
Symmetry Reduction and Compositional
Verification of Timed Automata
Hoang Linh Nguyen
University of Waterloo

Waterloo, Canada
Email: nhoangli@uwaterloo.ca

Richard Trefler
University of Waterloo

Waterloo, Canada
Email: trefler@cs.uwaterloo.ca

Abstract—Timed automata provide a model for studying the
behavior of finite-state systems as they evolve over time. We
describe a technique that incorporates automatic symmetry
detection and symmetry reduction in the analysis of systems
modeled by timed automata. Our prototype extends the real-
time model checker PAT with symmetry reduction using state

swaps to reduce time and memory consumption. Moreover, our
approach detects structural symmetries arising from process
templates of real-time systems, requiring no additional input
from the user. The technique involves finding all variables of type
process identifier and computing the largest subgroup of candidate

symmetries that induce automorphisms. Our technique is fully
automatic, and not restricted to fully symmetric systems. We then
combine elements of compositional proof, abstraction and local
symmetry to decide whether a safety property holds for every
process instance in a parameterized family of real-time process
networks. Analysis is performed on a small cut-off network; that
is, a small instance whose compositional proof generalizes to the
entire parametric family. Our results show that verification is
decidable in time polynomial in the state space of the cut-off
instance. We apply these ideas to analyze Fischer’s protocol and
the CSMA/CD protocol.

I. INTRODUCTION

Model Checking is an automated technique for the validation
and verification of targeted hardware or software systems
[1]. However, its application is limited since the state space
may grow exponentially with the increase in the number of
components, significantly limiting the size of systems that can
be analyzed.

Many techniques have been proposed to cope with the state
space explosion. One such technique is the exploitation of be-
havioral symmetries, known as symmetry reduction [2][3][4],
since many systems consist of a set of replicated components.
In those cases, we may obtain significant savings by checking
a generally smaller quotient state space, which is constructed
using knowledge of the symmetry in the original system.

Symmetry reduction has been implemented in UPPAAL [8],
a model checker for networks of timed automata [7]. But
UPPAAL requires a user to manually provide information on
the presence of symmetry in a model, using a special datatype
called scalarset [4]. First, this approach requires a user to have
an in-depth knowledge of symmetry reduction theory and it is
only applicable in the specific case, where systems are fully
symmetric. Second, it compromises the automation of model
checking.

In this work, we propose a prototype that extends the real-
time model checker PAT [5] with symmetry reduction. Our
work is based on the state swap technique [6] and focuses on
tackling technical problems that UPPAAL faces with.

We propose a method to detect structural symmetries arising
from parameterized process templates of real-time systems
that requires no additional information from a user. It results
in a group of candidate symmetries and then computes the
largest possible subgroup of these candidates that induce au-
tomorphisms. Moreover, our approach could extract symmetry
information from any parametric real-time systems (whether
fully symmetric or not). Similar to UPPAAL, we have run
experiments on Fischer’s protocol [9] and CSMA/CD protocol
[10]. As a result, we gain a considerable reduction in the cost
of analysis, by a factorial magnitude.

State space explosion limits model checking to small proto-
col instances, however it becomes important to know whether
a protocol is correct for an arbitrary number of components.
Therefore, we propose a technique to determine whether a
property holds for every instance of a parameterized family
of real-time process networks. This work is directly motivated
by attempts to verify Fischer’s protocol with a large number
of components.

Our technique incorporates elements of local symmetry
reduction, compositional reasoning and abstraction. While
symmetry reduction partitions network nodes into equivalence
classes, compositional reasoning analyzes each representative
node of an equivalence class separately along with an abstrac-
tion of its neighboring processes. In certain families of process
networks that satisfy the conditions of local symmetry, then
the verification is decidable and relatively effective. Our results
show that verification is decidable in time polynomial in the
state space of the cut-off instance for networks of Fischer’s
protocol and CSMA/CD protocol.

The rest of the paper is organized as follows: Next sec-
tion summarizes the theory of timed automata. Section 3
describes how Fischer’s protocol is modeled in PAT. Section 4
presents symmetry reduction in timed automata while Section
5 discusses the proposed symmetry detection technique. We
explain about parameterized compositional model checking
and how they can be used to significantly reduce the veri-
fication complexity in Section 6. Section 7 and 8 illustrate the
method through 2 examples: Fischer’s protocol and CSMA/CD

protocol. Section 9 summarizes and draws related works and
conclusions.

II. TIMED AUTOMATA

Timed automata is a formalism used for the modeling and
verification of real-timed systems [11]. A timed automaton is
a finite-state Buchi automaton extended with real-valued vari-
ables to model clocks. PAT uses Timed Safety Automata [12],
which uses local clock constraints, called location invariants
to force transition to be taken.

A clock constraint is a formula in the form of x ⇠ n or
x�y ⇠ n where ⇠ 2 (=,, <,>,�), n 2 N and x, y 2 C – a
set of clocks. We use B(C) to denote a set of clock constraints.
A time automaton A is a tuple of hL, l0, E, Ii where:

• L is a finite set of locations.
• l0 2 L is the initial location.
• E ✓ L x B(C) x ⌃ x 2C x L is the set of edges.
• I : L ! B(C) is the set of location invariants.

A. Symbolic Semantics and Verfication

Because clocks are real-valued, the semantics of a timed
automaton may have an infinite state-space and verification is
generally undecidable. The notion of zone and zone-graphs
has been developed to finitely partition the state-space into
symbolic states [13]. By definition, a zone is the solution
set of clock constraints. In many verification tools, including
PAT, such sets are represented as Difference Bounded Matrices
(DBMs) [14].

The symbolic semantics of a timed automaton is defined as
a symbolic transition system. A symbolic state is a pair hl,Di
where l is a location and D is a zone. Therefore, a symbolic
state represents a set of states. The symbolic transition relation
over symbolic states are defined as following:

hl,Di d�! hl,D"^I(l)i where D" = {v+d | v 2 D, d 2 R+}

or hl,Di a�! hl0, D0 ^ I(l0)i where D0 = reset(D).

reset(D) is an operation on zones that resets selected clock
values to zero. However, zones may contain arbitrarily large
constants and thus the zone-graph may be infinite [14]. The
solution is to transform zones into their normalized represen-
tatives [15] to guarantee termination.

B. Symbolic Reachability Analysis

Reachability analysis is used to verify properties on timed
systems by traversing the state-space. The process consists of
two steps: compute the normalized zone-graph on-the-fly, and
check if a current symbolic state contradicts or satisfies given
properties. Algorithm 1 presents the reachability analysis
algorithm in PAT. Algorithm 1 will generate the entire state-
space to prove invariant properties.

III. FISCHER’S PROTOCOL

Fischer’s protocol ensures mutual exclusion of access to
commonly used resources via a shared variable id. The pro-
tocol relies on location invariants and suitable updates of the
variable id.

Algorithm 1 Forward Reachability Analysis Algorithm
1: Visited = ;
2: hlf , Df i = Violated States
3: Next = hl0, D0i
4: while Next 6= ; do
5: remove hl,Di from Next
6: if l = lf and D \Df 6= ; then return Failed
7: if hl,Di * Visited then
8: add hl,Di to Visited
9: for hl0, D0i such that hl,Di ! hl0, D0i do

10: add hl0, D0i to Next
11: return SATISFIED

Fig. 1. The process template for Fischer’s protocol

A. Model for Fischer’s Protocol

We model Fischer’s protocol by the real-time system mod-
ule in PAT.

1) Modeling Process Behavior: Processes of the protocol
are instances of a template depicted in Figure 1. The template
has one local clock c and no local variables.

Initially, a process is in location Start. The default value
of id is Idle and clock c is set to 0. The transition from Start
to Req is always enabled.

In location Req, the process sets id to its process identifier
and then goes to Wait before 2 time units have elapsed.

In location Wait, the process waits for at least 2 time units
and then reads id again. If id has kept the old value, the process
may enter its critical section CS. Otherwise, the attempt has
failed and the process must go back to Req and try again.

2) Modeling Fischer’s Protocol: The whole protocol con-
sists of N processes interleaving with each other. In PAT, we
model this as follows:

Fischer = ||| i : {0,, N � 1} @ Process(i)

IV. SYMMETRY REDUCTION IN TIMED AUTOMATA

Many systems consist of identical or similar components. In
those cases, we may obtain significant savings by exploiting
symmetry of the underlying state space. This technique is
known as symmetry reduction in model checking.

A. A Theory of Symmetry

This subsection summarizes the work of Ip and Dill pre-
sented in [4]. They consider state graphs, which are tuples
containing a set of states S and a set S0 ✓ S of initial states,
and a transition relation � ✓ S x S.

Algorithm 1 verifies given properties on an input model by
traversing the state space. If the set S is finite and small, then
this algorithm halts. Otherwise, it may not halt due to the state
space explosion as the model become larger.

Symmetry reduction exploits structural properties of transi-
tion systems to speed up Algorithm 1. An automorphism [4],
which is used to characterize symmetry in a state graph, is
defined as a tuple (S, S0,�), is a bijection h : S ! S such
that:

• s 2 S0 if and only if h(s) 2 S0.
• If (s, s0) 2 � if and only if (h(s), h(s0)) 2 � for all

s, s0 2 S.
For any set of graph automorphisms H , H induces a relation

⇡H such that s1 ⇡H s2 if there exists an element h 2 H such
that h(s1) = s2. We say that s1 and s2 are equivalent and they
belong to the same equivalence class.

B. Quotient Graph

Using equivalence classes within a state graph, we can
define a quotient graph. Let G = (S, S0,�) be a state graph,
H be a symmetry group for G and [s] be an equivalence class
of state s. The quotient graph of G induced by H is the graph
Quot(G) = (S0, S0

0,�
0), where: S0 = {[s] | s 2 S}; S0

0 = {[s]
| s 2 S0}; and �0 = {([s], [k]) | (s, k) 2 �}.

Since state s is reachable in G if [s] is reachable in
Quot(G), Quot(G) is at most as large as G and in many
cases when models clearly exhibit considerable symmetry, the
use of Quot(G) can speed up the verification process.

C. Symmetry Reduction

Symmetry reduction in model checking involves replacing a
set of equivalent states in G by a single representative, rep(s),
from each equivalence class. Moreover, for any pair of equiva-
lent states (s, s0), either all satisfy certain properties ' or none
of them do. So we have: s |= ' if and only if rep(s) |= '.

Consequently, we may improve Algorithm 1 to store and
explore only a single representative rep(s) of each equivalence
class. Algorithm 2 presents the modified reachability analysis
algorithm in PAT, where ✓ is a representative function that
converts a state s to its representative rep(s).

Since many equivalent states are projected onto the same
representative rep(s), the number of visited states may de-
crease dramatically.

D. State Swap

Let Fischer be an instance of Fischer’s protocol with
N identical processes. Processes are instantiated from the
parameterized process template given in Figure 1. Fischer
is defined in PAT as follows:

Fischer = ||| i : {0,, N � 1} @ P (i)

Algorithm 2 Modified Forward Reachability Analysis Algo-
rithm

1: Visited = ;
2: hlf , Df i = Violated States
3: Next = ✓(hl0, D0i)
4: while Next 6= ; do
5: remove hl,Di from Next
6: if l = lf and D \Df 6= ; then return Failed
7: if hl,Di * Visited then
8: add hl,Di to Visited
9: for hl0, D0i such that hl,Di ! hl0, D0i do

10: add ✓(hl0, D0i) to Next
11: return SATISFIED

A state of Fischer is a tuple (L, V,D), where L is a N-
component location vector, V is a set of variable valuations
and D is a set of clock valuations. Based on the concept of
state swap [6], we define permutations on the state graph,
in our case, a PAT model. In a model of a concurrent
system with many replicated processes, we restrict attention to
automorphisms given by permutations of process identifiers.
A state swap swapi,j : (L, V,D) ! (L0, V 0, D0) is defined as
follows:

• Process Swap: swaps the contributions to the state of
all pairs of processes P (i) and P (j). Swapping such a
pair of symmetric processes consists of interchanging the
active locations and the values of the local variables and
clocks (note that this is not a problem since the processes
originate from the same template).

• Data Swap: swaps array entries i and j of all dimensions
that are indexed by variables of type pid. Moreover, it
swaps the value i with the value j for all variables of
type pid.

Example 1 Assume N = 3, now we consider the following
state s of the model Fischer:

• L: l0 = Start, l1 = Wait, l2 = CS.
• V: id = 3.
• D: c0 = 4, c1 = 3, c2 = 2.

When we apply swap0,2 into this state, it results a new state
s0 by interchanging l0 with l2 and c0 with c2 (Process Swap),
and setting the value of id to 1 (Data Swap). s0 is given as
follows:

• L: l0 = CS, l1 = Wait, l2 = Start.
• V: id = 1.
• D: c0 = 2, c1 = 3, c2 = 4.

E. Action of swapi,j on a Template

A process template in PAT is given in the following syntax:

P (x0, x1, ..., xn�1) = {Body}

where P is the template name, (x0, ..., xn�1) is an optional
list of template parameters and Body determines the computa-
tional logic of the process. Body consists of local variables v,

guards g, update u and program statements ps over variables
and channels [5].

In a model of a concurrent system with many replicated
processes, although processes are obtained as instances of a
same parameterized process template, they are not necessarily
identical up to renaming. Let P be a process template. We
define swapi,j(P) as a new template, where a guard g, an
update u and a program statement ps of P is replaced by
swapi,j(g), swapi,j(u) and swapi,j(ps) respectively. There-
fore, swapi,j(P) is the same as P , except that:

• Any assignment statement x ⇠ val is replaced by x =
swapi,j(val), where ⇠ 2 (=, 6=), type(x) = pid and val
is a value.

• Any boolean expression x ⇠ val is replaced by x ⇠
swapi,j(val), where ⇠ 2 (=, 6=), type(x) = pid and
val is a value.

In other words, swapi,j(P) is a syntactic operation on the
template P . If swapi,j(P) and P are identical, we say that
P (i) and P (j) are identical up to renaming.

Example 2: Assume that Fischer does not allow P (2) to enter
its critical section. This is achieved by modifying the template
P given in Figure 1. A guard g on an edge from location Wait
to location CS is now given as g : id == i and i 6= 2. By
applying swap0,2 into P , it results in swap0,2(g) : id ==
i and i 6= 0. It is clear that swap0,2(P) is not identical to
P since P (2) is enabled to enter its critical section in the
template swap0,2(P).

F. Extraction of Automorphisms

Let P be a parameterized process template and there are N
processes P (i) instantiated from P , where 0  i < N . We
define Swap(P) as a group of candidate symmetries, which
consists of all permutations of the set of process identifiers
{0, 1,, N � 1}. Therefore,

Swap(P) = {swapi,j | i < j  N}

We say that swapi,j 2 Swap(P) is valid if swapi,j(P) and
P are identical templates. In other words, they have identical
behavior and they are identical up to underlying structures.
Let V alidSwap(P) be the largest subgroup of Swap(P):

V alidSwap(P) = {swapi,j | swapi,j(P) ⌘ P}

Theorem 1 (Soundness) [6]. Every valid state swap is an
automorphism.

G. Representative Function

The technical challenge is to find an appropriate representa-
tive function ✓ in Algorithm 2. By defining the representative
state rep(s) as the minimal element in the equivalence class
of the state s, our approach consists of sorting the symbolic
states in lexicographical order using knowledge of a group
of automorphisms H . A state is defined as a tuple (L, V,D).
(L, V,D) is smaller than (L0, V 0, D0) if and only if:

(L, V,D) < (L0, V 0, D0) () (L < L0)_ (L = L0 ^ V < V 0)

rep(s) is computed by applying the quick-sort algorithm to
both locations and variable valuations. Since the objective of
this work focuses on the automatic symmetry detection, the
approach does not considering sorting the zones.

V. THE SYMMETRY DETECTION ALGORITHM

In this section, we introduce a technique to automatically
detect structural symmetries arising from process templates.
The approach operates in three stages. Note that variables of
type pid play a key role in describing system symmetries and
symmetry reduction. Therefore, the first stage is to recognize
all variables of type pid in a template P . In the second stage,
we compute a group of candidate symmetries Swap(P). Then
each element ↵ 2 Swap(P) is checked for validity and finally
obtain a largest subgroup of these symmetries V alidSwap(P)
that induce automorphisms.

A. Detection of pid Variables

We explain in detail here how to automatically detect all
variables of type pid in a given template P without explicitly
defining a special datatype pid. P takes a process identifier i as
a process parameter. We introduce pid rules, which only allow
variables of type pid to be used in certain ways as following:

• (1) The process identifier i has type pid by default.
• (2) Given a variable x, type(x) = pid if and only if

it is assigned to or compared for equality with another
variable val of type pid, such that x ⇠ val where
type(val) = pid and ⇠ 2 [=, 6=,==].

• (3) It is not allowed to perform any arithmetical opera-
tions on variables of type pid.

• (4) Variable x of type pid is only allowed to used in the
form of x ⇠ val where val is either a variable or value
and ⇠ 2 [=, 6=,==].

• (5) A[N] is an array of N elements of type pid if and
only if type(A[i]) = pid.

These restrictions are similar to those applied to variables
of type scalarset [4]. Algorithm 3 presents the pid-type
inference algorithm in PAT. Algorithm 3 runs on a particular
template, say P .

In PAT, the template is stored as the syntax tree. Each while-
loop iteration involves one pass over the syntax tree. Inside
each loop, the tool extracts a variable x from Next, checks
whether it is used appropriately and then adds x to V alidP ids
- the set of valid variables of type pid. The algorithm also adds
any new variable y, which is related to x by (2), to Next. The
algorithm only halts when Next is empty.

For any template P whose variables of type pid are used
inappropriately, P is invalid. Our technique is not restricted
to only apply to fully symmetric systems (consist of a single
template). We can extract symmetry information from any real-
time systems that compose of multiple templates. If a model
consist of M templates, Algorithm 3 runs M times.

B. Automatic Symmetry Detection

For each valid template P computed in Algorithm 3, we
compute a set of structural symmetries Swap(P). Finally

Algorithm 3 Pid-type Inference Algorithm
1: ValidPids = ;
2: Visited = ;
3: Next = {i}
4: isInvalidTemplate = false
5: while Next 6= ; do
6: remove x from Next
7: for each guard / statement / update in P do
8: if (y = x or y 6= x or y == x) then
9: if (y not 2 Visited) and (y not 2 Next) then

10: add y to Next
11: if x violates (4) then
12: isInvalidTemplate = true
13: break
14: add x to ValidPids
15: add x to Visited
16: return YES

each generated structural symmetry ↵ 2 Swap(P) is checked
for validity. Using Algorithm 4, the largest valid subgroup
of Swap(P), denoted as V alidSwap(P) is computed. The
group V alidSwap(P) indicates the permutations of processes,
arrays and shared variables which preserve the structure of the
template P .

If a model Sys consists of 3 valid templates A,B, and C.
Then a group of automorphisms H(Sys) is given as follows:

H = V alidSwap(A) [V alidSwap(B) [V alidSwap(C)

Algorithm 4 Compute V alidSwap(P)

1: S = Swap(P)
2: H = ;
3: while S 6= ; do
4: remove ↵ from S
5: if isEquivalent(↵(P), P) then
6: H = H [↵

VI. PARAMETERIZED COMPOSITIONAL MODEL CHECKING

In general, state space explosion limits model checking to
small protocol instances. Therefore, it becomes important to
know whether a protocol is correct for an arbitrary number
of components. This is known as the parameterized model
checking problem (PMCP). The problem is, however, generally
undecidable [16].

We propose a technique that extends the previous work
[17] to parameterized real-time protocols, asking whether
a parameterized family has a compositional proof that the
specification is met for all instances. This work is directly
motivated by attempts to verify Fischer’s protocol with a large
number of components.

A. Preliminaries

In this paper, we extends some of key concepts that have
been described in [17][18] to timed automata.

1) Internal State: An internal state of a real-time process
P is its symbolic state, defined as a pair (l,D) where l is the
location and D is the zone.

2) Neighborhood: The neighborhood of a real-time process
P is the set of variables which are shared between P and other
processes.

3) Local State: An asynchronous, interleaved composition
of processes P1, P2, ..., PN is written as P = P1||P2||...||PN .
Local state of a node Pi is written in the form (li, Di, y),
where li is a current location; Di is a current zone and y is a
vector of its neighborhood valuations.

4) Inductive Invariant: An invariant is a predicate which
holds of all reachable symbolic states. And an inductive
invariant is a predicate that includes all initial states and is
closed under the transition relation.

5) Compositional Invariants: Define ✓i as a set of local
states of Pi. ✓i is called a compositional invariant if: (init) ✓i
includes the initial states of Pi; (step) ✓i is inductive for Pi;
(non-interference) the actions of a neighboring process, Pj , do
not falsify ✓i.
Theorem 1: If the set {✓i} is a compositional invariant, then
(8i : ✓i) is a global inductive invariant of the program (||i :
Pi).

6) Compositional Cutoff: Define ✓>K be a compositional
invariant in a network of size greater than K and ✓K be a
compositional invariant in a network of size at most K. If ✓>K

is identical (up to neighborhood isomorphism) to ✓K , then
we refer to K as a compositional cutoff.

B. Local Symmetry

Two nodes m and n are locally similar, written m ' n, if
there is a bijective function � that the neighborhood of m is
isomorphic to the neighborhood of n through � [17]. A tuple
(m,�, n) is called local symmetry.

For a local symmetry (m,�, n), � maps the neighborhood of
m onto the neighborhood of n. Moreover, for every (m,�, n)
that respects the local symmetries, it should hold that � maps
a local state (x, y) of m to a local state (x,�(y)) of n. If two
nodes m and n have isomorphic invariants, we say that they
are balanced or they respect a balance relation B.
Corollary 1: Let ✓ be the strongest compositional invariant
and ' be a property of local states. If (m,�, n) is a local
symmetry, and ' is invariant under �, then [✓m =) P] if and
only if [✓n =) P].

Because we focus on parameterized real-time protocols that
exhibit clearly global symmetries, so it becomes important to
know whether global symmetry induces local symmetry and
a balance relation.
Theorem 2: For a network with global symmetry group G,
the set Local(G) = {(m,�, n) | � 2 G ^ �(m) = n} is a
balance relation [18].
Corollary 2: A network where any pair of nodes is connected
by a global automorphism is called vertex-transitive. In a
vertex-transitive network, any pair of nodes is balanced and
there is a single equivalence class [17].

In the next two sections, we show that the PCMCP is decid-
able in polynomial time for Fischer’s protocol and CSMA/CD
protocol.

VII. VERIFICATION FOR FISCHER’S PROTOCOL

A. Verification Properties

MutualExclusionFail is a boolean condition true of global
states, where more than one process are in the local state CS
at the same time. In PAT, MutualExclusionFail is defined as
follows: define MutualExclusionFail count > 1;

In order to formally verify our model of Fischer’s protocol is
correct, we check whether the model reaches to MutualExclu-
sionFail: assert F ischer reaches MutualExclusionFail

B. Symmetry Reduction on Fischer’s Protocol

Our symmetry detection algorithm first detects that the vari-
able id has type pid. Moreover, Fischer is fully symmetric
since Process(1), P rocess(2),, P rocess(N) are identical
up to renaming. Therefore, we have:

V alidSwap(Fischer) = {swapi,j(Fischer) | 0  i < j < N}

From Theorem 2, Fischer consists of N balanced processes.

C. Experimental Results

We have run experiments on PAT for different numbers of
processes and Table 1 summarizes the verification results. The
environment is an i5-dual-core machine with 4 GB memory.

Processes 8 10 15 20 30
Mode Sym No Sym No Sym No Sym No Sym No
Time (s) 0.04 3.3 0.13 122 0.85 N/A 4.35 N/A 53 N/A
Visited State 190 85495 360 1827331 1379 N/A 3880 N/A 17717 N/A
Memory (Mb) 9.3 57.7 11 1347.5 11.8 N/A 22 N/A 109 N/A

TABLE I
VERIFICATION RESULTS FOR FISCHER’S PROTOCOL

To demonstrate the effectiveness of symmetry reduction,
we ran each experiment twice, with and without symmetry
reduction. Experiments were run with a 300 second timeout.
We focus on three criteria: processing time (s), the number of
visited states and memory usage (MB). The data shows that
the regular PAT’s limit for Fischer’s protocol is less than 15
processes while the verification for 30 processes can be done
within 53 seconds using less than 109MB of memory with
symmetry reduction.

For Fischer’s protocol, the verification tool gains a con-
siderable reduction in processing time and memory usage,
by a factorial magnitude, however model checkers are still
impractical in verify an instance of Fischer’s protocol with a
very large number of processes (> 40).

D. Arbitrary Large Number of Processes

Consider a family of instances of Fischer’s protocol {Ri},
where each instance consists of i identical processes. We
combine elements of compositional proofs, abstraction and
local symmetry to verify whether mutual exclusion holds for
every instance of Fischer’s protocol.

Since Fischer’s protocol is fully symmetric, every instance
Ri is vertex-transitive. In a instance Rx, we define Rep as
a single representative process and ✓x as a compositional
invariant for Rep. A state in ✓x is a tuple (l,D, id), where
(l,D) is an internal state of Rep and id is a neighborhood
ranging from {0, ..., x� 1}. Since x could have any possible
positive value, ✓x may unbounded. We define an abstraction of
Rep, denoted dRep and show that its compositional invariant
is sufficiently precise to solve the PCMCP.

In the abstract representative process dRep, the transitions
are the same as in Rep, except that id has a value in the
set of {k, k̂,�1}, where k is the process identifier of Rep
and k̂ is the abstract process identifier of any process in Rx

that its process identifier is not equal to k. The abstraction is
a Galois connection (↵, �) where ↵(s, id) = (s, a) where a
is the set of three possible values {k, k̂,�1} and �(s, a) =
{(s, id) | ↵(s, id) = (a, s)}.

We define �x is the strongest compositional invariant on
the abstract process dRep, the first lemma says that the com-
positional invariant of the abstract process over-approximates
the concrete one.
Lemma 1 For each state in ✓x, there is an ↵-related state in
�x.
Proof: We define Di as a finite set of zones at the location i.
In location Start, �Start

x is just the state (Start,DStart,�1)
with the location = Start, and id = �1. So �Start

x = ✓Start
x .

Hence, the hypothesis holds for �Start
x .

In Req, ✓Req
x = {(Req,DReq, i) | i 2 {�1, .., x � 1}/k},

where x is the size of the instance Rx. �Req
x has one of two

possible values including (Req,DReq,�1), (Req,DReq, k̂).
It is clear that each state of Req in the set of
{(Req,DReq, i) | i 2 {0,, x � 1}/k} is related to
Req,DReq, k̂) by ↵. So it satisfies the condition required.

In location Wait, there are two possible cases. If id =
k, (Wait,DWait, k) 2 ✓Wait

x and also (Wait,DWait, k) 2
�Wait

x . Otherwise, {(Rep,DWait, i) | i 2 {�1, ..., x�1}/k}
2 ✓CS

x , which are related to (Rep,DWait, k̂) 2 �Wait
x by ↵.

Hence, the hypothesis holds for �Wait
x .

In location CS, ✓CS
x = �CS

x = (CS,DCS , k). End Proof
Theorem 3 The PCMCP is decidable in polynomial time for
Fischer’s protocol.
Proof Consider an instance Rx and an instance Ry . Assume
Rx is the smallest verified instance (x = 2). From Lemma
1, all states in �x also satisfy the mutual exclusion property.
�x and �y are isomorphic since they have the same local
states. We can say �x and �y are locally symmetric and
hence, from Corollary 1, all states in �y also ensure mutual
exclusion. Since for each state in ✓y , there is an ↵-related state
in �y . It is clear that ✓y satisfies mutual exclusion as expected.
So the PCMCP is decidable in polynomial time for Fischer’s
protocol. End Proof.

VIII. CSMA / CD PROTOCOL

The Carrier Sense, Multiple Access with Collision Detection
(CSMA/CD) protocol describes one solution to the problem
in Ethernet network, when several agents compete for a

Fig. 2. Model for a Sender i [19]

single bus. The research group in PAT has successfully done
modeling and verification on CSMA/CD protocol [19]. In this
section, we extend their work to verify the protocol with our
symmetry reduction technique.

A. Model for CSMA/CD Protocol

CSMA/CD protocol consists of two components, namely
Sender and Bus. Two components communicate by pair-wise
synchronization channels.

Roughly speaking, a Sender must first listen to the Bus
before transmitting messages. If the Bus is idle, the Sender
begins to transmit. Otherwise, it must wait and retry later.
However, collision may occur when more than one Sender
are sending message via the Bus. Then the Bus informs all
Senders of this collision, and abort their transmission immedi-
ately. Therefore, all transmitting messages are discarded and
Senders should compete for the Bus again.

1) Model Sender Behavior: The behavior of component
Sender is showed in Figure 1. Initially, a Sender is in
location WaitFor. When there is a message to send, if the
Bus is idle, the Sender goes to location Trans. Otherwise, if
the Bus is busy or a collision is detected, it moves to location
Retry. If a collision occurs while no message is arrived, the
Sender remains in location WaitFor.

In location Trans, the Sender has two transitions. If a
collision is detected before 52 time units have elapsed, the
Sender goes to location Retry. Otherwise, it terminates
sending the message after exactly 808 time units, then it goes
to location WaitFor.

In location Retry, if the Bus is idle, the Sender moves
back to location Trans within 52 time units. Otherwise, it
remains in location Retry.

2) Modeling Bus Behavior: The behavior of component
Bus is showed in Figure 2. Initially, a Bus is in location
Idle. The transition from Idle to Active is enabled when one
Sender begins to transmit.

In location Active, there are three possible transitions. If the
Sender completes sending, the Bus goes back to the initial
location. If another Sender starts sending messages within 26
time units, the Bus moves to location Collision. Otherwise,

Fig. 3. Model for the Bus [19].

after at least 26 time units have elapsed, the Bus replies busy
signal to any new attempt, then it moves to location Active1.

In location Active1, the Bus takes at most 26 time units to
inform all Sender of this collision, using BroadcastCD [19].
After that, the Bus moves to location Idle.

In location Active1, the Bus replies busy signal to any
Sender that attempts to send message until the active Sender
completes transmitting, then the Bus moves to location Idle.

3) Modeling CSMA/CD Protocol: The whole protocol con-
sists of 1 Bus and N Senders interleaving with each other.
In PAT, we model this as follows:

CSMA = (||| i : {0, ..., N � 1} @ Sender(i)) ||| Bus

B. Verification Properties
deadlockfree is a safety property, pre-defined in PAT, so that

the model is always possible to move from one state to another.
In order to formally verify our model of CSMA/CD protocol
is correct, we check whether the model satisfies deadlockfree.

assert CSMA deadlockfree;

C. Symmetry Reduction on CSMA/CD Protocol
We denote CSMA as the instance of CSMA/CD protocol

with 1 Bus and N Senders. Our symmetry detection tech-
nique figures out that Sender(1), Sender(2), ..., Sender(N)
are identical up to renaming. Then we have:

V alidSwap(CSMA) = {swapi,j(Sender) | 0  i < j < N}

where swapi,j(Sender) applies on Sender(i) and Sender(j)
and leaves the Bus intact. From Theorem 2, CSMA consists
of N identical and balanced Senders.

D. Experimental Result
Similar to Fischer’s protocol, we have run experiments

on PAT for different numbers of processes and Table 2
summarizes the verification results for CSMA/CD protocol.
Experiments were run with a 300 second timeout. The data
shows that the regular PAT’s limit for CSMA/CD protocol is
around 10 processes, while verification for 30 processes can
be done less than 3 second using less than 23MB of memory
with symmetry reduction.

Similar to Fischer’s protocol, PAT is still impractical to
verify an instance of CSMA/CD protocol with a very large
number of Senders.

Processes 8 10 15 25 30
Mode Sym No Sym No Sym No Sym No Sym No
Time (s) 0.037 5.6 0.07 99.8 0.26 N/A 1.45 N/A 2.76 N/A
Visited State 99 30953 149 291869 299 N/A 775 N/A 1067 N/A
Memory (Mb) 10.1 29.8 10.6 256 10.5 N/A 16.5 N/A 23.3 N/A

TABLE II
VERIFICATION RESULTS FOR CSMA/CD PROTOCOL

E. Arbitrary Large Number of Senders

Consider a family of instances of CSMA/CD protocol {Ri},
where each instance consists of one Bus and i identical
Senders. Similarly, we verify whether deadlockfree holds
for every instance of CSMA/CD protocol.

In the simplest compositional formulation, we define two
invariants: ✓B

i

, which represents local states of the Bus
in Ri and ✓S

i

, which represents local states of the single
representative Sender in Ri (since all Senders are identical
up to renaming).
Theorem 4 The PCMCP is decidable in polynomial time for
CSMA/CD protocol.
Proof: A state in ✓S is a tuple (lS , DS , cd, begin, end, busy),
where (lS , DS) is an internal state of the Sender and
(cd, begin, end, busy) is a vector of values for its neighbor-
hoods.

A state in ✓B is a tuple (lB , DB , cd, begin, end, busy),
where (lB , DB) is an internal state of the Bus, and
(cd, begin, end, busy) is also a vector of values for its neigh-
borhoods.

Clearly, the neighborhoods of the Bus and the Sender are
a group of synchronization channels and they are valueless.
Therefore, the Bus and the Sender have finite local states.

Consider an instance Rx and an instance Ry . Assume Rx

is the smallest verified instance (x = 2). Then we have that
✓B

x

is isomorphic to ✓B
y

and ✓S
x

is isomorphic to ✓S
y

.
The representative system consists of the smallest instance

with 1 Bus and 2 Senders. Its strongest compositional
invariant can be calculated automatically. So the PCMCP is
decidable in polynomial time for CSMA/CD protocol. End
Proof.

IX. CONCLUSION

There are two model checkers for timed systems that exploit
symmetry: UPPAAL [7] and RED [20]. While RED only
points out whether a given state is unreachable, UPPAAL
requires a user to manually specify symmetry to be exploited
via scalarset. Moreover, UPPAAL is only realistic in cases
that there is full symmetry.

Several works have been done to support automatic symme-
try detection. In [21], the authors introduce a new specification
language, Promela-Lite, to the model checker SPIN [22]. Then
they show how they can detect symmetry from specifications
defined in Promela-Lite. However, they still need to explicitly
define a special datatype named process identifier (pid) in a
language to facilitate the process.

We have successfully implemented an automatic symmetry
reduction package to PAT. We demonstrate its effectiveness,

showing that the method requires no additional information
from an user and is not restricted to fully symmetric systems.
For Fischer’s protocol and CSMA/CD protocol, the model
checker gains a considerable reduction in time and memory
consumption, by a factorial magnitude.

We also show the potential of incorporating local symmetry
reduction, compositional proof and abstraction to verify pa-
rameterized real-time systems. Our results are very promising:
the PCMCP is in polynomial time for many real protocols such
as Fischer’s protocol and CSMA/CD protocol.

As this is a new formulation of parameterized verification,
there are still many works to do further. Future work includes
exploring another popular family networks, such as Train-
Bridge protocol. We have successfully modeled Train-Bridge
protocol in PAT and verified with symmetry reduction. More-
over, we possibly extend the verification procedures to liveness
properties. And to benefits more real protocols, it requires
some implementation to allow the use of process identifiers
in arithmetic operations.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, “Model checking. 2000,”
2000.

[2] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting symmetry
in temporal logic model checking,” Formal methods in system design,
vol. 9, no. 1, pp. 77–104, 1996.

[3] E. Emerson and A. Sistla, “Symmetry and model checking,” in Computer
Aided Verification. Springer, 1993, pp. 463–478.

[4] C. N. Ip and D. L. Dill, “Better verification through symmetry,” Formal
methods in system design, vol. 9, no. 1-2, pp. 41–75, 1996.

[5] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible verification
under fairness,” ser. Lecture Notes in Computer Science, vol. 5643.
Springer, 2009, pp. 709–714.

[6] M. Hendriks, Enhancing uppaal by exploiting symmetry. Nijmegen
Institute for Computing and Information Sciences, Faculty of Science,
University of Nijmegen, 2002.

[7] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Interna-
tional Journal on Software Tools for Technology Transfer (STTT), vol. 1,
no. 1, pp. 134–152, 1997.

[8] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert, and F. Vaandrager,
“Adding symmetry reduction to uppaal,” in International Conference on
Formal Modeling and Analysis of Timed Systems. Springer, 2003, pp.
46–59.

[9] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 16, no. 5, pp. 1543–1571, 1994.

[10] S. Yovine, “Kronos: A verification tool for real-time systems,” Interna-
tional Journal on Software Tools for Technology Transfer (STTT), vol. 1,
no. 1, pp. 123–133, 1997.

[11] R. Alur and D. Dill, “Automata for modeling real-time systems,” in
International Colloquium on Automata, Languages, and Programming.
Springer, 1990, pp. 322–335.

[12] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model checking for real-time systems,” in Logic in Computer Science,
1992. LICS’92., Proceedings of the Seventh Annual IEEE Symposium
on. IEEE, 1992, pp. 394–406.

[13] D. L. Dill, “Timing assumptions and verification of finite-state concur-
rent systems,” in International Conference on Computer Aided Verifica-
tion. Springer, 1989, pp. 197–212.

[14] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in Lectures on concurrency and petri nets. Springer, 2004, pp.
87–124.

[15] P. Pettersson, Modelling and verification of real-time systems using timed
automata: theory and practice. Department of Computer systems,
Univ., 1999.

[16] K. R. Apt and D. C. Kozen, “Limits for automatic verification of finite-
state concurrent systems,” Information Processing Letters, vol. 22, no. 6,
pp. 307–309, 1986.

[17] K. S. Namjoshi and R. J. Trefler, “Parameterized compositional model
checking,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2016, pp. 589–606.

[18] ——, “Local symmetry and compositional verification,” in International
Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 2012, pp. 348–362.

[19] L. Shi and Y. Liu, “Modeling and verification of transmission protocols:
A case study on csma/cd protocol,” in Secure Software Integration and
Reliability Improvement Companion (SSIRI-C), 2010 Fourth Interna-
tional Conference on. IEEE, 2010, pp. 143–149.

[20] F. Wang and K. Schmidt, “Symmetric symbolic safety-analysis of
concurrent software with pointer data structures,” in International Con-
ference on Formal Techniques for Networked and Distributed Systems.
Springer, 2002, pp. 50–64.

[21] A. F. Donaldson and A. Miller, “Automatic symmetry detection for
model checking using computational group theory,” in International
Symposium on Formal Methods. Springer, 2005, pp. 481–496.

[22] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

