting a
network attack, December 18 2002. US Patent App. 10/323,985.

12. Yu Gu, Andrew McCallum, and Don Towsley. Detecting anomalies in network
traffic using maximum entropy estimation. In Proceedings of the 5th ACM SIG-
COMM conference on Internet Measurement, pages 32–32. USENIX Association,
2005.

13. Ming-Yuh Huang, Robert J Jasper, and Thomas M Wicks. A large scale distributed
intrusion detection framework based on attack strategy analysis. Computer Net-
works, 31(23):2465–2475, 1999.

14. Peyman Kabiri and Ali A Ghorbani. Research on intrusion detection and response:
A survey. IJ Network Security, 1(2):84–102, 2005.

15. Byoung-Doo Kang, Jae-Won Lee, Jong-Ho Kim, O-Hwa Kwon, Chi-Young Seong,
and Sang-Kyoon Kim. An intrusion detection system using principal component
analysis and time delay neural network. In Enterprise networking and Computing
in Healthcare Industry, 2005. HEALTHCOM 2005. Proceedings of 7th Interna-
tional Workshop on, pages 442–445. IEEE, 2005.

16. Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

18 A Modular Notation for Monitoring Network Systems

17. Richard P Lippmann, David J Fried, Isaac Graf, Joshua W Haines, Kristopher R
Kendall, David McClung, Dan Weber, Seth E Webster, Dan Wyschogrod, Robert K
Cunningham, et al. Evaluating intrusion detection systems: The 1998 darpa off-line
intrusion detection evaluation. In DARPA Information Survivability Conference
and Exposition, 2000. DISCEX’00. Proceedings, volume 2, pages 12–26. IEEE,
2000.

18. Ross Oliver and Tech Mavens. Countering syn flood denial-of-service attacks. In
Invited Talks of USENIX Security Symposium, 2001.

19. Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23):2435–2463, 1999.

20. Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,
volume 99, pages 229–238, 1999.

21. R Sekar, Ajay Gupta, James Frullo, Tushar Shanbhag, Abhishek Tiwari, Henglin
Yang, and Sheng Zhou. Specification-based anomaly detection: a new approach
for detecting network intrusions. In Proceedings of the 9th ACM conference on
Computer and communications security, pages 265–274. ACM, 2002.

22. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali-A Ghorbani. A detailed
analysis of the kdd cup 99 data set. In Proceedings of the Second IEEE Symposium
on Computational Intelligence for Security and Defence Applications 2009, 2009.

23. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali-A Ghorbani. A detailed
analysis of the kdd cup 99 data set. In Proceedings of the Second IEEE Symposium
on Computational Intelligence for Security and Defence Applications 2009, 2009.

24. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a ware-
housing solution over a map-reduce framework. Proceedings of the VLDB Endow-
ment, 2(2):1626–1629, 2009.

25. Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, pages 10–10, 2010.

26. GR Zargar and P Kabiri. Identification of effective network features for probing
attack detection. In Networked Digital Technologies, 2009. NDT’09. First Inter-
national Conference on, pages 392–397. IEEE, 2009.

