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Abstract

We provide a tutorial on how to use shears and rota-
tions in 4-dimensions to model translations and perspec-
tive projections in 3-dimensions. We also explain how
to uniformly scale points about the origin and mirror
points in the origin in 3-dimensions using non-uniform
scaling and reflection in 4-dimensions.

1 Introduction

Affine and projective transformations in 3-dimensions
are often represented in computer graphics by 4 × 4
matrices [4]. But in linear algebra 4 × 4 matrices are
typically used to represent linear transformations in 4-
dimensions. Thus in computer graphics affine and pro-
jective transformations in 3-dimensions are usually rep-
resented by linear transformations in 4-dimensions.

The non-singular linear transformations in 4-
dimensions are composites of four basics types of
transformations: rotations, reflections, shears, and non-
uniform scalings. The fundamental affine and projective
transformations of interest in computer graphics are:
translations, rotations, reflections, shears, uniform and
non-uniform scalings and orthogonal and perspective
projections. Most of these transformations are linear
transformations in 3-dimensions and therefore could be
represented by 3 × 3 matrices. Notice, however, that
translations are affine, but not linear, transformations
in 3-dimensions, and that perspective projections are
projective transformations, but neither linear nor affine
transformations in 3-dimensions [4]. Thus translations
and perspective projections motivate the use of 4 × 4
matrices in computer graphics.

Figure 1 show how rotations, scissor shears [12], and
classical shears are defined in the uv-plane. Notice that
for rotation and scissor shear the effect of these trans-
formations on the u-axis and v-axis is symmetric. But
classical shear treats the u-axis and the v-axis very dif-
ferently: the u-axis is left unchanged, while the v-axis
picks up a component in the u-direction. Thus, a classi-
cal shear in the uv-plane behaves very differently from
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Figure 1: Three linear transformation and the matrices
that represent these transformations in the uv-plane: (a)
rotation, (b) scissor shear, and (c) classical shear. Note
that rotation and scissors shear affect both axes by the
same amount, while for classical shear only the v-axis is
affect and the u-axis is unchanged.

a classical shear in the vu-plane. We shall take advan-
tage of this asymmetry to use classical shears in planes
in 4-dimensions to analyze matrices both for transla-
tions (Section 3) and for projections (Section 5) in 3-
dimensions.

If the uv-plane lies in xyz-space, then rotations and
shears represent linear transformations in R3, where the
vectors in the direction orthogonal to the uv-plane re-
main unchanged. But what if one of the uv-directions
lies along the fourth axis, the w-axis, in R4? Then we
have a rotation or shear in a plane in R4. Rotations and
shears that affect vectors only in a single plane in R4

and that do not affect vectors orthogonal to this plane
are called simple rotations and simple shears. One of
the goals of this paper is to show how to interpret these
simple rotations and simple shears in R4 as particular
affine or projective transformations in R3.
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This paper investigates the geometric relationship be-
tween certain basic nonsingular linear transformations
in 4-dimensions and the transformations most common
in 3-dimensional computer graphics. The purpose of
this paper is not a new or more efficient computational
method, nor are the results intended for particular ap-
plications. Instead, we our goal is to provide a new
geometric understanding of well known transformations
in computer graphics. Thus the spirit of this technical
report is more in the nature of a tutorial rather than a
research monograph.

Our main contributions are to show that

1. Translations in 3-dimensions can be modeled by
classical shears in 4-dimensions. These classical
shears turn out to be the standard form of trans-
lations used in computer graphics. Thus, the stan-
dard computer graphics matrix for translation rep-
resents a shear in 4-dimensions.

2. Perspective projections in 3-dimensions can be
modeled by (i) classical shears, (ii) scissor shears,1

or (iii) rotations in 4-dimensions.

3. Pseudo-perspective projections in 3-dimensions can
also be modeled by (i) classical shears, (ii) scis-
sor shears, or (iii) rotations in 4-dimensions. The
method using classical shear turns out to be the
standard form of pseudo-perspective used in com-
puter graphics; thus the standard computer graph-
ics matrix for pseudo-perspective is a classical
shear in 4-dimensions. The approaches to pseudo-
perspective using either scissor shears or rotations
are new and are presented here for the first time.
The rotation form of pseudo-perspective is partic-
ularly noteworthy because it permits one to per-
form pseudo-perspective using sandwiching with
unit quaternions.

We shall also show that

4. Orthogonal projections in 3-dimensions can be
modeled by 90◦ rotations in a plane in 4-
dimensions.

5. Uniformly scaling points about the origin in 3-
dimensions can be modeled by scaling vectors non-
uniformly along the w-axis in 4-dimensions.

6. Reflecting points about the origin in 3-dimensions
can be modeled by mirroring vectors in the hyper-
plane w = 0 in 4-dimensions.

Some of these techniques are inspired, in part, by com-
parable results concerning versors in the Clifford Alge-
bra R(4, 4). One of the goals of this exposition is to
reduce these results to matrix algebra for those uniniti-
ated in Clifford algebra. The reader interested in using
R(4, 4) in computer graphics is referred to [3, 8, 9].

1Scissor shears are also called Lorentz boosts.

This paper is organized in the following fashion. In
Section 2 we introduce our conventions and fix our no-
tation. Sections 3, 4, and 5 contain our main results.

In Section 3 we turn our attention to translation. We
show how to apply classical shears in planes contain-
ing the w-axis in 4-dimensions to translate points along
vectors in 3-dimensions.

In Section 4 we explore the effect on points in 3-
dimensions of scaling vectors in 4-dimensions along the
w-axis. We show that (i) scaling vectors in 4-dimensions
along the w-axis by a scalar factor s > 0 scales the
distance of points from the origin in 3-dimensions by
the scale factor 1/s (Section 4.1); (ii) scaling vectors
in 4-dimensions along the w-axis by the scalar factor
s = −1—that is, reflecting vectors in 4-dimensions in
the hyper-plane w = 0—reflects points about the ori-
gin in 3-dimensions (Section 4.2); and (iii) scaling vec-
tors in 4-dimensions along the w-axis by a scalar factor
s = 0—that is, projecting vectors from 4-dimensions to
3-dimensions—maps points P in 3-dimensions to vec-
tors from the origin to P in 3-dimensions (Section 4.3).
In Section 4.4 we show how to exploit 90◦ rotations in
4-dimensions together with projecting vectors from 4-
dimensions to 3-dimensions to compute orthogonal pro-
jections in 3-dimensions.

Section 5 is devoted to perspective projection. In Sec-
tion 5.1 we show how to project from R3 to R2 by classi-
cal shears, scissors shears, or rotations in 4-dimensions.
In Section 5.2, we extend our results on perspective pro-
jections to pseudo-perspective projections, the kind of
perspective projections found most often in computer
graphics. Finally in Section 5.3 we observe that since
rotations in 4-dimensions can be used to model perspec-
tive and pseudo-perspective in 3-dimensions, we can also
use sandwiching with unit quaternions to compute both
perspective and pseudo-perspective.

We close in Section 6 with a brief summary of our
main results.

2 Points and Vectors in R3 and
R4

We shall use four coordinates to represent points and
vectors in 3-dimensions: A nonzero fourth coordinate
represents a mass-point or weighted-point—that is, a
scalar mass at a fixed location in R3—and a zero fourth
coordinate represents a vector in R3. Alternatively, we
shall also think of these four coordinates as representing
vectors in 4-dimensions.

2.1 Points and Vectors in R3

Although the visual world is 3-dimensional, contem-
porary computer graphics typically uses four coordi-
nates to represent points and vectors and 4×4 matrices
to represent affine and projective transformations.
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Figure 2: Points and vectors in 3-dimensions embedded
in 4-dimensions

If w 6= 0, then the four coordinates (wx,wy,wz, w)
represent a mass w located at the point with coordinates
(x, y, z) in R3. If P and Q both represent mass points,
we write P ≡ Q if P = wQ for a non-zero scalar w
because P and Q are located at the same location in
R3, they differ only in their masses. If w = 0, then the
four coordinates (x, y, z, 0) represent the vector from the
origin to the point located at (x, y, z) in R3.

We shall use the symbols i = (1, 0, 0, 0), j =
(0, 1, 0, 0), k = (0, 0, 1, 0) to represent unit vectors along
x-, y-, z-axes. We use the symbol o = (0, 0, 0, 1) to de-
note the origin for the points in 3-dimensions, and we use
the symbol Ω = (0, 0, 0, 0) to denote the origin for the
vectors in 4-dimensions. Note that in Figure 2 the arrow
(v, 0) corresponds to the vector v in 3-dimensions, the
arrow (Q, 1) corresponds to the point Q in 3-dimensions,
and the arrow (wQ,w) also represents the point Q to-
gether with a mass w 6= 0 in 3-dimensions. In particular,
if Q = (q1, q2, q3), then

(wQ,w) = wq1i+ wq2j + wq3k + wo

≡ q1i+ q2j + q3k + o = (Q, 1)

Notice that the map (wQ,w)→ (Q, 1) is just the central
projection of (wQ,w) from the origin Ω in 4-dimensions
to the plane w = 1 (see Figure 2).

The vectors perpendicular to a fixed vector n in R3

form a plane in R3. Hence every vector v in R3 can be
written uniquely as v = λn+n⊥ for some constant λ and
some vector n⊥ perpendicular to n. Therefore, for every
pair of points P , Q there is a constant λ and a vector
n⊥ perpendicular to n such that P − Q = λn + n⊥ so
P = Q+ λn+ n⊥. It follows that every point P can be
written in the form P = o+ λn+ n⊥ for some constant
λ and some vector n⊥ perpendicular to n.

2.2 Vectors in R4

Alternatively, we shall also use four coordinates to
represent vectors in 4-dimensions. Under this interpre-
tation, i, j, k represent unit vectors along the x-, y-, and

z-axes in 4-dimensions, and the origin o = (0, 0, 0, 1) in
3-dimensions represents the unit vector along w-axis in
4-dimensions. The symbol Ω represents the zero vector
in 4-dimensions. Let n = (n1, n2, n3) be a unit vector
in 3-dimensions. Then n = (n1, n2, n3, 0) represents n
as a unit vector in 4-dimensions and o · n = 0, so o ⊥ n.
Thus o is orthogonal to every vector in R3.

Notice again that o plays a dual role: in 4-dimensions
o = (0, 0, 0, 1) represents a unit vector along the w-axis,
while in 3-dimensions o represents the point at the ori-
gin.

2.3 Notation

In the remainder of this paper, we shall adopt the fol-
lowing notation. We shall use upper case letters P,Q to
denote points and lower case letters u, v to denote vec-
tors. The maps P ↪→ (P, 1) and v ↪→ (v, 0) embed points
and vectors in 3-dimensions as vectors in 4-dimensions.
We shall use P to denote both the point P in R3 and
its embedding (P, 1) in R4. Similarly, shall use v to de-
note both the vector v in R3 and its embedding (v, 0) in
R4. The precise meaning will be clear from the context.
When we want to emphasize that v is the embedding in
R4 of a vector in R3, we shall use bold to represent the
vector in R3. Thus we shall let v be a vector in R3 and
set v = (v, 0) to denote the corresponding vector in R4.
Finally, we will use I to denote the 3×3 identity matrix.

3 Translation in 3-Dimensions
by Classical Shear in 4-
Dimensions

Here we show how to perform translations in 3-
dimensions by using classical shears in 4-dimensions.
Intuitively the reason a classical shear in 4-dimensions
can be used to represent a translation in 3-dimensions is
that a classical shear in the no-plane moves o along the
direction n and leaves all the vectors in 4-dimensions or-
thogonal to o (i.e., all the vectors in 3-dimensions) fixed.
Thus the effect of a classical shear in the no-plane on
points P = o+ v in 3-dimensions is simply to translate
P along the direction n by translating o and leaving v
fixed. Therefore we have the following theorem:

Theorem 3.1 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). The 4× 4 matrix

CShear(n, o, θ) =

[
I 0

tan(θ)n 1

]

is a classical shear in the no-plane by the angle θ in
the direction o in 4-dimensions, and translates points
in the direction n by the signed distance d = tan(θ) in
3-dimensions.
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Proof. For any vector n⊥ perpendicular to n, let n⊥ =
(n⊥, 0). Then

o ∗ CShear(n, o, θ) = o ∗
[

I 0
tan(θ)n 1

]

= o+ tan(θ)n

n ∗ CShear(n, o, θ) = (n, 0) ∗
[

I 0
tan(θ)n 1

]
= n

and

n⊥ ∗ CShear(n, o, θ) = (n⊥, 0) ∗
[

I 0
tan(θ)n 1

]
= n⊥.

Therefore, CShear(n, o, θ) represents a classical shear
in the no-plane by the angle θ in the direction o in 4-
dimensions.

For any point Q in R3, there exists a vector n⊥
perpendicular to n and a constant λ such that Q =
o+ λn+ n⊥. Now by linearity

Q ∗ CShear(n, o, θ) = (o+ λn+ n⊥) ∗
[

I 0
tan(θ)n 1

]

= o+ tan(θ)n+ λn+ n⊥

= o+ λn+ n⊥ + tan(θ)n

= Q+ tan(θ)n.

And for any vector v = λn+ n⊥ in R3

v ∗ CShear(n, o, θ) = (λn+ n⊥)

[
I 0

tan(θ)n 1

]

= λn+ n⊥ = v.

Therefore, CShear(n, o, θ) translates points in 3-
dimensions in the direction n by the signed distance
d = tan(θ) and leaves vectors in 3-dimensions un-
changed.

♦
Since in 3-dimensions CShear(n, o, θ) translates

points P by the vector v = tan(θ)n, we often write

Trans(v) =

[
I 0
v 1

]

instead of

CShear(n, o, θ) =

[
I 0

tan(θ)n 1

]
.

The basic geometric idea is illustrated in Figure 3:
starting with a point in 3-dimensions represented by the
vector Q in 4-dimensions, we perform a classical shear
in the no-plane in the direction o in 4-dimensions. This
transformation translates any point Q to a point Q̄ in
3-dimensions.
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o
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Figure 3: Translation in R3 by classical shear in R4

Example 3.2 Let n = i be the unit vector along the
x-axis. Then the 4× 4 matrix

Tx =




1 0 0 0
0 1 0 0
0 0 1 0
t 0 0 1




is a classical shear in the xw-plane by the angle arctan(t)
in the direction w in 4-dimensions, and translates points
along the x-axis by the signed distance t in 3-dimensions.

Similarly the matrices

Ty =




1 0 0 0
0 1 0 0
0 0 1 0
0 t 0 1


 , Tz =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 t 1




represent classical shears in the yw-plane and zw-planes
in 4-dimensions that translates points along the y- and
z-axes by the signed distance t in 3-dimensions.

Note that these translation matrices are the stan-
dard translation matrices used in computer graphics;
thus, the transformations used in computer graphics for
translations in 3-dimensions are classical shears in 4-
dimensions.

Some of these ideas, such as shear in one higher di-
mension representing translation in one lower dimension
are well known in the world of kinematics [11].

4 Scaling Along the w-Axis

In this section we explore the effect on points in
3-dimensions of scaling vectors in 4-dimensions along
the w-axis. We shall show that scaling vectors in 4-
dimensions along the w-axis by a scalar factor s >
0 scales the distance of points from the origin in 3-
dimensions by the scale factor 1/s. We shall also show
that scaling vectors in 4-dimensions along the w-axis by
the scalar factor s = −1—that is, reflecting vectors in
4-dimensions in the hyper-plane w = 0—reflects points
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about the origin in 3-dimensions. Finally we shall show
that scaling vectors in 4-dimensions along the w-axis
by the scalar factor s = 0—that is, projecting vectors
from 4-dimensions to 3-dimensions—maps points P in 3-
dimensions to vectors P−o in 3-dimensions. To simplify
our expressions, we shall adopt the following notation:

I(s) =

[
I 0
0 s

]
.

4.1 Uniform Scaling in 3-Dimensions
by Non-Uniform Scaling in 4-
Dimensions

Theorem 4.1 The 4× 4 orthogonal matrix

I(s) =

[
I 0
0 s

]
, s > 0

represents non-uniform scaling of vectors by the scale
factor s in the direction o in 4-dimensions, and repre-
sents uniform scaling of points about the origin o by the
scale factor 1/s in 3-dimensions.

Proof. For any vector v = ai+ bj + ck+ do = (a, b, c, d)
in R4

v∗I(s) = (a, b, c, d)∗
[
I 0
0 s

]
= (a, b, c, sd) = ai+bj+ck+sdo,

which is non-uniform scaling of vectors v by the scale
factor s in the direction o in 4-dimensions.

Similarly, for any pointQ = ai+bj+ck+o = (a, b, c, 1)
in R3

Q ∗ I(s) = (a, b, c, 1) ∗
[
I 0
0 s

]
= (a, b, c, s)

= ai+ bj + ck + so

≡ a

s
i+

b

s
j +

c

s
k + o,

which is uniform scaling by the scale factor 1/s of points
from the origin o in 3-dimensions.

♦

The basic geometric idea is illustrated in Figure 4:
starting with a point in 3-dimensions represented by
the vector Q in 4-dimensions, we scale the vector Q
non-uniformly by the factor s in the direction o in 4-
dimensions, giving Q̄. Then we project Q̄ from the ori-
gin Ω to the plane w = 1 to get Q′, which is the point Q
scaled uniformly by the scale factor 1/s about the origin
o in 3-dimensions.

The standard uniform scaling matrix in 3-dimensions
is

U(1/s) =

[
1
sI 0
0 1

]
.

The matrix U(1/s) uniformly scales any point Q to 1
sQ

and uniformly scales any vector v to 1
sv. In contrast, the

matrix presented in Theorem 4.1 that models uniform
scaling in 3-dimensions by non-uniformly scaling in 4-
dimensions is

I(s) =

[
I 0
0 s

]
.

Notice that the matrix I(s) uniformly scales any point
Q to 1

sQ but leaves any vector v unchanged. Thus, the
matrices U(1/s) and I(s) have the same effect on points
but different effects on vectors. The matrix U(1/s) is an
affine transformation in 3-dimensions, while the matrix
I(s) is a linear transformation in 4-dimensions but not
an affine transformation in 3-dimensions.

Example 4.2 Consider the vector v = (2, 5, 4, 3) in 4-
dimensions, the point P = (2, 6, 4, 1) and the vector u =
(2, 6, 4, 0) in 3-dimensions. Then the 4 × 4 orthogonal
matrix

I(2) =

[
I 0
0 2

]

scales v non-uniformly by the scale factor 2 in the di-
rection o in 4-dimensions. In 3-dimensions, I(2) scales
P uniformly about the origin o by the scale factor 1

2 and
leaves u unchanged.

In 4-dimensions,

v ∗ I(2) = (2, 5, 4, 3) ∗
[
I 0
0 2

]
= (2, 5, 4, 6).

In 3-dimensions,

P ∗I(2) = (2, 6, 4, 1)∗
[
I 0
0 2

]
= (2, 6, 4, 2) ≡ (1, 3, 2, 1)

and

u ∗ I(2) = (2, 6, 4, 0) ∗
[
I 0
0 2

]
= (2, 6, 4, 0).

4.2 Reflection in the Origin in 3-
Dimensions by Reflection in the
hyper-plane w = 0 in 4-Dimensions

Theorem 4.3 The 4× 4 orthogonal matrix

I(−1) =

[
I 0
0 −1

]

represents reflection in the hyper-plane w = 0 in 4-
dimensions, and represents reflection in the origin o in
3-dimensions.

Proof. For any vector v = ai+ bj + ck+ do = (a, b, c, d)
in R4

v ∗ I(−1) = (a, b, c, d) ∗
[
I 0
0 −1

]
= (a, b, c,−d)

= ai+ bj + ck − do
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Figure 4: Uniform scaling in R3 by non-uniform scaling in R4

which is reflection in the hyper-plane w = 0 in 4-
dimensions.

Similarly, for any pointQ = ai+bj+ck+o = (a, b, c, 1)
in R3

Q ∗ I(−1) = (a, b, c, 1) ∗
[
I 0
0 −1

]
= (a, b, c,−1)

= ai+ bj + ck − o ≡ −ai− bj − ck + o

= −Q,

which is reflection in the origin o in 3-dimensions.

♦

The basic geometric idea is illustrated in Figure 5:
starting with a point in 3-dimensions represented by the
vector Q in 4-dimensions, we reflect the 4-dimensional
vector Q in the hyper-plane w = 0, giving Q̄. Then
we project Q̄ through the origin Ω to the hyper-plane
w = 1 to get −Q, which is the point Q reflected about
the origin o in 3-dimensions.

Recall that the standard matrix for reflection in the
origin in 3-dimensions is

R =

[
−I 0

0 1

]
.

The matrix R reflects any point Q to −Q and reflects
any vector v to −v. In contrast, the matrix presented
in Theorem 4.3 that models reflection about the origin
in 3-dimensions by reflection in the hyper-plane w = 0
in 4-dimensions is

I(−1) =

[
I 0
0 −1

]
.

Notice that the matrix I(−1) reflects any point Q to
−Q but leaves any vector v in R3 unchanged because
vectors in R3 have no o component. Thus, the matrices
R and I(−1) have the same effect on points but different
effects on vectors. The matrix R is an affine transforma-
tion in 3-dimensions, while the matrix I(−1) is a linear
transformation in 4-dimensions but not an affine trans-
formation in 3-dimensions.

Example 4.4 Consider the vector v = (2, 5, 4, 3) in 4-
dimensions, the point P = (2, 6, 4, 1) and the vector u =
(2, 6, 4, 0) in 3-dimensions. Then the 4 × 4 orthogonal
matrix

I(−1) =

[
I 0
0 −1

]

reflects v in the hyper-plane w = 0 in 4-dimensions. In
3-dimensions, I(−1) reflects P in the origin o and leaves
u unchanged.

In 4-dimensions,

v ∗ I(−1) = (2, 5, 4, 3) ∗
[
I 0
0 −1

]
= (2, 5, 4,−3).

In 3-dimensions,

P ∗ I(−1) = (2, 6, 4, 1) ∗
[
I 0
0 −1

]
= (2, 6, 4,−1)

≡ (−2,−6,−4, 1) = P ′

and

u ∗ I(−1) = (2, 6, 4, 0) ∗
[
I 0
0 −1

]
= (2, 6, 4, 0) = u.

4.3 Mapping Points to Vectors in 3-
Dimensions by Orthogonal Pro-
jection Along the w-Axis in 4-
Dimensions

Theorem 4.5 The 4× 4 matrix

I(0) =

[
I 0
0 0

]

represents orthogonal projection from R4 to R3 for vec-
tors in 4-dimensions and maps points Q to vectors Q−o
in 3-dimensions.

Proof. For any vector v = ai+ bj + ck+ do = (a, b, c, d)
in R4

v∗I(0) = (a, b, c, d)∗
[
I 0
0 0

]
= (a, b, c, 0) = ai+bj+ck,
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Figure 5: Reflection in the origin in R3 by reflection in the w = 0 hyper-plane in R4

which represents orthogonal projection from R4 to R3

for vectors in 4-dimensions.
Similarly, for any pointQ = ai+bj+ck+o = (a, b, c, 1)

in R3

Q ∗ I(0) = (a, b, c, 1) ∗
[
I 0
0 0

]
= (a, b, c, 0)

= ai+ bj + ck

which maps points Q to vectors Q− o in 3-dimensions.

♦

The basic geometric idea is as follows: starting with a
point in 3-dimensions represented by the vector Q in 4-
dimensions, we project the vector orthogonally from R4

to R3 in 4-dimensions, which maps points Q to vectors
Q − o in 3-dimensions. Notice, in particular, that the
origin o in 3-dimensions is mapped to the origin Ω in
4-dimensions.

The matrix I(0) in Theorem 4.5 is not an affine trans-
formation and there is no comparable affine matrix in
3-dimensions. We shall see in Section 5.1 that the pro-
jection matrix I(0) in Theorem 4.5 plays an important
role in the representation of perspective projection.

4.4 Orthogonal Projection in 3-
Dimensions by Rotation in 4-
Dimensions

In this section we shall show how to use 90◦ rotations
in 4-dimensions together with the matrix I(0) projecting
vectors from 4-dimensions to 3-dimensions to compute
orthogonal projections in 3-dimensions.

In Lemma 4.6 and in subsequent theorems, we will
use the following facts: Consider two row vectors u and
n in R3, and let nT denote the column vector that is
the transpose of the row vector n. Then

1. u ∗ nT = u · n;

2. nT ∗ n is a 3× 3 matrix;

3. u ∗ (nT ∗ n) = (u ∗ nT) ∗ n = (u · n)n.

Lemma 4.6 Let n be a unit vector in 3-dimensions and
let n = (n, 0). The matrix

Rot(n, o,±90◦) =

[
I − (nTn) ±nT

∓n 0

]

represents a simple rotation in 4-dimensions that rotates
vectors in the no-plane by ±90◦ and leaves vectors in R4

orthogonal to the no-plane unchanged.

Proof. We give the proof for rotation by +90◦; the proof
for rotation by −90◦ is similar. For any vector n⊥ per-
pendicular to n let n⊥ = (n⊥, 0). Then

o ∗Rot(n, o, 90◦) = o ∗
[
I − (nTn) nT

−n 0

]

= −n

n ∗Rot(n, o, 90◦) = (n, 0) ∗
[
I − (nTn) nT

−n 0

]

= o

and

n⊥∗Rot(n, o, 90◦) = (n⊥, 0)∗
[
I − (nTn) nT

−n 0

]
= n⊥.

Therefore it follows by linearity that Rot(n, o, 90◦) ro-
tates vectors in the no-plane by the angle 90◦ in 4-
dimensions and leaves vectors in R4 orthogonal to the
no-plane unchanged.

♦

Theorem 4.7 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). Then the matrix

Ortho(n) = Rot(n, o, 90◦) ∗ I(0) ∗Rot(n, o,−90◦)
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=

[
I − (nTn) nT

−n 0

] [
I 0
0 0

] [
I − (nTn) −nT

n 0

]

=

[
I − (nTn) 0

0 1

]

represents orthogonal projection into the plane π through
the origin o orthogonal to the vector n.

Proof. Let n⊥ be a vector perpendicular to n and let
n⊥ = (n⊥, 0). Then by Theorem 4.5 and Lemma 4.6

o ∗Ortho(n)

= o ∗Rot(n, o, 90◦) ∗ I(0) ∗Rot(n, o,−90◦)

= −n ∗ I(0) ∗Rot(n, o,−90◦)

= −n ∗Rot(n, o,−90◦) = o

n ∗Ortho(n)

= n ∗Rot(n, o, 90◦) ∗ I(0) ∗Rot(n, o,−90◦)

= o ∗ I(0) ∗Rot(n, o,−90◦)

= Ω ∗Rot(n, o,−90◦) = Ω

n⊥ ∗Ortho(n)

= n⊥ ∗Rot(n, o, 90◦) ∗ I(0) ∗Rot(n, o,−90◦)

= n⊥ ∗ I(0) ∗Rot(n, o,−90◦)

= n⊥ ∗Rot(n, o,−90◦) = n⊥.

Now any point P in R3 can be written as P = o+ λn+
n⊥ where n⊥ is a vector perpendicular to n and λ is a
constant. Therefore by linearity

P ∗Ortho(n) = (o+ λn+ n⊥) ∗Ortho(n) = o+ n⊥.

♦

The basic geometric idea here is that the matrix
Rot(n, o, 90◦) rotates the vector n to the origin o and ro-
tates the origin o to the vector −n, while leaving the vec-
tors n⊥ perpendicular to n unchanged. The matrix I(0)
then collapses o to the zero vector Ω in 4-dimensions, ef-
fectively eliminating the original contribution of n. Fi-
nally, the matrix Rot(n, o,−90◦) restores the origin o,
which was temporarily stored as the vector −n.

Example 4.8 Let the projection plane π be the xy-
plane. Then the normal to the projection plane is
n = k = (0, 0, 1), so

Ortho(k) =

[
I − (kTk) 0

0 1

]

=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 .

We can also project orthogonally into arbitrary planes
by translating these planes to and from a plane passing
through the origin. Thus we have the following general
result.

Corollary 4.9 Let n be a unit vector in 3-dimensions
and let n = (n, 0). The 4× 4 matrix

Ortho(n,Q) = Trans(o−Q) ∗Ortho(n)

∗ Trans(Q− o)

=

[
I − (nTn) 0

((Q− o) · n)n 1

]
,

represents orthogonal projection into the plane π through
the point Q orthogonal to the vector n.

5 Perspective Projections

We now turn our attention to perspective projec-
tions, the projections needed to support realistic render-
ing. We shall investigate both standard perspective pro-
jections and pseudo-perspective projections, since both
types of perspective maps are invoked in contemporary
computer graphics.

5.1 Perspective Projection

In this section we shall show how to use classical
shears, scissor shears, or rotations in 4-dimensions to
model perspective projections in 3-dimensions. In each
case, starting with a fixed signed distance d from the eye
to the projection plane, we initiate this study by select-
ing a special location for the eye. This location for the
eye, the normal to the plane, and the signed distance
d fixes the position and orientation of the perspective
plane.

We begin with the following general lemma and its
corollaries characterizing all the 4 × 4 matrices that
can be used to compute perspective projections in 3-
dimensions. In subsections 5.1.1, 5.1.2, 5.1.3 we shall see
that the matrices for classical shear, scissor shear, and
rotation in 4-dimensions that can be used to compute
perspective projections in 3-dimensions are all special
cases of these general matrices. Of course, for a fixed
eye point and a fixed perspective plane, the matrix for
perspective projection is unique. What we show here is
that there are different ways to factor this perspective
matrix in terms of different classical transformations in
4-dimensions.

Lemma 5.1 Let n be a unit vector in 3-dimensions and
let n = (n, 0). For αδ−βγ 6= 0, β 6= 0, the 4× 4 matrix

M = M(n, α, β, γ, δ) =

[
I + (α− 1)(nT ∗ n) βnT

γn δ

]

represents a non-singular linear transformation that
maps vectors in the no-plane to vectors in the no-plane
and leaves vectors n⊥ in R4 orthogonal to the no-plane
fixed in 4-dimensions. In 3-dimensions, the matrix M
represents perspective projection in the following way:
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Figure 6: Perspective projection

let E = o+ α−1
β n be the eye point and let π be the pro-

jection plane through the point Q = o + α
βn at a signed

distance d = 1
β from the eye point E. Then for any

point P , applying M to the vector P −E represents the
perspective projection of the point P to the plane π from
the eye point E.

Proof. For any vector n⊥ perpendicular to n, let n⊥ =
(n⊥, 0). Then

o ∗M = o ∗
[
I + (α− 1)(nT ∗ n) βnT

γn δ

]
= γn+ δo

n ∗M = n ∗
[
I + (α− 1)(nT ∗ n) βnT

γn δ

]
= αn+ βo

n⊥ ∗M = n⊥ ∗
[
I + (α− 1)(nT ∗ n) βnT

γn δ

]
= n⊥

Therefore by linearity M represents a non-singular lin-
ear transformation that maps vectors in the no-plane
to vectors in the no-plane and leaves vectors n⊥ in R4

orthogonal to the no-plane fixed.
Now for any point P in R3, since P − E is a vector

in R3, there exists a vector n⊥ perpendicular to n and
a constant λ such that P − E = λn+ n⊥. Therefore,

(P − E) ∗M = (λn+ n⊥) ∗M = λ(αn+ βo) + n⊥

≡ o+
α

β
n+

1

λβ
n⊥.

Let

P ′ = o+
α

β
n+

1

λβ
n⊥.

Then P ′ ≡ (P − E) ∗M . Moreover since Q = o+ α
βn,

P ′ −Q =
1

λβ
n⊥ ⇒ (P ′ −Q) ⊥ n.

Hence P ′ is on the projection plane π. Also since E =
o+ α−1

β n,

P ′ = E +
1

λβ
(λn+ n⊥) = E +

1

λβ
(P − E).

Hence P ′ is on the line through the eye point E in the
direction P − E. Thus P ′ is located at the intersection
of the line from the eye point E to the point P , and the
plane π through the point Q at a signed distance d =
1/β from the eye point E. Hence P ′ is the perspective
projection of the point P from the eye point E into the
projection plane π in 3-dimensions (see Figure 6). Note
too that if P lies on the plane π, then λ = 1

β and P ′ = P .

♦

Notice that the matrix M in Lemma 5.1 maps vectors
in R3 parallel to n into mass points in R3; this mapping
of vectors to mass points is important below in Corol-
lary 5.2, where I(0) is used to maps points to vectors.

To compute perspective projection, the matrix in
Lemma 5.1 operates on vectors rather than points.
But to implement perspective projection in the graph-
ics pipeline, we need matrices that operate directly on
points rather than on vectors from the eye to the points.
Next we introduce such matrices. Notice that since these
matrices operate directly on points P , the eye point E
must now be incorporated inside these matrices.

Corollary 5.2 Let n be a unit vector in 3-dimensions
and let n = (n, 0). The 4× 4 matrix

Persp(E,n, θ)

= Trans(o− E) ∗ I(0) ∗M(n, α, β, γ, δ)

= Trans(o− E) ∗ I(0) ∗
[
I + (α− 1)(nT ∗ n) βnT

γn δ

]

=

[
I + (α− 1)(nT ∗ n) βnT

(o− E) + (α− 1)
(
(o− E) · n

)
n β(o− E) · n

]

projects points P from the eye point E = o+ α−1
β n to the

plane π with unit normal n at a signed distance d = 1
β

from the eye. Notice, in particular, that if α = 1, then
E = o.

Proof. By Theorem 4.5:

P ∗ Trans(o− E) ∗ I(0) ∗M = (P − E) ∗M.

Therefore Corollary 5.2 follows from Lemma 5.1.

♦

Corollary 5.2 shows how to compute perspective pro-
jection on arbitrary points when the eye point and the
perspective plane are located in special canonical posi-
tions. Next we show how to compute perspective pro-
jection on arbitrary points when the eye point and the
perspective plane are located in arbitrary positions by
translating the scene to and from the canonical position.
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Corollary 5.3 Let n be a unit vector in 3-dimensions
and let n = (n, 0). Set E = o + α−1

β n to the canonical

eye point from Lemma 5.1. Then the 4× 4 matrix

Persp(E′, n, θ) = Trans(o− E′) ∗ I(0) ∗M(n, α, β, γ, δ)

∗ Trans(E′ − E)

projects points P from the eye point E′ to the plane π′

with unit normal n at a signed distance d = 1
β from the

eye.

Proof. This result is a consequence of the following four
observations.

1. Trans(o− E′) = Trans(E − E′) ∗ Trans(o− E).

2. The matrix Trans(E − E′) translates the entire
scene by the vector E−E′. In particular, the matrix
Trans(E − E′) translates the eye point E′ to the
canonical eye point E in 3-dimensions and trans-
lates the projection plane π′ to the canonical plane
π with unit normal n at a signed distance d = 1

β

from the canonical eye point E.

3. By Corollary 5.2, the matrix Trans(o−E) ∗ I(0) ∗
M(n, α, β, γ, δ) projects points from the canonical
eye point E to the canonical plane π with unit nor-
mal n at a signed distance d = 1

β from the eye point

E.

4. The matrix Trans(E′ − E) translates the entire
scene back to its original position, mapping the
canonical eye point E back to the original eye point
E′ and the canonical plane π with unit normal n
at a signed distance d = 1

β from the canonical eye

point E back to the original projection plane π′.

♦

By Lemma 5.1 and Corollaries 5.2, 5.3, any non-
singular matrix that in 4-dimensions maps the no-plane
to the no-plane and fixes vectors orthogonal to the no-
plane can be used to compute perspective projection in
3-dimensions into planes orthogonal to n, provided only
that β, the entry in the upper right-hand corner of the
matrix, is not zero. Thus simple classical shears, scissor
shears, and rotations in the no-plane in 4-dimensions
can all be used to compute perspective projections in
3-dimensions. We shall explore the 4 × 4 matrices cor-
responding to these three transformations in the next
three subsections in more detail. Notice, however, that
the 4×4 matrices corresponding to non-uniform scaling
along directions in the no-plane cannot be used to com-
pute perspective projections in 3-dimensions because for
these non-uniform scaling matrices β = 0.

5.1.1 Perspective Projection in 3-Dimensions
by Classical Shear in 4-Dimensions

In Section 3 we showed how to translate points in 3-
dimensions in the direction n by using classical shears
in the no-plane in the o-direction in 4-dimensions. Here
we show how to perform perspective projections in 3-
dimensions by using classical shears in the on-plane in
the n-direction in 4-dimensions.

Theorem 5.4 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). For θ not an integer multiple of 90◦,
the 4× 4 matrix

CShear(o, n, θ) =

[
I tan(θ)nT

0 1

]

represents a classical shear that shears vectors in the on-
plane by the angle θ in the direction n in 4-dimensions.
In 3-dimensions, the matrix CShear(o, n, θ) represents
perspective projection in the following way: place the
eye point E at the origin o, and let π be the projection
plane with unit normal vector n through the point Q =
o+ cot(θ)n at a signed distance d = cot(θ) from the eye
point E. Then for any point P , applying CShear(o, n, θ)
to the vector P −E represents the perspective projection
of the point P to the plane π from the eye point E.

Proof. For any vector n⊥ perpendicular to n let n⊥ =
(n⊥, 0). Then

o ∗ CShear(o, n, θ) = o ∗
[
I tan(θ)nT

0 1

]
= o

n ∗ CShear(o, n, θ) = (n, 0) ∗
[
I tan(θ)nT

0 1

]

= n+ tan(θ)o

n⊥ ∗ CShear(o, n, θ) = (n⊥, 0) ∗
[
I tan(θ)nT

0 1

]
= n⊥.

Therefore CShear(o, n, θ) shears vectors in the on-plane
by the angle θ in the direction n in 4-dimensions.

The result in 3-dimensions follows from Lemma 5.1
with α = 1, β = tan(θ), γ = 0, and δ = 1.

♦

Notice that the shear matrix in Theorem 5.4 that
represents perspective projection in 3-dimensions is the
transpose of the shear matrix in Theorem 3.1 that rep-
resents translation in 3-dimensions.

To compute perspective projection, the matrix in
Theorem 5.4 operates on vectors rather than points. But
as we observed in Section 5.1, to implement perspective
projection in the graphics pipeline, we need matrices
that operate directly on points rather than on vectors
from the eye to the points. Next we introduce such ma-
trices.
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Corollary 5.5 Let n be a unit vector in 3-dimensions
and let n = (n, 0). For θ not an integer multiple of 90◦,
the 4× 4 matrix

Persp(o, n, θ) = I(0) ∗ CShear(o, n, θ)

=

[
I tan(θ)nT

0 0

]

projects points P from the eye point E = o to the plane
π with unit normal n at a signed distance d = cot(θ)
from the eye.

Proof. Corollary 5.5 is a special case of Corollary 5.2
with α = 1, β = tan(θ), γ = 0, and δ = 1. Notice that
in Corollary 5.2 if α = 1 then E = o.

♦
The basic geometric idea is illustrated in Figure 7:

starting with an eye point E at the origin o at an arbi-
trary signed distance d = cot(θ) away from the projec-
tion plane, we project points from the plane w = 1 to the
plane w = 0 in 4-dimensions using the projection I(0)
along the w-axis to map points P to vectors P − o and
map the eye point E = o to the origin Ω in 4-dimensions.
We then use the transformation CShear(o, n, θ) to shear
in the on-plane along the direction n, leaving the direc-
tion o (the w-axis) fixed and mapping the projection
plane back into the plane w = 1 and the vector P − o
to the mass-point P̄ in 4-dimensions. As a final step,
we project P̄ from the origin Ω to the plane w = 1 in
4-dimensions to get P ′, which is the perspective projec-
tion of the point P into the projection plane from the
eye point in 3-dimensions.

Example 5.6 Let π be the projection plane with nor-
mal vector n = (0, 0, 1, 0) = k through the point Q =
(0, 0, 1, 1) and let E = (0, 0, 0, 1) = o be the eye point.
Then the 4× 4 matrix

CShear(o, k, 45◦) =




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1




is a classical shear in the wz-plane by the angle 45◦

in the z-direction in 4-dimensions, and when composed
with I(0) projects points from the eye point E at the ori-
gin o to a perspective plane π parallel to the xy-plane in
3-dimensions. Thus

P ∗ I(0) ∗ CShear(o, k, 45◦)

= (P − o) ∗ CShear(o, k, 45◦)

= (p1, p2, p3, 0)




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1




= (p1, p2, p3, p3) ≡ (
p1
p3
,
p2
p3
, 1, 1).

Corollary 5.5 shows how to use classical shear to com-
pute perspective projection on arbitrary points when the
eye point and the perspective plane are located in special
canonical positions. Next as in Section 5.1 we show how
to compute perspective projection on arbitrary points
when the eye point and the perspective plane are lo-
cated in arbitrary positions by translating the scene to
and from the canonical position.

Corollary 5.7 Let n be a unit vector in 3-dimensions
and let n = (n, 0). For θ not an integer multiple of 90◦,
the 4× 4 matrix

Persp(E′, n, θ) = Trans(o− E′) ∗ I(0)

∗ CShear(o, n, θ) ∗ Trans(E′ − o)

projects points P from the eye point E′ to the plane π′

with unit normal n at a signed distance d = cot(θ) from
the eye.

Proof. Corollary 5.7 is a special case of Corollary 5.3
with α = 1, β = tan(θ), γ = 0, and δ = 1.

♦

Example 5.8 Let the projection plane π be the xy-
plane and place the eye point at E = (0, 0,−1, 1) a unit
distance below the xy-plane. Then the normal to the
projection plane is n = k = (0, 0, 1) and the distance
from the eye to the projection plane is d = 1. Therefore,
tan(θ) = 1/d = 1, so θ = 45◦. Thus, in this case, the
matrix representing perspective projection is

Persp(E, k, 45◦)

= Trans(k) ∗ I(0) ∗ CShear(o, k, 45◦) ∗ Trans(−k).

Hence for any point P = (x, y, z, 1)

P∗Persp(E, k, 45◦)

= (x, y, z, 1) ∗ Trans(k) ∗ I(0)

∗ CShear(o, k, 45◦) ∗ Trans(−k)

= (x, y, z + 1, 1) ∗ I(0) ∗ CShear(o, k, 45◦)

∗ Trans(−k)

= (x, y, z + 1, 0) ∗ CShear(o, k, 45◦) ∗ Trans(−k)

= (x, y, z + 1, z + 1) ∗ Trans(−k)

= (x, y, 0, z + 1)

≡
( x

z + 1
,

y

z + 1
, 0, 1

)

Alternatively, by direct computation

Persp(E, k, 45◦)

= Trans(k) ∗ I(0) ∗ CShear(o, k, 45◦) ∗ Trans(−k)

=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
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Figure 7: Perspective projection in R3 by classical shear in R4

so

P ∗ Persp(E, k, 45◦)

= (x, y, z, 1) ∗




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1




= (x, y, 0, z + 1) ≡ (
x

z + 1
,

y

z + 1
, 0, 1).

5.1.2 Perspective Projection in 3-Dimensions
by Scissor Shear in 4-Dimensions

In Section 5.1.1 we showed how to compute perspec-
tive projection using classical shears in the on-plane in
the n-direction in 4-dimensions. Here we show how to
perform perspective projections in 3-dimensions by us-
ing scissor shears in the no-plane in 4-dimensions.

Theorem 5.9 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). For θ 6= 0, the 4× 4 matrix

SShear(n, o, θ) =

[
I + (cosh(θ)− 1)(nTn) sinh(θ)nT

sinh(θ)n cosh(θ)

]

represents a scissor shear that shears vectors in the no-
plane by the angle θ in 4-dimensions. In 3-dimensions,
the matrix SShear(n, o, θ) represents perspective pro-
jection in the following way: let E = o + (coth(θ) −
csch(θ))n be the eye point, and let π be the projec-
tion plane with unit normal vector n through the point
Q = o + coth(θ)n at a signed distance d = csch(θ)
from the eye point E. Then for any point P , apply-
ing SShear(n, o, θ) to the vector P − E represents the
perspective projection of the point P to the plane π from
the eye point E.

Proof. For any vector n⊥ perpendicular to n let n⊥ =
(n⊥, 0). Then

o ∗ SShear(n, o, θ)

= o ∗
[
I + (cosh(θ)− 1)(nTn) sinh(θ)nT

sinh(θ)n cosh(θ)

]

= cosh(θ)o+ sinh(θ)n

n ∗ SShear(n, o, θ)

= (n, 0) ∗
[
I + (cosh(θ)− 1)(nTn) sinh(θ)nT

sinh(θ)n cosh(θ)

]

= sinh(θ)o+ cosh(θ)n

n⊥∗SShear(n, o, θ)

= (n⊥, 0) ∗
[
I + (cosh(θ)− 1)(nTn) sinh(θ)nT

sinh(θ)n cosh(θ)

]

= n⊥.

Therefore SShear(n, o, θ) shears vectors in the no-plane
by the angle θ in 4-dimensions.

The result in 3-dimensions follows from Lemma 5.1
with α = cosh(θ), β = sinh(θ), γ = sinh(θ), and δ =
cosh(θ).

♦

The basic geometric idea is illustrated in Figure 8:
to locate the projection plane a signed distance d =
csch(θ) from the eye point, we start with the eye point
E = o + (coth(θ) − csch(θ))n. We then translate the
eye point E to the origin o, project the vector P − E
into the w = 0 plane (mapping E from o to Ω), and
perform a scissor shear that leaves the projection plane
unchanged. This transformation also shears any vector
P = (v, 1) to a vector P̄ = (wv,w) in 4-dimensions. As
a final step, we project P̄ from the origin Ω to the plane
w = 1 in 4-dimensions to get P ′, which is the perspective
projection of the point P into the projection plane from
the eye point in 3-dimensions.

Once again to implement perspective projection in the
graphics pipeline, we need matrices that operate directly
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Figure 8: Perspective projection in R3 by scissor shear in R4

on points rather than on vectors from the eye to the
points. Next we introduce such matrices.

Corollary 5.10 Let n be a unit vector in 3-dimensions
and let n = (n, 0). For θ 6= 0, the 4× 4 matrix

Persp(n, o, θ) = Trans(o− E) ∗ I(0) ∗ SShear(n, o, θ)

projects points P from the eye point E = o+ (coth(θ)−
csch(θ))n to the plane π with unit normal n at a signed
distance d = csch(θ) from the eye.

Proof. Corollary 5.10 is a special case of Corollary 5.2
with α = cosh(θ), β = sinh(θ), γ = sinh(θ), and δ =
cosh(θ).

♦

Example 5.11 Let π be the perspective plane with nor-
mal vector n = (0, 0, 1, 0) = k through the point Q =
(0, 0, coth(θ), 1) and let E = (0, 0, coth(θ) − csch(θ), 1)
be the eye point. Then for θ 6= 0, the 4× 4 matrix

SShear(k, o, θ) =




1 0 0 0
0 1 0 0
0 0 cosh(θ) sinh(θ)
0 0 sinh(θ) cosh(θ)




scissor shears vectors in the zw-plane by the angle θ in
4-dimensions, and when composed with Trans(o−E) ∗
I(0) = Trans(−E) projects points P from the eye point
E on the z-axis to a perspective plane π parallel to the
xy-plane in 3-dimensions.

Corollary 5.10 shows how to use scissor shear to com-
pute perspective projection on arbitrary points when
the eye point and the perspective plane are in special
canonical positions. Next as in Sections 5.1 and 5.1.1
we show how to compute perspective projection on arbi-
trary points for the eye point and the perspective plane
in arbitrary positions by translating the scene to and
from the canonical position.

Corollary 5.12 Let n be a unit vector in 3-dimensions
and let n = (n, 0). Set E = o + (coth(θ) − csch(θ))n
to the canonical eye point from Theorem 5.9. Then for
θ 6= 0, the 4× 4 matrix

Persp(E′, n, θ)

= Trans(o− E′) ∗ I(0) ∗ SShear(n, o, θ) ∗ Trans(E′ − E)

projects points P from the eye point E′ to the plane π′

with unit normal n at a signed distance d = csch(θ) from
the eye.

Proof. Corollary 5.12 is a special case of Corollary 5.3
with α = cosh(θ), β = sinh(θ), γ = sinh(θ), and δ =
cosh(θ).

♦

Example 5.13 Let the projection plane π′ be the xy-
plane and place the eye point at E′ = (0, 0,−1, 1) = o−k
a unit distance below the xy-plane. Then the normal to
the projection plane is n = k = (0, 0, 1) and the distance
from the eye to the projection plane is d = 1. Therefore,
sinh(θ) = 1/d = 1, so cosh(θ) =

√
2, and the canonical

eye point is located at E = o + (coth θ) − csch(θ))n =

o+(
√

2−1)k Thus, in this case, the matrix representing
perspective projection is

Persp(E′, k, θ)

= Trans(k) ∗ I(0) ∗ SShear(k, o, θ) ∗ Trans(−
√

2k).
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Hence for any point P = (x, y, z, 1)

P ∗ Persp(E′, k, θ)
= (x, y, z, 1) ∗ Trans(k) ∗ I(0) ∗ SShear(k, o, θ)
∗ Trans(−

√
2k)

= (x, y, z + 1, 1) ∗ I(0) ∗ SShear(k, o, θ)
∗ Trans(−

√
2k)

= (x, y, z + 1, 0) ∗
[
I + (

√
2− 1)kTk kT

k
√

2

]

∗
[

I 0
−
√

2k 1

]

= (x, y,
√

2(z + 1), z + 1) ∗
[

I 0
−
√

2k 1

]

= (x, y, 0, z + 1)

≡ (
x

z + 1
,

y

z + 1
, 0, 1)

Alternatively, by direct computation

Persp(E′, k, θ)

= Trans(k) ∗ I(0) ∗ SShear(k, o, θ) ∗ Trans(−
√

2k)

=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1




so

P ∗ Persp(E′, k, θ)

= (x, y, z, 1) ∗




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1




= (x, y, 0, z + 1) ≡ (
x

z + 1
,

y

z + 1
, 0, 1)

Notice that we get the same matrix for perspective pro-
jection as in Example 5.8, but factored in a different
way.

5.1.3 Perspective Projection in 3-Dimensions
by Rotation in 4-Dimensions

Here we show how to perform perspective projections
in 3-dimensions by using rotations in 4-dimensions. The
proofs of the results in this section are essentially the
same as the proofs in Section 5.1.2 with sinh and cosh
replaced by sin and cos, and the identity cosh2(θ) −
sinh2(θ) = 1 replaced by the identity cos2(θ)+sin2(θ) =
1. Therefore, in this section we shall omit the proofs.
For an alternative discussion of this topic, which also
includes quaternions, see [7].

Theorem 5.14 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). For θ not an integer multiple of 180◦,
the 4× 4 matrix

Rot(n, o, θ) =

[
I + (cos(θ)− 1)(nTn) sin(θ)nT

− sin(θ)n cos(θ)

]

represents a rotation that rotates vectors in the no-plane
by the angle θ in 4-dimensions. In 3-dimensions, the
matrix Rot(n, o, θ) represents perspective projection in
following way: let E = o+ (cot(θ)− csc(θ))n be the eye
point, and let π be the projection plane with unit normal
vector n through the point Q = o + cot(θ)n at a signed
distance d = csc(θ) from the eye point E. Then for
any point P , applying Rot(n, o, θ) to the vector P − E
represents the perspective projection of the point P to
the plane π from the eye point E.

The basic geometric idea is illustrated in Figure 9:
to locate the projection plane a signed distance d =
csc(θ) from the eye, we start with the eye point at
E = o + (cot(θ) − csc(θ))n. We then perform a ro-
tation that leaves the projection plane unchanged and
moves the eye to the origin Ω in 4-dimensions. This
transformation also rotates any vector P = (v, 1) to a
vector P̄ = (wv,w) in 4-dimensions. As a final step,
we project P̄ from the origin Ω to the plane w = 1 in
4-dimensions to get P ′, which is the perspective projec-
tion of the point P into the projection plane from the
eye point in 3-dimensions.

Once again we introduce matrices to operate directly
on points rather than on vectors from the eye to the
points.

Corollary 5.15 Let n be a unit vector in 3-dimensions
and let n = (n, 0). For θ not an integer multiple of 180◦,
the 4× 4 matrix

Persp(n, o, θ) = Trans(o− E) ∗ I(0) ∗Rot(n, o, θ)

projects points P from the eye point E = o + (cot(θ) −
csc(θ))n to the plane π with unit normal n at a signed
distance d = csc(θ) from the eye.

Example 5.16 Let π be the projection plane with nor-
mal vector n = (0, 0, 1, 0) = k through the point Q =
(0, 0, cot(θ), 1) and let E = (0, 0, cot(θ) − csc(θ), 1) be
the eye point. For θ not an integer multiple of 180◦, the
4× 4 matrix

Rot(k, o, θ) =




1 0 0 0
0 1 0 0
0 0 cos(θ) sin(θ)
0 0 − sin(θ) cos(θ)




rotates vectors in the zw-plane by the angle θ in 4-
dimensions, and when composed with Trans(o − E) ∗
I(0) = Trans(−E) projects points P from an eye point
E on the z-axis to a perspective plane π parallel to the
xy-plane in 3-dimensions.
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Figure 9: Perspective projection in R3 by rotation in R4

Next as in Section 5.1.1 and 5.1.2, we show how to
compute perspective projection on arbitrary points for
the eye point and the perspective plane in arbitrary posi-
tions by translating the scene to and from the canonical
position.

Corollary 5.17 Let n be a unit vector in 3-dimensions
and let n = (n, 0). Let E = o + (cot(θ) − csc(θ))n be
the canonical eye point from Theorem 5.14. For θ not
an integer multiple of 180◦, the 4× 4 matrix

Persp(E′, n, θ)

= Trans(o− E′) ∗ I(0) ∗Rot(n, o, θ) ∗ Trans(E′ − E)

projects points P from the eye point E′ to the plane π′

with unit normal n at a signed distance d = csc(θ) from
the eye.

Example 5.18 Let the projection plane π′ be the xy-
plane and place the eye point at E′ = (0, 0,−1, 1) = o−k
a unit distance below the xy-plane. Then the nor-
mal to the projection plane is n = k = (0, 0, 1) and
the distance from the eye to the projection plane is
d = 1. Therefore, sin(θ) = 1/d = 1, so θ = 90◦ and
cos(θ) = 0. Hence the canonical eye point is located at
E = o + (cot(90◦) − csc(90◦))n = o − k. Thus, in this
case, the matrix representing perspective projection is

Persp(E′, k, 90◦) = Trans(k) ∗ I(0) ∗Rot(k, o, 90◦)

∗ Trans(0)

= Trans(k) ∗ I(0) ∗Rot(k, o, 90◦)

=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0


 ∗




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0




=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1


 .

Notice that we get the same matrix as in Examples 5.8
and 5.13, but factored in yet another way.

Remark 5.19 For rotation, unlike classical shear and
scissor shear, since d = csc(θ) and | csc(θ)| ≥ 1, when
the distance from the eye to the perspective plane is less
than one, we cannot apply this method directly. Instead
we must first scale the entire scene uniformly by 1/|d|.
Then we can perform perspective projection using rota-
tions in 4-dimensions. To complete the transformation,
we must rescale the resulting scene uniformly by |d|. In
this way, this perspective projection matrix based on ro-
tations in 4-dimensions can be made to work for eye
points E′ at an arbitrary distance from the projection
plane.

5.1.4 Reflections on Perspective Projection

We have presented three different techniques for com-
puting perspective projections in 3-dimensions by us-
ing classical shears, scissor shears, or rotations in 4-
dimensions. Of course, when the eye point and the
perspective plane are fixed, the matrix representing per-
spective projection is unique because the action of the
matrix is well-defined on a basis in 4-dimensions. Thus
for a fixed eye point and perspective plane, each of these
approaches yields the same 4 × 4 matrices for perspec-
tive projection, but each method factors these matrices
in different ways (see Examples 5.8, 5.13, 5.18).

Remarkably, despite the fact that the perspective map
projects a scene in 3-dimensions into a plane, no in-
formation is lost by these projections. To see why, let
λ = λ(P ) be the distance from a point P to the plane
that contains the eye point E and is parallel to the pro-
jection plane π—that is, the plane through E with unit
normal n—and let d = 1

β be the signed distance from

the eye point E to the projection plane π (see Figure 6).
Then the image of P under these perspective projections
yields not only the location of the projection of P from
the eye point E into the perspective plane π, but also
the mass λ(P )/d = λβ (see the proof of Lemma 5.1).
Indeed the perspective projection of P is a mass-point.
Since d = 1

β is a constant, we can recover the signed

distance λ(P ) from this mass. Thus even though we are

15



computing projections, the distance of a point P from
the plane of the eye is preserved. Knowing this dis-
tance allows us to perform hidden surface algorithms: if
two points project to the same point on the perspective
plane, we see the point closest to the eye (for use in a
Z-buffer scan line algorithm, the weight λ must be con-
verted to pseudo-depth = 1 − 1

λ ) [5]. One reason that
no information is lost is that the only projection we ac-
tually perform is the map I(0), which projects orthog-
onally from 4-dimensions to 3-dimensions (see Corollar-
ies 5.2, 5.3); the maps that project the scene from 3-
dimensions to the perspective plane are all non-singular
(see again Corollaries 5.2, 5.3).

Finally, notice that for arbitrary locations of the eye
point E′ and the perspective plane π′, we perform per-
spective projection by mapping to and from the canon-
ical positions of the eye point E and the canonical per-
spective plane π that appear in Lemma 5.1 and in The-
orems 5.4, 5.9, 5.14 (see Corollaries 5.2, 5.3, 5.7, 5.12,
5.17). The final translation, Trans(E′ − E), simply
maps the canonical perspective plane back to the orig-
inal perspective plane; the projected scene already ap-
pears in the canonical perspective plane π. Thus, this
final translation is not really necessary; we can display
the projected scene directly from its image in the canon-
ical plane π. Alternatively, once we have the projected
scene in the canonical plane π, we can transform this
image into any plane we desire by a rigid motion. For
example, we can place the image in the xy-plane by
translating the point Q on the canonical plane at a dis-
tance d from the canonical eye point E to the origin o
and then rotating the normal vector n into the z-axis
by rotating around the axis vector n × k by the angle
θ, where cos(θ) = n · k. In this way, if we like, we can
always recover any scene from the xy-plane.

5.2 Pseudo-Perspective

Pseudo-perspective maps the eye point to a point at
infinity and a viewing frustum to a rectangular box [10].
Pseudo-perspective is used in computer graphics for
three purposes: (i) to speed up clipping algorithms by
replacing the viewing frustum with a rectangular box;
(ii) to simplify projections by replacing perspective pro-
jection with orthogonal projection; (iii) to expedite scan
converting triangles with hidden surface removal.

Just like we can compute perspective projection using
classical shear, scissor shear or rotation in 4-dimensions,
we can also compute pseudo-perspective using any one
of these three transformations. But before we pro-
ceed to establish these results, we begin with the fol-
lowing lemma that characterizes all the 4 × 4 matrices
that can be used to compute pseudo-perspective in 3-
dimensions. Since these matrices are the same matrices
as in Lemma 5.1 (but using a different location for the
eye point), the matrices for classical shear, scissor shear,
and rotation in 4-dimensions that can be used to com-
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n

F1 = E + cn + n⊥

F2 = E + scn + sn⊥F3

F4

n⊥

n⊥

Figure 10: Mapping a viewing frustum to a rectangular
box, with c 6= 0 and s 6= 0

pute perspective projections in 3-dimensions can also
be used to compute pseudo-perspective in 3-dimensions,
since once again these matrices are all special cases of
the general 4 × 4 matrices for pseudo-perspective that
appear in Lemma 5.20.

Lemma 5.20 Let n be a unit vector in 3-dimensions
and let n = (n, 0). For αδ − βγ 6= 0, β 6= 0, the 4 × 4
matrix

M = M(n, α, β, γ, δ) =

[
I + (α− 1)(nT ∗ n) βnT

γn δ

]

represents a non-singular linear transformation that
maps vectors in the no-plane to vectors in the no-plane
and leaves vectors n⊥ in R4 orthogonal to the no-plane
fixed in 4-dimensions. Moreover E = o − δ

βn is the

unique point in R3 such that E ∗M = µn where µ is a
real number. In 3-dimensions M maps a frustum with
the eye point at E and with two faces orthogonal to n
into a rectangular box.

Proof. By Lemma 5.1, M is a non-singular linear trans-
formation that maps vectors in the no-plane to vectors
in the no-plane and leaves vectors n⊥ in R4 orthogonal
to the no-plane fixed in 4-dimensions. Explicitly

o ∗M = γn+ δo, n ∗M = αn+ βo, n⊥ ∗M = n⊥.

Suppose that E is a point in R3 such that E ∗M =
µn, where µ is a real number. Since E is a point in
R3, there is a constant λ and a vector n⊥ such that
E = o+ λn+ n⊥. Therefore by linearity

E∗M = (o+λn+n⊥)∗M = (γn+δo)+λ(αn+βo)+n⊥.

Since by assumption E ∗M = µn, it follows that

n⊥ = 0 and λ = − δ
β
,
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so E = o− δ
βn and E ∗M = βγ−δα

β n. Now consider the

frustum in Figure 10.

F̄1 = F1 ∗M = (E + cn+ n⊥) ∗M

=
βγ − δα

β
n+ c(αn+ βo) + n⊥

≡ o+

(
βγ − δα
cβ2

+
α

β

)
n+

1

cβ
n⊥

F̄2 = F2 ∗M = (E + scn+ sn⊥) ∗M

=
βγ − δα

β
n+ sc(αn+ βo) + sn⊥

≡ o+

(
βγ − δα
scβ2

+
α

β

)
n+

1

cβ
n⊥

Similarly,

F̄3 = F3 ∗M = (E + scn− sn⊥) ∗M

≡ o+

(
βγ − δα
scβ2

+
α

β

)
n− 1

cβ
n⊥

F̄4 = F4 ∗M = (E + cn− n⊥) ∗M

≡ o+

(
βγ − δα
cβ2

+
α

β

)
n− 1

cβ
n⊥

Since 1
c β is a constant independent of s, it follows that

M maps a frustum with the eye point at E and with
two faces orthogonal to n into a rectangular box.

♦
Remark 5.21 The matrix M(n, α, β, γ, δ) of
Lemma 5.20 is identical to the matrix M(n, α, β, γ, δ)
of Lemma 5.1. Further, the transformations in Sec-
tions 4 and 3 are also special cases of the matrix
M = M(n, α, β, γ, δ) for the right settings of α, β, δ,
γ. For example, for α = 1, β = 0, γ = 0, and δ = s,
the matrix M is I(s). The matrix M generalizes all of
these transformations because M is the general form
of the matrix that maps the no-plane to the no-plane
and that leaves vectors in 4-dimensions orthogonal
to the no-plane fixed, properties shared by all the
transformations in this paper.

5.2.1 Pseudo-perspective in 3-Dimensions by
Classical Shear in 4-Dimensions

Theorem 5.22 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). For θ not an integer multiple of 90◦,
the 4× 4 matrix

CShear(o, n, θ) =

[
I tan(θ)nT

0 1

]

represents a classical shear that shears vectors in the
on−plane by the angle θ in the direction n in 4-
dimensions. In 3-dimensions, CShear(o, n, θ) repre-
sents pseudo-perspective in the following way: let n be
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Figure 11: Pseudo-perspective in 3-dimensions by clas-
sical shear in 4-dimensions with n = k and θ = 135◦

(see Example 5.23)

the unit normal vector to the projection plane and place
the eye point at E = o− cot(θ)n. Then CShear(o, n, θ)
maps the eye from the point E to a vector parallel to the
vector n and maps a viewing frustum to a rectangular
box.

Proof. By Theorem 5.4, the matrix CShear(o, n, θ)
represents a classical shear that shears vectors in the
on-plane by the angle θ in the direction n in 4-
dimensions. The rest of Theorem 5.22 concerning the
action of CShear(o, n, θ) in 3-dimensions follows from
Lemma 5.20 with α = 1, β = tan(θ), γ = 0, and δ = 1.

Now by linearity,

E ∗ CShear(o, n, θ) = (o− cot(θ)n)

[
I tan(θ)nT

0 1

]

= o− cot(θ)(n+ tan(θ)o) = − cot(θ)n.

Hence CShear(o, n, θ) maps the eye from the point E to
a vector parallel to the vector n. Since CShear(o, n, θ)
also maps vectors in the no-plane to vectors in the no-
plane, and leaves vectors n⊥ orthogonal to the no-plane
fixed, by Lemma 5.20, CShear(o, n, θ) maps a viewing
frustum to a rectangular box. Thus CShear(o, n, θ) rep-
resents pseudo-perspective for the eye point located at
E = o− cot(θ)n in 3-dimensions.

♦

Example 5.23 Let n = (0, 0, 1, 0) = k be the unit nor-
mal vector to the projection plane. Let θ = 135◦ and let
E = o − cot(135◦)k = o + k be the eye point. Then the
4× 4 matrix

CShear(o, k, 135◦) =




1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1




is a classical shear in the wz−plane by the angle 135◦

in the z-direction in 4-dimensions. In 3-dimensions,
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CShear(o, k, 135◦) is a pseudo-perspective that maps the
eye from the point E to the vector k,

E ∗ CShear(o, k, 135◦)

= (o+ k) ∗ CShear(o, k, 135◦)

= (0, 0, 1, 1) ∗




1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1




= (0, 0, 1, 0) = k

and maps the viewing frustum F1F2F3F4 to the rectan-
gular box F̄1F̄2F̄3F̄4 in the following way:

F1 = E − k + k⊥ → o+ k⊥ = F̄1

F2 = E − 2k + 2k⊥ → o+ k⊥ − 1
2k = F̄2

F3 = E − 2k − 2k⊥ → o− k⊥ − 1
2k = F̄3

F4 = E − k − k⊥ → o− k⊥ = F̄4

where k⊥ is a vector in the xy−plane (Figure 11).

5.2.2 Pseudo-perspective in 3-Dimensions by
Scissor Shear in 4-Dimensions

Theorem 5.24 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). For θ 6= 0, the 4× 4 matrix

SShear(n, o, θ) =

[
I + (cosh(θ)− 1)nTn sinh(θ)nT

sinh(θ)n cosh(θ)

]

represents a scissor shear that shears vectors in
the no-plane in 4-dimensions. In 3-dimensions,
SShear(n, o, θ) represents pseudo-perspective in the fol-
lowing way: let n be the unit normal vector to the projec-
tion plane and place the eye point at E = o− coth(θ)n.
Then the matrix SShear(n, o, θ) maps the eye from the
point E to a vector parallel to the vector n and maps a
viewing frustum to a rectangular box.

Proof. By Theorem 5.9, the matrix SShear(n, o, θ) rep-
resents a scissors shear that shears vectors in the no-
plane by the angle θ in 4-dimensions. The rest of Theo-
rem 5.24 concerning the action of SShear(n, o, θ) in 3-
dimensions follows from Lemma 5.20 with α = cosh(θ),
β = sinh(θ), γ = sinh(θ), and δ = cosh(θ).

♦

Example 5.25 Let n = (0, 0, 1, 0) = k be the unit nor-
mal vector to the projection plane. Let θ = arcsinh(1)

and let E = o − coth(θ)k = o −
√

2k be the eye point.
Then the 4× 4 matrix

SShear(k, o, arcsinh(1)) =




1 0 0 0
0 1 0 0
0 0

√
2 1

0 0 1
√

2
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Figure 12: Pseudo-perspective in 3-dimensions by scis-
sor shear in 4-dimensions with n = k and θ = arcsinh(1)
(see Example 5.25)

is a scissor shear in the zw−plane by the angle
arcsinh(1) in 4-dimensions. In 3-dimensions,
SShear(k, o, arcsinh(1)) is a pseudo-perspective that
maps the eye from the point E to the vector −k:

E ∗ SShear(k, o, arcsinh(1))

= (o−
√

2k) ∗ SShear(n, o, arcsinh(1))

= (0, 0,−
√

2, 1) ∗




1 0 0 0
0 1 0 0
0 0

√
2 1

0 0 1
√

2




= (0, 0,−1, 0) = −k

and maps the viewing frustum F1F2F3F4 to the rectan-
gular box F̄1F̄2F̄3F̄4 in the following way:

F1 = E + k + k⊥ → o+ k⊥ + (
√

2− 1)k = F̄1

F2 = E + 2k + 2k⊥ → o+ k⊥ + (
√

2− 1
2 )k = F̄2

F3 = E + 2k − 2k⊥ → o− k⊥ + (
√

2− 1
2 )k = F̄3

F4 = E + k − k⊥ → o− k⊥ + (
√

2− 1)k = F̄4

,

where k⊥ is a vector in the xy−plane (Figure 12).

Note that in Example 5.25 the near plane is trans-
lated by the pseudo-perspective mapping, while dis-
tances within the near plane are not rescaled. If we set
F1 = E+(coth(arcsinh(1))+1)k = E+(

√
2+1)k = o+k,

then the near plane is invariant under this pseudo-
perspective transformation, but distances within the
near plane are scaled. Contrast this example with Ex-
ample 5.23, where the near plane is invariant under the
pseudo-perspective transformation and distances within
the near plane are not scaled.

5.2.3 Pseudo-perspective in 3-Dimensions by
Rotation in 4-Dimensions

Theorem 5.26 Let n be a unit vector in 3-dimensions,
and let n = (n, 0). For θ not an integer multiple of 180◦,
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Figure 13: Pseudo-perspective in 3-dimensions by ro-
tation in 4-dimensions with n = k and θ = 90◦ (see
Example 5.27)

the 4× 4 matrix

Rot(n, o, θ) =

[
I + (cos(θ)− 1)nTn sin(θ)nT

− sin(θ)n cos(θ)

]

represents a rotation that rotates vectors in the no-
plane by the angle θ in 4-dimensions. In 3-dimensions,
Rot(n, o, θ) represents pseudo-perspective in the follow-
ing way: let n be the unit normal vector to the projection
plane and place the eye point at E = o− cot(θ)n. Then
Rot(n, o, θ) maps the eye from the point E to a vector
parallel to the vector n and maps a viewing frustum to
a rectangular box.

The proof of Theorem 5.26 is analogous to the proof
of Theorem 5.24 with hyperbolic functions replaced by
trigonometric functions and with the hyperbolic identity
cosh2(θ) − sinh2(θ) = 1 replaced by the trigonometric
identity cos2(θ) + sin2(θ) = 1.

Example 5.27 Let n = (0, 0, 1, 0) = k be the unit nor-
mal vector to the projection plane. Let θ = 90◦ and let
E = o be the eye point. Then the 4× 4 matrix

Rot(k, o, 90◦) =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0




is a rotation in the zw−plane by the angle 90◦ in 4-
dimensions. In 3-dimensions, Rot(k, o, 90◦) is a pseudo-
perspective that maps the eye from the point E to the
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√
2k⊥

F̄1 = o +
√
2k⊥ − k
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F̄4

k

o

k⊥

k⊥

k

Figure 14: Pseudo-perspective in 3-dimensions by ro-
tation in 4-dimensions with n = k and θ = 45◦ (see
Example 5.28)

vector −k

E ∗Rot(k, o, 90◦) = o ∗Rot(k, o, 90◦)

= (0, 0, 0, 1) ∗




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0




= (0, 0,−1, 0) = −k

and maps the viewing frustum F1F2F3F4 to the rectan-
gular box F̄1F̄2F̄3F̄4 in the following way:

F1 = E + k + k⊥ → o+ k⊥ − k = F̄1

F2 = E + 2k + 2k⊥ → o+ k⊥ − 1
2k = F̄2

F3 = E + 2k − 2k⊥ → o− k⊥ − 1
2k = F̄3

F4 = E + k − k⊥ → o− k⊥ − k = F̄4

where k⊥ is a vector in the xy−plane (Figure 13).

For classical shear, scissor shear, and rotation, dif-
ferent values of θ result in different pseudo-perspective
transformations. In particular, for arbitrary θ, these
pseudo-perspective transformations will scale distances
in the near plane. To illustrate this phenomenon, we
give a second example of pseudo-perspective with rota-
tion.

Example 5.28 Let n = (0, 0, 1, 0) = k be the unit nor-
mal vector to the projection plane. Let θ = 45◦ and let
E = o − cot(45◦)k = o − k be the eye point. Then the
4× 4 matrix

Rot(k, o, 45◦) =




1 0 0 0
0 1 0 0

0 0
√
2
2

√
2
2

0 0 −
√
2
2

√
2
2
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is a rotation in the zw−plane by the angle 45◦ in 4-
dimensions. In 3-dimensions, Rot(k, o, 45◦) is a pseudo-
perspective that maps the eye from the point E to a vec-
tor parallel to −k
E ∗Rot(k, o, 45◦) = (o− k) ∗Rot(k, o, 45◦)

= (0, 0,−1, 1) ∗




1 0 0 0
0 1 0 0

0 0
√
2
2

√
2
2

0 0 −
√
2
2

√
2
2




= (0, 0,−
√

2, 0) = −
√

2k

and maps the viewing frustum F1F2F3F4 to the rectan-
gular box F̄1F̄2F̄3F̄4 in the following way:

F1 = E + k + k⊥ → o+
√

2k⊥ − k = F̄1

F2 = E + 2k + 2k⊥ → o+
√

2k⊥ = F̄2

F3 = E + 2k − 2k⊥ → o−
√

2k⊥ = F̄3

F4 = E + k − k⊥ → o−
√

2k⊥ − k = F̄4

where k⊥ is a vector in the xy-plane (Figure 14).

5.2.4 Reflections on Pseudo-Perspective

We have presented three different techniques for com-
puting pseudo-perspective projections in 3-dimensions:
classical shears, scissors shears, or rotations in 4-
dimensions. Each of these approaches is the composite
of a linear transformation with a stereographic projec-
tion, and thus the final transformation is a projective
transformation.

In computer graphics, a change of coordinates is usu-
ally performed to place the eye point at the origin in
a local coordinate frame. While the eye point in some
of our methods is not located at the origin, one could
either apply a different change of coordinates to map to
the canonical eye point used by one of our methods, or
translate to and from the canonical eye point as we did
in Section 5.1 for perspective projection to relocate the
eye point to wherever it is desired.

Also in computer graphics, a viewing angle is used
to specify the field of view; with our methods, the field
of view is controlled by the length of the vector n⊥,
which is perpendicular to the viewing direction n. After
mapping the viewing frustum to a box, this box can be
scaled and translated to an arbitrary size and location.

Note that in Examples 5.23, 5.25, and 5.27, the choice
of θ and the coefficient of n = k leads to a nice scaling
of n⊥ = k⊥ (i.e., the dimensions of the near plane of
the viewing frustum are equal to the dimensions of the
top of the rectangular box to which the viewing frustum
is mapped). In general the near plane and the top of
the rectangular box will not have the same dimensions;
for arbitrary choices of θ and F1 and F2, the viewing
frustum will not have the same dimensions as the top
of the rectangular box—see Example 5.28. Thus, if an
arbitrary θ is used, an additional uniform scale will likely
be in order when we transform to screen coordinates.

One common approach for pseudo-perspective used in
computer graphics is essentially a classical shear; indeed,
applying a translation to the matrix given in Exam-
ple 5.23 (Trans(k) ∗ CShear(o, k, 135◦)) yields almost
the same matrix as the matrix for pseudo-perspective
in Hearn and Baker [10] (the difference is due to non-
perspective mappings incorporated in the Hearn and
Baker matrix, including transforming to device coordi-
nates, integrating the near and far clipping planes into
the matrix, and mapping to a non-square window). The
approaches to pseudo-perspective using scissor shear or
rotation are new and are presented here for the first
time.

Finally, at some point, the 3D pseudo-perspective co-
ordinates will need to be converted to 2D coordinates.
This conversion can be done using orthographic pro-
jection Ortho(n)—see Section 4.4—after the pseudo-
perspective transformation.

5.3 Quaternions

Rotations in 4-dimensions can be represented by unit
quaternions [2, 6]. This observation together with the
connection between rotations in 4-dimensions and per-
spective and pseudo-perspective in 3-dimensions dis-
cussed in Section 5.1.3 and Section 5.2.3 allows us to
use sandwiching with unit quaternions to represent both
perspective and pseudo-perspective.

Let n be a unit vector and consider the unit quater-
nion

q = q(n, θ) = cos(θ/2)o+ sin(θ/2)n,

where the origin o in 3-dimensions now represents the
identity for quaternion multiplication in 4-dimensions
and the unit vector n is represented as a linear combina-
tion of the pure quaternions i, j, k. It is well-known [1, 6]
that rotation by the angle θ in the plane perpendicular
to n in 3-dimensions is given by the map

v 7→ qvq∗ = qvq−1,

where q∗ = cos(θ/2)o − sin(θ/2)n = q−1 is the quater-
nion conjgate of q, and the multiplication is quaternion
multiplication. Moreover it can be shown [6] that rota-
tion by the angle θ in the on-plane in 4-dimensions is
given by the map

p 7→ qpq,

where once again the multiplication is quaternion mul-
tiplication. (To get rotation by the angle θ in the no-
plane, simply replace θ by −θ.) So our insight that
orthogonal, perspective and pseudo-perspective projec-
tions can be represented by rotations in the no-plane
in 4-dimensions allows us to use sandwiching with unit
quaternions to represent these transformations in 3-
dimensions. In particular, Theorem 5.14 for perspective
projection and Theroem 5.26 for pseudo-perspective re-
main valid if we replace the map p 7→ p ∗Rot(n, o, θ) by
the map p 7→ q(n,−θ)pq(n,−θ).

20



Example 5.29 Similar to Example 5.28, let n = k,
θ = 45◦, and E = o − k. Now set q = q(k,−45◦) =
cos(45◦/2)o − sin(45◦/2)k. To show that the map p 7→
qpq computes the same pseudo-perspective maps as in
Example 5.28, let us compute this map on o, k, k⊥,
where k⊥ is any vector perpendicular to k. To sim-
plify our notation, let c̃ = cos(45◦/2), s̃ = sin(45◦/2),

c = cos(45◦) =
√

2/2, s = cos(45◦) =
√

2/2; then
q = c̃o − s̃k. Now recall that c̃2 − s̃2 = c and 2s̃c̃ = s.
Therefore, since k2 = −1 and ok = k = ko,

qoq = q2 = (c̃2 − s̃2)o− (2s̃c̃)k = co− sk =

√
2

2
(o− k)

(5.1)

qkq = q2k =
(√2

2
(o− k)

)
k =

√
2

2
(o+ k). (5.2)

To compute qk⊥q, recall that for any two vectors u, v in
R3, the quaternion product is given by uv = −(u · v) +
u × v. But k⊥ · k = 0, so k⊥k = k⊥ × k = −k × k⊥.
Hence k⊥q = q∗k⊥ = q−1k⊥. Thus

qk⊥q = qq−1k⊥ = k⊥. (5.3)

Now using Equations 5.1, 5.2, 5.3, a straightforward cal-
culation shows that the transformation p 7→ qpq maps
E = o − k to −

√
2k and maps F1, F2, F3, F4 as in Ex-

ample 5.28 .

6 Conclusion

We have investigated 4 × 4 matrices that represent
simple linear transformations from R4 to R4, which
map vectors from a plane in R4 to the same plane in
R4 and leave vectors perpendicular to this plane un-
changed. Such matrices give us insight into how to rep-
resent affine transformations such as translation, uni-
form scaling, and reflection in 3-dimensions by simple
linear transformations in 4-dimensions. In particular,
we showed that the standard 4 × 4 matrices for com-
puting translations in 3-dimensions represent classical
shears in 4-dimensions.

These special 4 × 4 matrices also allows us to per-
form perspective projection and pseudo-perspective pro-
jection in 3-dimensions by shears or rotations in 4-
dimensions. The 3-dimensional projections using scissor
shears and rotations in 4-dimensions are new and are
presented here for the first time. Moreover, the insight
that rotations in 4-dimensions can be used to compute
perspective and pseudo-perspective in 3-dimensions al-
lows us to compute these projections using quaternions.

We have implemented and tested in Octave all the
transformations discussed in this paper including the
quaternions for perspective projections and pseudo-
perspective projections, and we have verified that all
these transformations work just as we claim.
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