
A Feature-Oriented Requirements Modelling Language
(FORML)

Pourya Shaker and Joanne M. Atlee
{p2shaker, jmatlee}@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Canada

Tech. Rep. CS-2012-05

Contents

1 Introduction 1

2 Requirements Reference Model 2

3 FORML 3
3.1 Feature Model . 4
3.2 World Model . 4

3.2.1 TelSoft Problem World . 5
3.2.2 Concept Model . 5
3.2.3 World State . 9
3.2.4 Constraints . 10

3.2.4.1 Expression Language over World State 11
3.2.4.1.1 Atomic Expressions . 11
3.2.4.1.2 Set Expressions . 11
3.2.4.1.3 Functions . 12
3.2.4.1.4 Predicates . 12
3.2.4.1.5 @pre . 14

3.3 Behaviour Model . 14
3.3.1 Specifying Requirements as a Standalone Model 14

3.3.1.1 BCS Requirements . 14
3.3.1.2 Syntax . 14

3.3.1.2.1 Triggering Events . 16
3.3.1.2.2 Guard Conditions . 16
3.3.1.2.3 Actions . 16
3.3.1.2.4 Abbreviations . 17
3.3.1.2.5 Presence Conditions 18

3.3.2 Specifying Requirements as Enhancements 18
3.3.2.1 TelSoft Enhancements . 18
3.3.2.2 Syntax . 18

3.3.2.2.1 Requirements Additions 21
3.3.2.2.2 Requirements Retractions 23
3.3.2.2.3 Requirements Replacements 23
3.3.2.2.4 Specifying Enhancements as Feature Machines 25

4 Composing Feature Modules 26
4.1 Feature-Module FSTs . 26
4.2 Superimposition of Feature-Module FSTs . 28

5 Conclusions and Future Plans 29

A Extended FORML Model of TelSoft 30

i

1 Introduction

Telephony software is often thought of in terms of its constituent features, where each feature
is �an optional or incremental unit of functionality� [10]. There are a number of advantages
to taking a feature-oriented view of software. For one, features serve as a shared vocabulary
among customers, engineers, and marketers for discussing software functionality. Second, fea-
ture modularity eases system development and evolution because features can be developed in
isolation, in parallel, and by third-party vendors. Feature orientation is particularly relevant in
the context of telephony software, which is developed as product line whose individual products
are understood, constructed, managed, and evolved in terms of their features. In fact, there
is an increasingly popular software-development paradigm, called feature-oriented software de-
velopment (FOSD) [1], that advocates the use of features as �rst-class entities throughout a
system's lifecycle.

The downside of feature orientation is that engineers must consider how features interact
when deriving a product from a selection of features. Two features interact with each other
when �one feature a�ects the operation of [the other] feature� [3]. Some interactions are planned:
call waiting is designed to interact with and extend basic call service. Other interactions are
innocuous. However, some feature interactions are harmful. For example, most telephony
features a�ect the processing of calls (e.g., basic call service, call waiting, call forwarding on
busy, three-way calling, call transfer); in a given situation (e.g., the arrival of a new call when
a user is already in a call), some subset of these features will react and attempt to end or
otherwise process the new call. To avoid con�icts between such reactions, the telephony-
software developer needs to understand which situations activate which features, and must
determine and document the appropriate behaviour of all possible combinations of features.

The goal of this research is to support the modelling of requirements of the features in a
software product line � including the requirements of intended interactions among the features.
We focus on the requirements phase of feature development for two reasons: (1) the application
of FOSD to requirements artefacts has to date been informal and less well studied, and (2)
requirements models are relatively small and abstract, and thus are amenable to automated
analyses1.

A second major objective of this work is to provide explicit support for documenting intended
feature interactions. We do this using enhancements (i.e., extensions) to the requirements of
existing features. There are three advantages to modelling some requirements as enhancements:
(1) Sometimes, it is easier to understand a new feature in terms of its incremental changes to
existing features. For example, call waiting is best described as an optional enhancement to
basic call service, as opposed to being speci�ed as a distinct full-�edged feature. (2) Explicit
enhancements to existing features (expressed as model fragments to be superimposed onto the
requirements of other features) e�ectively introduce variation points and variant behaviours to
the enhanced features: if the new feature is present in a product, then the new variant behaviour
is present in the product; if the new feature is absent from the product, then the behaviour
of the product defaults to the behaviour of the existing features. As a result, adding a new
feature to the product line is always an additive modelling task. Even when the purpose of a

1Although this report does not address analysis of feature models, this is planned future work. As such, we
are always cognizant of the analyzability of our models.

1

new feature is to restrict or override existing features, the task of the requirements engineer is to
add behaviour � possibly variant behaviour � to the existing requirements. This additive nature
of requirements modelling is important because it eases the task of evolving the requirements
documentation whenever new, possibly interacting, features are added to the product line. (3)
Explicit modelling of intended feature interactions means that, in the future when we investigate
analyses for detecting interactions among features, the analyses can avoid "detecting" planned
interactions and can focus on reporting only unexpected interactions.

In this paper, we propose a feature-oriented requirements modelling language (FORML)
that decomposes requirements models along two dimensions: (1) requirements views, as in
traditional requirements-engineering methods, and (2) features, as in FOSD methods:

� There is a world model that de�nes the world phenomena that are relevant to the
requirements, a la an ontology. At the same time, the world model speci�es the context
in which the features operate: it speci�es the set of possible world states, which the
features monitor and control. Domain knowledge or assumptions restrict the set of valid
world states; they are expressed as constraints on the world model.

� The behaviour model is an extended �nite state-machine model whose input language is
the set of possible events and conditions over the world state and whose output language
is the set of possible changes to the world state. To delineate features, we decompose
the behaviour model into separate feature modules. A feature module comprises feature
machines, feature-machine fragments, or both: a feature that enacts stand-alone require-
ments adds a new feature machine to the behaviour model, and a feature that enacts
enhancements to another feature adds model fragments to the behaviour model. Model
fragments are superimposed onto existing feature machines at speci�ed locations.

The execution semantics of a collection of features is the parallel execution of the feature
machines after they have been superimposed with their enhancements.

The rest of this report is organized as follows. Section 2 summarizes the reference model
used in requirements engineering to scope the information to be included in a requirements
model. Sections 3 and 4 present the models of FORML, including a world model that depicts
the context of the features, a feature model (part of the world model) that clusters features
into product lines and that speci�es allowable con�gurations, and a behaviour model. In our
presentation of FORML, we provide some advice on how to structure a requirements model.
We conclude and discuss future work in Section 5. Appendix A demonstrates FORML on a
collection of 15 telephony features.

2 Requirements Reference Model

We adopt the Jackson and Zave view of software requirements [6]: a software project aims at
constructing a machine, comprising a software system installed on a computer, to solve some
problem. The machine's requirements are a description of the problem to be solved.

Figure 1 shows a requirements reference model based on the above de�nition that is used to
scope the information included in a machine's requirements. The context in which the problem
occurs is called the problem world, and is shown as the light-blue oval on the left. The phenom-
ena that the machine can monitor or control, called machine phenomena, is shown as the pink

2

Specification

Requirements

Problem World Machine
Phenomena

Shared
Phenomena

Figure 1: Requirements Reference Model

oval on the right. The intersection between the problem world and machine phenomena, called
shared phenomena, are problem-world phenomena that the machine can directly monitor or
control. Shared phenomena are at the machine's interface; that is, they are the inputs and out-
puts of the machine's sensors and actuators, respectively. In the requirements reference model,
requirements are expressed solely in terms of problem-world phenomena (possibly including
shared phenomena). The machine's speci�cation is a description of the externally-observable
behaviours that the machine should exhibit, so as to satisfy the requirements, and is expressed
solely in terms of shared phenomena.

In the above reference model, the machine is normally thought of as containing a single
software system. We propose extending the use of the reference model to software products
lines (SPLs), in which the machine is thought of as comprising one or more SPLs. In general, the
shared phenomena includes possible values input to the machine's con�guration parameters by
agents in the problem world. Therefore, in the proposed view, the shared phenomena includes
possible values of the con�guration parameters used to instantiate products of the SPL. One
such parameter is the feature-con�guration parameter of the SPL, a value of which is a set of
features (aka a feature con�guration) that characterizes a single product of the SPL.

3 FORML

The purpose of this report is to describe FORML as it is to be used to model the requirements
of a system of related SPLs. Following the requirements reference model described in Section 2,
a FORML model comprises a description of the problem world, called a world model, and
a speci�cation of the requirements in terms of the world model, called a behaviour model.
The behaviour model, described in Section 3.3, is structured in terms of the types of features
supported by the SPLs. Recall that in our extended view of the reference model, the problem
world includes the possible values of the feature-con�guration parameter of each SPL; this
information is speci�ed in a part of the world model, called a feature model, described in
Section 3.1. Other phenomena in the problem world are described in terms of a concept model
augmented with constraints, as described in Section 3.2.

3

3.1 Feature Model

A complex system can be decomposed into a set of sub-systems, each of which is a member
of a di�erent SPL. For example, a telephony system can be decomposed into a call-processing
system and an administrative system, where each sub-system is instantiated from an SPL.
A FORML feature model consists of a set of feature diagrams, one for each SPL. A feature
diagram is the traditional method for specifying the space of products of an SPL, where each
product is characterized in terms of its feature con�guration.

A FORML feature diagram is expressed using the original feature-model notation [7]. The
feature diagram for an SPL is a tree, where the tree root is the SPL, and every other tree node
is a feature type. Figure 2b shows the feature model for the TelSoft SPL, which will be used
as a running example in this document. A TelSoft product is a telephone service subscribed to
by a user. The features types supported by the TelSoft SPL are the following:

� Basic call service (BCS), which responds to the subscriber's requests for starting, accept-
ing, and ending calls.

� Call waiting (CW), which allows the subscriber to accept a second call and switch between
the two calls.

� Caller number delivery (CD), which deliver's a caller's number to the subscriber.

� Caller number delivery blocking (CDB), which prevents CD from delivering the sub-
scriber's number to a callee.

The feature model in Figure 2b speci�es that a TelSoft product must have BCS, and
can optionally have CW, CD, and CDB. Hence, the space of TelSoft products is the follow-
ing: {BCS}, {BCS,CW}, {BCS,CD}, {BCS,CDB}, {BCS,CW,CD}, {BCS,CW,CDB},
{BCS,CD,CDB}, and {BCS,CW,CD,CDB}.

The abstract syntax for a feature diagram is given by the metamodel presented in Figure 2a.
The feature types de�ne the space of feature con�gurations within a product line. A feature
type is either optional or mandatory. The optionality of feature types and the tree structure
specify the valid feature con�gurations; that is, the allowable feature sets that characterize the
allowable SPL products. In a valid feature con�guration, a mandatory feature must be present,
and an optional feature can be present, only if its parent feature is present (if it has a parent
feature).

In the graphical representation of a feature model, SPL nodes have a gray background. A
feature type topped with a �lled circle denotes a mandatory feature type (e.g., BCS), and one
topped with an empty circle denotes an optional feature type (e.g., CW).

3.2 World Model

A world model de�nes the ontology of the shared problem world of a set of SPLs. In FORML,
the world model is expressed as a concept model augmented by constraints. Section 3.2.1 gives
a brief impression of what a world model looks like, using the TelSoft problem world as an
example. The complete world-model syntax is described in Section 3.2.2 and Section 3.2.4,
with references to the TelSoft world model presented in Section 3.2.1.

4

SPL Feature

isOptional

parent child0..1 *

1..*

(a) UML metamodel for feature diagrams

BCS

CW

TelSoft

CD CDB

(b) TelSoftFM feature model

Figure 2: Feature Model

3.2.1 TelSoft Problem World

Figure 3 shows the world model for TelSoft, expressed as a UML class diagram. The problem
world of TelSoft comprises the following phenomena:

� Users that subscribe to TelSoft products, modelled as a concept User. A user's TelSoft
product has a feature con�guration, modelled in Figure 2b.

� Calls between users, modelled as the association Call. Once a call is accepted, a voice
connection is established, as modelled by the attribute voice.

� Commands issued to and noti�cations sent by TelSoft products are modelled as distinct
messages associated with feature types. For example, there are input commands to start
and accept calls (processed by BCS), and noti�cations regarding a caller's number (sent
by CD).

� Features BCS and CW keep track of the call they are processing, as modelled by the
associations Processing and Second, respectively.

3.2.2 Concept Model

Metamodel The abstract syntax for a conceptual model is given by the metamodel presented in
Figure 4. A concept model describes a problem world as a set of concepts and the relationships
between them, where each concept represents a type of object in the problem world (e.g., User).
The instances (objects) of a concept are characterized by a set of properties, called attributes,
each of which has a name, a type, and a multiplicity (e.g., attribute voice of Call, with type
bool, and an implicit multiplicity of one). The type of an attribute is either an enumeration
(i.e., a �nite set of named values), an unde�ned type, or a type de�ned outside of the FORML
model (e.g., type bool). Note than the type of an attribute is never a concept; such complex
properties are modelled as associations, as described below. An attribute declaration may
include a multiplicity, in which case the attribute's value is a set of values of the attribute's
type. One concept may be a special case of another concept, in which case the �rst concept is
a subtype of the second.

5

«TelSoft»
CD

«outputs»
Caller(user: User)

User

Call

voice: bool

caller callee

«TelSoft»
BCS

«inputs»
StartCall(target: User)
EndCall()
AcceptCall()

«outputs»
Busy() TelSoft

Subscription

Processing «TelSoft»
CW

«inputs»
EndCall()
ToggleHold()

Second

2 0..10..10..1

0..2 0..1

Figure 3: TelSoft world model

FORML distinguishes between the following special types of concepts, adapted from
KAOS [9]:

� An association is a type of relationship that exists among two or more other objects, each
of which takes some role in the relationship. An association cannot relate objects of its
own type. An association instance is called a link. Each role in an association has a name,
a type, and a multiplicity. The type of a role is a concept whose objects can take the
role in an instance of the association. The multiplicity of a role constrains the number of
objects that can take that role in links with a particular set of objects in the other roles.
For example, the multiplicity 0..1 of role callee of association Call literally means that
zero or one User objects can be in the callee role of Call links with a particular User
object. If any of a link's related objects ceases to exist, so does the link.

� An aggregation or composition is a special type of binary association. A link of
an aggregation or association represents a weak or strong whole-part relationship
between two objects, respectively. In an aggregation, a part belongs to zero or more
whole objects, and can belong to di�erent whole objects throughout its lifetime;
whereas in a composition, a part belongs to exactly one whole object, and belongs
to the same whole object throughout its lifetime. The roles of this latter composition
have implicit multiplicities of one.

� A message is a type of communication to or from an SPL product. An instance of
a message is primarily characterized by its parameters, which are modelled as either
attributes (when the parameter types are simple) or as aggregations (when the parameter
types are concepts)2. We use aggregation rather than association to model complex
parameters because each parameter is a part of the message, and thus there is a whole-
part relationship between the two. In fact, such aggregations are the only associations

2Note that Message is a type of concept, and thus can have attributes and associations.

6

Concept

isAbstract

Association Message

Attribute

name
multiplicity

Role

name
multiplicity

Composition

Type

name

*

1..*

2..*

* super

sub*

Enumeration

values

SubType

from

*

*

*

SPL Feature

Aggregation

1

1..*

1..*

to

Figure 4: UML metamodel for conceptual models (The dashed border of the SPL and Feature
classes indicates that these classes are de�ned in Figure 2a.)

that a message can participate in. Input message objects are further characterized by
their destinations, and output messages are further characterized by their sources; the
sources or destinations are the features that process or generate the messages, respectively.
Because source and destinations are an integral part of the message, they are also modelled
as aggregations. For example, a StartCall message object has a parameter target of type
User and may be processed by a BCS object.

� An SPL or feature type de�ned in a feature model is a concept in the corresponding world
model (e.g., TelSoft and its feature types, de�ned in Figure 2b, are SPL and Feature
concepts in Figure 3).

We include SPLs and their feature types in the world model for the following reasons:
First, a system often has a set of con�guration parameters, the values of which a�ect the
externally observable behaviours of instances of the system. We consider the possible values
of such parameters to be among the shared phenomena of the problem world. An SPL is
con�gured into a product, in part by selecting the feature con�guration of the product. This
choice a�ects the product's externally observable behaviours. Consequently, we consider the
feature-con�guration space of an SPL (i.e., the set of possible feature selections) to be part of
the SPL's problem world. Second, there exist relationships between SPL products � and in
some cases particular features of SPL products � and phenomena in the SPL's problem world.
Such relationships can be described in a world model as attributes, associations, and messages
that involve SPL and feature concepts. For example, the following relationships exist between
TelSoft products and phenomena in the TelSoft problem world:

7

User

Call

voice: bool

caller callee

0..2 0..1

«association»
TWCall

«role»
 third

Figure 5: Graphical representation of higher-arity associations

� TelSoft products are subscribed to by users, modelled as a composition involving the
TelSoft concept.

� Commands to TelSoft products are processed by particular types of TelSoft features,
modelled by relating the corresponding messages and feature concepts, as described above.

� The processing of calls by BCS and CW is modelled as associations between Call and the
BCS and CW concepts, respectively.

Graphical Syntax A concept model is graphically expressed using the UML class-diagram
notation with the following conventions: a concept is normally shown as a UML class (e.g.,
User). An SPL or feature concept is distinguished with a dotted border (e.g., BCS). Only
SPL and feature concepts that have attributes, take part in associations, or send or receive
messages are shown. An SPL concept is further distinguished with a gray background (e.g.,
TelSoft). Attribute multiplicities have the same format as UML association multiplicities, and
are speci�ed in square brackets following the attribute name. For example, a [1..*]: T speci�es
an attribute a with multiplicity 1..*. The feature concepts shown have a stereotype indicating
the SPL to which they belong (e.g., the stereotype �TelSoft� of BCS).

A binary association is shown as a UML association, aggregation, or composition (e.g.,
Subscription); if a binary association has attributes, or is a role type of another association, it
is shown as a UML association class (e.g., Call). An association with a higher arity is shown
as a UML class with the stereotype �association�; a role of such an association is shown as a
UML association with the stereotype �role�, which is between the UML classes corresponding
to the association and role type, and is labelled with the name and multiplicity of the role (e.g.,
TWCall in Figure 5).

A message is shown as a message signature in a compartment of each of the UML classes
representing a feature that sends or receives such messages. The UML class of a feature type
includes a compartment listing the messages to which the feature responds (prefaced with
the stereotype �input�) and a compartment listing the messages that the feature generates
(prefaced with the stereotype �output�). A message signature is of the formM(p1 [m1]:T1,...,pn
[mn]:Tn), where M is the name of the message concept, and pi, Ti, and mi (1 ≤ i ≤ n) are
names, types, and optional multiplicities of M 's parameters, respectively (e.g., StartCall(target:
User)). A non-TelSoft example of a parameter that has a multiplicity is the parameter names

8

[1..*]: ID of a registration request to a service, which literally means a set of one or more
IDs to be registered with the service. In the case of a parameter that is the part role of an
aggregation, the parameter's multiplicity corresponds to that of the part role; the multiplicity
of the corresponding whole role (i.e., the message) is implicitly *.

An enumeration E is de�ned in a UML note as enum E = {v1,...,vm}, where vi (1 ≤ i ≤ m)
are enumeration values.

Multiplicities, role names, and aggregation and composition names can be left unspeci�ed,
in which case they take on the following default values: the default multiplicity value is 1 (e.g.,
the multiplicities of both roles of Subscription); the default name of a role is the role type
(e.g., the name of the roles of Subscription are User and TelSoft); and the default name of an
aggregation or composition isW_P, whereW and P are the whole and part types, respectively.
Macros can be used to simplify text in a world model (e.g., a list of message concepts). A macro
m that stands for the text txt is de�ned in a UML note as let m = txt.

3.2.3 World State

A world model de�nes a space of world states, each representing a possible state of the products'
problem world. A world state consists of the following:

� A set of objects (instances) of the concepts de�ned in the conceptual model

� For each object in the world state, its attribute values; in the case of an association,
the objects that take each of its roles; in the case of a message, its parameters and the
SPL product that sends or receives it; and in the case of an SPL product, its feature
con�guration

Figure 6 shows a possible world state of the TelSoft world model, expressed in the UML object-
diagram notation3. The world state includes a single call with a voice connection between two
users, each with a TelSoft product. The caller's TelSoft product has features BCS and CD,
and that of the callee has BCS and CW. The BCS features of both products are processing the
call. A command to end the call is sent to the callee's TelSoft product.

The world state changes over time. For example, the world state shown in Figure 6 will
change in at least the following ways: The call and its associations with the BCS features will
be removed in response to the end-call command. Moreover, message objects are transient:
each object is present only in a single world state and is gone in the subsequent state. Thus,
in Figure 6, the end-call command will not exist in the next world state.

When we say that an SPL's requirements monitor and control problem-world phenomena,
we mean that they refer to and change the current world state. Thus all events and expressions
in a FORML behaviour model refer to objects in the current world state of an executing
product from the SPL; and all actions in the behaviour model are to be applied to objects in
the current world state.

3FORML does not prescribe a notation for specifying individual world states. The UML object-diagram
notation is used here for presentation purposes.

9

: User

: Call

voice = true

caller

: TelSoft: CW

: BCS

: EndCall

to

: User

callee

:Subscription
: TelSoft: CD

: BCS
:Processing

:Subscription

:Processing

Figure 6: A TelSoft world state

3.2.4 Constraints

As mentioned above, one of the purposes of the world model is to specify the set of possible world
states in which a product operates. As such, it is often necessary to augment the conceptual-
world model with a set of constraints on allowable instantiations. There are several reasons
why the world model may need to be constrained:

Domain knowledge represent facts, such as natural laws, about the world that are known to
be true.

Assumptions are suppositions about the world that might be violated, but that have to be
true in practice for our future product to work as advertised. To give an example from
our TelSoft world: we may assume that commands to start and end calls cannot be
simultaneously issued to a TelSoft product:

all sc : StartCalls, ec : EndCalls | sc.to 6= ec.to

Requirements are restrictions on the world that are to be imposed by our future products.

There are two types of constraints of interest: world-state constraints and world-state�
transition constraints. World-state constraints restrict the world-state space de�ned by the
conceptual world model. The three examples given above are world-state constraints. World-
state transition constraints specify restrictions on consecutive world states; that is, they restrict
how the world state can change on its own or be changed by our products. For example, we
may specify an assumption that the set of Users does not change:

Users@pre = Users

where su�x �@pre� is used to refer to values in the previous world state. Graphically, con-
straints are speci�ed in UML notes within the world model.

10

The following subsection describes the general language for writing expressions over world
states. Constraints are predicate expressions: world-state constraints are predicate expressions
over a single world state, and world-state�transitions are predicate expressions over a pair of
consecutive world states. As in seen in Section 3.3, the expression language described below is
used not only for writing constraints on the world model but also for writing expressions in the
behaviour model.

3.2.4.1 Expression Language over World State

A FORML expression is an expression over the elements in one (or two consecutive) world
state(s). In the following, an expression e in bold typeset refers to the expression itself, and
val(e)(WS) refers to the meaning of e in the world state WS.

3.2.4.1.1 Atomic Expressions

The FORML expression language borrows from Alloy the intuition that elements of the world
state are sets. To simplify the expression language, an individual object (or value) is treated
as a singleton set of objects (or values). In this manner, the engineer does not have to keep
track of whether he is writing an expression over an individual object (or value) or over a set
of objects (or values).

In FORML, an atomic expression refers to a single set of objects (or values) in a single
world state. There are �ve types of atomic expressions: the empty set none, type T, variable
v, constant c, and set Cs where C is a Concept. The meanings of the atomic expressions with
respect to a world state WS are given below:

val(none)(WS) = the empty set
val(T)(WS) = the set of possible values in type T
val(Cs)(WS) = the set of objects of concept C in WS
val(v)(WS) = the set of objects or values of variable v in WS
val(c)(WS) = the �set� of constant value c

For example, Users is the set of objects in the world state of concept User ; and true is the
�set� of constants true.

3.2.4.1.2 Set Expressions

Starting from an object or set of objects in a world state, it is possible to derive sets of related
objects, links or attribute values by navigating the relationships among elements in the world
state. For example, from a particular User v in a world state, one can derive the set of TelSoft
products that v subscribes to:

v.Subscription.TelSoft

Literally, the above is a navigation expression that (1) starts with a single User v, (2) collects
in a set all of the Subscription links that involve v, the (3) collects in a set all of the TelSoft
objects the play role TelSoft in these links.

11

More generally, a navigation expression starts with a (possibly singleton) set of objects or
links and traverses a sequence of relationships, ending with a set of objects or links or values
that are related (via the sequence of relationships) to the original entity. Below are de�nitions
of the possible navigation operations, each representing the traversal of a single relationship.
In the expressions below, O is a (possibly singleton) set of objects, a is an attribute, A is an
association, r is a role of an association, L is a (possibly singleton) set of links, C is a concept,
S is a (possibly singleton) set of products from a software product line, F is the name of a
feature type, and M is a (possibly singleton) set of message objects:

val(O.a)(WS) = the set of attribute values:
⋃
{val(o.a)(WS) | o ∈ val(O)(WS)}

val(O.A)(WS) = the set of links that involve objects o ∈ val(O)(WS)
val(O.A-r)(WS) = the set of links in which objects o ∈ val(O)(WS) play the role r
val(L.r)(WS) = the set of objects of type C that play role r in links l ∈ val(L)(WS)
val(S.F)(WS) = the set of feature instances of type F in products s ∈ val(S)(WS)
val(M.to)(WS) = the set of products that receive some message m ∈ val(M)(WS)
val(M.from)(WS) = the set of products that sent some message m ∈ val(M)(WS)

There are standard operations on sets, including set union, set intersection, set di�erence,
a selection operation that returns a subset of elements that satisfy some predicate P, and a
conditional operation whose value depends on some predicate P. Lastly, set cardinality returns
the number of elements of a set. In the following, S, S1, and S2 are sets and P is a predicate:

val(S1+S2)(WS) = val(S1)(WS) ∪ val(S2)(WS)
val(S1&S2)(WS) = val(S1)(WS) ∩ val(S2)(WS)
val(S1−S2)(WS) = val(S1)(WS) \ val(S2)(WS)
val(S[v|P])(WS) = { v ∈ val(S)(WS) | val(P(v))(WS)=true }
val(if P then S1 else S2)(WS) = val(S1)(WS) if val(P)(WS); otherwise val(S2)(WS)
val(#S)(WS) = the number of elements of set S

For example, the following expression uses the selection operation to refer to the subset of calls
in the world state that have a voice connection: Calls [v | v.voice=true].

3.2.4.1.3 Functions

FORML allows simple arithmetic operations (e.g., +,−,×) over (singleton sets of) integers and
real numbers. In addition, Type de�nitions in the world model may introduce operations on
speci�c types (e.g., comparison or arithmetic operators over Time values). More complicated
operations are named and used in models, but their de�nition is left unspeci�ed. For example,
the Billing feature module in Appendix A refers to a function charge() without specifying how
the charge for a call is computed.

3.2.4.1.4 Predicates

Predicates are expressions that evaluate to True or False. As mentioned above, predicates
are widely used as guard conditions on actions and as constraints on the world model or on
behaviour.

Predicates include comparison operations over expressions E1 and E2 of the same type:

12

val(E1=E2)(WS) = val(E1)(WS)=val(E2)(WS)
val(E16=E2)(WS) = val(E1)(WS)6=val(E2)(WS)
val(E1<E2)(WS) = val(E1)(WS)<val(E2)(WS)
val(E1≤E2)(WS) = val(E1)(WS)≤val(E2)(WS)
val(E1>E2)(WS) = val(E1)(WS)>val(E2)(WS)
val(E1≥E2)(WS) = val(E1)(WS)≥val(E2)(WS)

There are special predicates on sets, such as whether one set is a subset of another, and
predicates about set cardinality. In the following, S, S1, and S2 are sets:

val(S1 in S2)(WS) = val(S1)(WS) ⊂ val(S2)(WS)
val(no S)(WS) = val(S)(WS) is empty
val(lone S)(WS) = val(S)(WS) has zero or one element
val(one S)(WS) = val(S)(WS) has exactly one element
val(some S)(WS) = val(S)(WS) has one or more elements

There are standard boolean operations for writing compound expressions over predicates,
such as negation, conjunction, disjunction, implication and equivalence. In the following, P,
P1, and P2 are predicates:

val(not P)(WS) = ¬ val(P)(WS)
val(P1 and P2)(WS) = val(P1)(WS) ∧ val(P2)(WS)
val(P1 or P2)(WS) = val(P1)(WS) ∨ val(P2)(WS)
val(P1 implies P2)(WS) = val(P1)(WS) ⇒ val(P2)(WS)
val(P1 i� P2)(WS) = val(P1)(WS) ⇔ val(P2)(WS)

Lastly, there are quanti�ed predicates that express predicates about the members of a set.
A quanti�ed predicate introduces a variable v that refers to an arbitrary member of a speci�ed
set S, and speci�es a predicate P(v) over variable v. Depending on the type of the quanti�er,
the quanti�ed predicate is True or False depending on the number of members of S that satisfy
P:

val(no v: S | P)(WS) = there is no v ∈ val(S)(WS) such that val(P(v))(WS) is true
val(lone v: S | P)(WS) = there is at most one v ∈ val(S)(WS) such that val(P(v))(WS) is true
val(one v: S | P)(WS) = there is exactly one v ∈ val(S)(WS) such that val(P(v))(WS) is true
val(some v: S | P)(WS) = there is one or more v ∈ val(S)(WS) such that val(P(v))(WS) is true
val(all v: S | P)(WS) = for all v ∈ val(S)(WS), val(P(v))(WS) is true

Below are three example quanti�ed predicates that assert that (1) every user has subscribes to
exactly one TelSoft product, and (2) no two users subscribe to the same TelSoft product:

all v:Users | one v.Subscription.TelSoft

all u1,u2:Users | (u16=u2) implies (u1.Subscription.TelSoft 6=u2.Subscription.TelSoft)
The last example exhibits a common pattern, in which a quanti�er introduces two variables v1
and v2 that represent distinct arbitrary members of a set. In such cases, we use keyword disj
to indicate that the variables are disjoint:

all disj u1,u2:Users | u1.Subscription.TelSoft 6=u2.Subscription.TelSoft

13

3.2.4.1.5 @pre

A world-state transition constraint is a predicate over a pair of consecutive world states. The
language for such predicates is that described above, plus syntax for distinguishing between
values in the before versus after world states of the world-state transition. Speci�cally, su�x
@pre is appended to subexpressions of a before world state. The @pre tag is useful when
expressing the current value of a variable relative to its previous value. For example, the
following expression states that a StartCall message cannot persist over two consecutive world
states:

no StartCalls & StartCalls@pre

3.3 Behaviour Model

A FORML behaviour model operationally describes the requirements of a set of SPLs. The
requirements of each SPL are speci�ed as a set of feature modules, each of which speci�es the
requirements associated with a single feature type of the SPL.

A feature module can specify the requirements of a feature type as standalone, as enhance-
ments, or a combination of both. A standalone speci�cation does not refer to the requirements
of other feature types whereas an enhancement is speci�ed in the context of the requirements
of another feature type. Some requirements can be speci�ed either as stand-alone or as en-
hancements, but they are easier understood and can be more succinctly expressed if speci�ed
as enhancements (examples are given in Section 3.3.2). Intended interactions are associated
with two feature types, and therefore, can only be understood and expressed as enhancements.
Section 3.3.1 and 3.3.2 describe how a feature module speci�es requirements as stand-alone and
as enhancements, respectively. Like the description of the world model in Section 3.2, these
sections begin with an TelSoft example, followed by a complete description of the FORML
syntax that makes reference to the example.

The requirements of an SPL are described by the composition of its feature modules. The
composition of feature modules is described in Section 4.

3.3.1 Specifying Requirements as a Standalone Model

3.3.1.1 BCS Requirements

Figure 7 shows the feature module of the BCS feature type. The UML note at the top declares
the feature module by naming the feature type being modelled (feature BCS) and the SPL that
it belongs to (SPL TelSoft). The requirements of BCS are shown as a single feature-machine
declared in a UML note (feature-machine main). The input and output language of main is
based on the TelSoft world model shown in Figure 3. The requirements of BCS are as follows.
A call is initiated upon a StartCall request (transitions t1 and t4); if the callee is not available,
the call is removed (transition t7). A voice connection is established when the callee accepts
the call (transitions t5 and t6). At any point in a call, the call is removed upon an EndCall
request (transitions t2 and t3).

3.3.1.2 Syntax

14

idle

callerWaitAnswer

calleeWaitAnswer

talking

inCall

SPL TelSoft
feature BCS

t4: Call+(o) [o.callee = user] /
a1: +Processing(BCS = BCS, Call = o)

t5: [call.voice]

t6: AnswerCall() /
a1: call.voice := true

t1: StartCall(target) /
a1: c = +Call(caller = user, callee = target, voice = false),
a2: +Processing(BCS = BCS, Call = c)

t3: call@pre-

t2: EndCall() / a1: -call

callProcessing

busyTreatment

feature-machine main

let call = BCS.Processing.Call
let user = Subscription.User

waitCall

t7: Call+(o) [o.callee = user] /
a1: o-, a1: !Busy()

Figure 7: BCS feature module

A set of feature-type requirements are modelled standalone, as one or more concurrent state
machines, called feature machines (e.g., BCS requirements are modelled as a single feature-
machinemain). A feature machine is shown as a UML state machine, prefaced with a UML note
that contains the feature-machine's declaration (e.g., feature-machine main) and the de�nition
of any macros used to simplify text in the feature machine. There is an implicit variable named
me that refers to the feature's corresponding SPL product. A feature machine consists of

� A set of states, one of which is designated as the initial state by being the destination of
an arrow from a small �lled circle (e.g., the initial state of feature-machine main is idle).
A state can be basic or composite. A composite state consists of one or more concurrent
regions (e.g., state inCall comprises region callProcessing), where each region consists of
a set of states. A region may also have an initial state.

� A set of transitions between states. A transition cannot connect states that are in di�erent
concurrent regions. A transition has a label of the form

id: e [c] / id1: [c1] a1, · · ·, idn: [cn] an
where id is the transition name (e.g., t1), e is the optional triggering event (e.g., triggering

15

event StartCall(target) of transition t1), c is the optional guard condition, and ai (1 ≤
i ≤ n) are concurrent actions named idi with optional guard conditions ci, respectively.
A transition t executes when the state machine is in t's source state, t's triggering event
is occuring, and t's guard condition is true. The execution of t takes the state machine
to t's destination state, and executes those actions of t whose guard conditions are true.
The languages for triggering events, guard conditions, and actions are described below.
The basic constructs are introduced �rst, followed by some abbreviations.

3.3.1.2.1 Triggering Events

The triggering event of a transition is either a world-change event (WCE) or a time event.
A WCE re�ects a primitive change to the world state, such as the addition or removal of an
object, or a change in the value of an object's attribute. A WCE can be expressed in one of
the following basic forms, where C is a concept in the world model, and the WCE parameter
o is an object instance of type C:

� val(C+(o))(WS) = object o has just been added to the world state (e.g., Call+(o)).

� val(C-(o))(WS) = object o has just been removed from the world state (e.g., Call-(o)).

� val(C.a∼(o))(WS) = o's attribute a has just changed (e.g., call.voice∼(o)).

A time event is of the form after(t), which means that duration t has passed since the transi-
tion's source state was entered.

3.3.1.2.2 Guard Conditions

The guard condition, of a transition or action, is a predicate over the world state and any
parameters of the transition's triggering event (see Section 3.2.4.1.4). For example, transition
t4 of feature BCS in Figure 7 has a guard that is based on the value of the triggering event's
parameter o.

3.3.1.2.3 Actions

An action of a transition is a world-change action (WCA). A WCA re�ects a feature's command
to make a primitive change to the world state, such as adding or removing an object from the
world state4, or changing the value of an object attribute. A WCA can be expressed in one
of the following basic forms. The expressions below refer to concepts A (an association), M
(a message), and C (a concept that is not an association, message, feature, or SPL); they also
refer to attributes (ai), roles (ri), parameters (pi), expressions (expi), and object expressions
(oi):

� +C(a1 = exp1, ..., an = expn) adds to the world state a C object whose attributes
ai have corresponding values val(expi)(WS) (e.g., +User()).

4A WCA cannot add or remove an SPL or feature object. All constraints on the presence of SPL and feature
objects in the world state are speci�ed solely in the feature and world models.

16

� +A(a1 = exp1, ..., an = expn, r1 = o1, ..., rm = om) adds to the world state an
A link whose attributes ai have corresponding values val(expi)(WS) and relates objects
val(oj)(WS) (1 ≤ j ≤ m) in roles rj (e.g., +Call(caller = user, ...)).

� !M(p1 = exp1, ..., pn = expn) adds to the world state an M message object from me
whose parameters pi have corresponding values val(expi)(WS).

� -exp removes the objects exp and their dependent links from the world state. The
dependent links of an object o are the links L that relate o, the links that relate the
links in L, and so on. For example, in a world state of the world model in Figure 3, the
dependent links of a User include all of the Call links that the User participates in, and
all of the Processing links that that relate those Call links.

� o.a := exp changes the value of val(o)(WS)'s attribute a to value val(exp)(WS) (e.g.,
call.voice := true).

An object-adding WCA (i.e., the �rst three WCAs in the above list) can have a pre�x of the
form `v = ', which declares a variable v that stands for the added object; e.g.,

c = +Call(caller = user, ...)

Expressions in the other WCAs of the same transition can contain this variable.

3.3.1.2.4 Abbreviations

A transition label can be simpli�ed using the following abbreviations:

� Navigation expressions that start from me need not explicitly include the pre�x `me.'.
For example, in the macro user, Subscription.User simpli�es me.Subscription.User.

� WCE expressions can be simpli�ed if they apply to speci�c objects in the world state (as
opposed to applying to some arbitrary object that is passed in as the WCE parameter).
For example, v.voice∼ simpli�es Call.voice∼(o) [o = v].

� A message WCE can directly list its data parameters (rather than referring to the mes-
sage object), and the transition's guard condition and actions can directly refer to those
parameter values (rather than object o's parameters). For example,

StartCall(target) [target = v] / +Call(callee = target, ...)

simpli�es

StartCall+(o) [o.to = me and o.target = v] / +Call(callee = o.target, ...)

17

3.3.1.2.5 Presence Conditions

The presence or absence of optional features in a product's feature con�guration a�ects the
behaviours that exist in the product. For example, an TelSoft product will only have behaviours
for accepting a second call, if the product has CW. In FORML, the dependence of product
behaviours on the presence of features is captured by presence conditions. For example, in
the composed model of TelSoft 's requirements, many transitions are guarded by the presence-
condition CW, which means that the behaviours speci�ed by those transitions only exist in an
TelSoft product, if the product has CW. Presence conditions are speci�ed per optional feature
type. The presence condition P of a feature-type F is speci�ed in F 's feature module as a
predicate that constrains the presence of F features in me; P is speci�ed following the feature
module's declaration in the form feature F [P] (e.g., feature CW [CW] in Figure 8).

3.3.2 Specifying Requirements as Enhancements

3.3.2.1 TelSoft Enhancements

We start by describing two TelSoft features, as a way of introducing some of the types of
enhancement behaviour that we want to be able to model in FORML.

Figure 8 shows the feature module of the CW feature type (CW for short). CW can
become active only when the subscriber is in a call with a voice connection. We capture
this condition by modelling CW as new transitions to and from BCS 's state talking. The
second UML note in Figure 8 speci�es the context of these transitions � namely, the region
BCS{main.inCall.callProcessing} (where pre�x BCS{} quali�es names that are local to the BCS
feature module, main is the name of BCS 's top-level machine, inCall is the name of a top-level
state within main, and callProcessing is the name of a region within inCall). The transitions
specify the conditions for activating and deactivating the CW feature (all transitions besides
t2), and speci�es that when there is a call waiting, the user can toggle the voice connection
between the two calls (transition t2).

In addition, there are a few planned interactions between CW and BCS that need to be
modelled: CW overrides BCS when a second call arrives, by accepting the second call rather
than removing it (transition t1); and when the voice-connected call is removed or when the
subscriber hangs up, by establishing a voice connection with the second call (transitions t4 and
t5).

Figure 9 shows the feature module of the CD feature type (CD for short). CD delivers a
caller's number to the subscriber. When capture this behaviour as a new action a1 added to
transition t4 in BCS 's feature module.

Figure 10 shows the feature module of the CDB feature type (CDB for short). CD which
prevents CD from delivering the subscriber's number to a callee. Whe capture this intended
feature interaction by strengthening the guard of a1 added by CD (as described above) with a
condition stating that CD 's behaviour only applies if the caller is not subscribed to CDB.

3.3.2.2 Syntax

A set of feature-type requirements can be modelled as enhancements: that is, as structural
extensions of other feature modules. For example, the requirements of CW are modelled

18

BCS{talking} callWaiting

t2: ToggleHold() /
a1: active.voice := false,
a2: waiting.voice := true

t3: second@pre- / a1: BCS{call}.voice := true

t5: override(BCS{t2}) /
a1: -active,
a2: waiting.voice := true,
a3: [second = waiting] -CW.Second,
a4: [second = waiting] +Processing(BCS = BCS, Call = call)

fragment main extends BCS{main.inCall.callProcessing}

let second = CW.Second.Call
let active = if BCS{call}.voice then BCS{call} else second
let waiting = if not BCS{call}.voice then BCS{call} else second

BCS{main.inCall.callProcessing}

SPL TelSoft
feature CW [CW]

t4: override(BCS{t3}) /
a1: [second = waiting] second.voice := true
a2: -CW.Second,
a3: +Processing(BCS = BCS, Call = second)

t1: override(BCS{t7}) /
a1: +Second(CW = CW, Call = o)

Figure 8: CW feature module

fragment main extends BCS{main}

BCS{t4}:
/ a1: !Caller(user = o.caller)

SPL TelSoft
feature CD [CD]

Figure 9: CD feature module

as extensions of BCS 's feature module. It is even possible to have extensions of extensions
(e.g., the requirements of CDB are speci�ed as extensions of CD 's extensions of BCS 's feature

19

SPL TelSoft
feature CDB

fragment main extends BCS{main}

BCS{t4}:
/ CD{a1}: [strengthen with s1: no o.caller.Subscription.TelephoneService.CDB]

Figure 10: CDB feature module

module). Possible extensions include adding a transition to a feature machine, adding an
action to a transition, and adding a condition to a transition or action guard. A new condition
can be a weakening or strengthening clause: a strengthening clause is in conjunction with the
clause that it strengthens, and a weakening clause is in disjunction with the clause that it
weakens. As described below, strengthening clauses model intended interactions. A condition
c with weakening clauses {w1, · · · , wn} and strengthening clauses {s1, · · · , sm} results in the
expression (c ∧ s1 ∧ · · · ∧ sm) ∨ w1 ∨ · · · ∨ wn. As mentioned above, enhancements can have
enhancements. Suppose that an enhancement weakens a condition c by clause w, and that
another enhancement strengthens clause w introduced by the �rst enhancement by clause s.
The resulting expression is c ∨ (w ∧ s).

Enhancements in a feature module are structured into fragments, where each fragment
speci�es extensions in a particular context. The context of a fragment may be a feature machine,
state, or region in another feature module. In order to specify the context of a fragment, we
need to refer to elements in other feature modules5. The identi�ers in a feature module F can be
referenced by an expression of the form F{txt}, in which all identi�ers in txt are interpreted to
be within F. For example, CW 's feature module has a single fragment, the context of which is
BCS{main.inCall.callProcessing}: i.e., region callProcessing of state inCall of feature-machine
main in BCS 's feature module. A fragment is prefaced with a UML note that contains its
declaration (e.g., fragment main extends BCS{main.inCall.callProcessing}).

Enhancements can specify the addition, retraction, or replacement6 of behaviours associated
with the requirements of other feature types. The feature-module extensions that model each
type are described separately in Sections 3.3.2.2.1, 3.3.2.2.2, and 3.3.2.2.3.

An intended interaction of a feature A with a feature B is modelled in A's feature module
as an enhancement that removes or replaces behaviours associated with B 's requirements. For
example, CW interacts with BCS in that it overrides BCS 's removal of an incoming call, while
the subscriber in already in a call. This interaction is modelled in CW 's feature module as

5The element names in a feature module are local to that feature module. The named elements of a
feature module are feature machines, enhancement fragments, states, regions, transitions, actions, strengthen-
ing/weakening clauses, unspeci�ed functions, constants, and macros. The name of an element must be unique
in its scope: The scope of a feature machine or enhancement fragment is a feature module; the scope of a state
is a feature machine or a region; the scope of a transition, unspecifed function, constant, or macro is a feature
machine; the scope of an action is a transition; and the scope of a weakening/strengthening clause is a guard
condition.

6Although behaviour replacement is essentially a combination behaviour retraction and addition, we consider
it separately due to the close coupling between its components.

20

idle

callerWaitAnswer

calleeWaitAnswer
t11: Call+(o) [o.callee = user]

t7: [call.voice]

t6: AnswerCall()

t8: StartCall(target)

t10: call@pre-

t9: EndCall()

callProcessing

inCall

feature-machine main

let call = BCS.Processing.Call
let user = Subscription.User
let second = CW.Second.Call
let active = if call.voice then call else second
let waiting = if not call.voice then call else second

SPL TelSoft
feature CW

BCS{talking} callWaiting

t3: second@pre- / a1: call.voice := true

t5: override(BCS{t2}) /
a1: -active,
a2: waiting.voice := true,
a3: [second = waiting] -CW.Second,
a4: [second = waiting] +Processing(BCS = BCS, Call = call)

t4: override(BCS{t3}) /
a1: [second = waiting] second.voice := true
a2: -CW.Second,
a3: +Processing(BCS = BCS, Call = second)

t1: override(BCS{t7}) /
a1: +Second(CW = CW, Call = o)

t2: ToggleHold() /
a1: active.voice := false,
a2: waiting.voice := true

Figure 11: CW feature module (modelled as a standalone machine)

an enhancement that overrides behaviours speci�ed in BCS 's feature module. As a second
example, CDB interacts with CD in that it removes CD 's behaviour of delivering the caller's
number to a CD subscriber, if the caller is subscribed to CDB. This interaction is modelled in
CDB 's feature module as an enhancement that removes behaviours speci�ed in CD 's feature
module.

In most cases, an enhancement can alternatively be speci�ed as one or more feature machines
that synchronize with machines in other feature modules. The constructs used for synchronizing
feature machines and the cases where this alternative approach is applicable are described in
Section 3.3.2.2.4.

3.3.2.2.1 Requirements Additions

Requirements additions add new behaviours (i.e., execution traces) to the behaviour model.
New behaviours can always be modelled as a standalone machine, but this sometimes results in
a larger and less-focused feature module than if the new behaviours are modelled as extensions
to an existing feature's machine. For example, our model of feature CW in Figure 8 expresses
the requirements of CW as enhancements to BCS. In contrast, Figure 11 shows a standalone
version of CW, in which, the new behaviours are modelled by transitions t1-t5. However,
even the discerning reader cannot distinguish between these transitions (which model new
behaviours) from the other transitions (which model behaviours leading to the state in which

21

the two new transitions are enabled). In general, whether to model a feature's behavioural
requirements as standalone machines or as enhancements depends on whether a standalone
representation emphasizes the new behaviours: if a standalone representation must also model
the context of the new behaviours and if that part of the model is substantial, then it is better
to model the new behaviours as enhancements.

Syntactically, requirements additions that are modelled as enhancements are expressed as
model fragments (e.g., actions, transitions, regions) that are superimposed onto an existing
feature module. A UML note speci�es the feature machine(s) being enhanced and the context
of the enhancements within those machines. Speci�cally, a context speci�cation helps to indicate
where in the enhanced machine the enhancements are to be attached. A context might be a
transition (to which actions are added), or a state (to which a region is added), or a machine
(to which a transition is added). Multiple enhancements can be modelled together, if they are
expressed with respect to the same context. For an example, see the model of feature voice
mail in Appendix A.

Requirements additions have one of the following forms:

� A new region that extends a state in the enhanced feature machine. In this case, new
behaviours are expressed as a sub-machine that executes concurrently with sub-machines
in the other regions of the extended state.

� A new transition that extends (possibly a sub-machine of) the enhanced feature ma-
chine. Adding a transition may also add new states as its source or destination states. A
new transition t is represented graphically as a sub-machine fragment that includes t and
its source and destination states (expressing as much of the state and region hierarchy as
is necessary to represent the source and destination states within the speci�ed context).
For example, CW is speci�ed as several transition extentions to BCS.

� A new action that extends a transition in the enhanced feature machine. Speci�cally,
a new action id1: [c1] a1 that extends transition t is represented textually within a UML
note:

transition t: / id1: [c1] a1

For example, the CD extends a BCS transition with a new action.

� A weakening clause that extends the guard condition c of a transition or of an action.
Weakening a condition results in the guarded transition or action being executed more
frequently, and therefore leads to added behaviours.

1. If the original c is a guard condition of a transition t, then the weakening clause is
expressed as follows

transition t: [weaken with id: d]

where id is a name assigned to the weakening clause d, and d is a predicate expression
over the world state.

2. If the original c is a guard on an action a in transition t, then the weakening clause
is expressed as follows

transition t: / a: [weaken with id: d]

22

3. It is possible that a weakening clause weakens another (weakening or strengthening)
clause, as opposed to weakening the full guard condition. In this case, the individual
clause to be weakened must be speci�ed. Consider the following series of weakening
and strengthening clauses that extend the guard condition c of transition t :

transition t: [weaken with id1: k]
transition t: [weaken with id2: m]
transition t: [strengthen id1 with id3: n]
transition t: [weaken id3 with id4: p]

The result is a guard [c∨ (k∧ (n∨p))∨m] where the original condition c is weakened
with clauses k andm; clause k is strengthened with clause n; and clause n is weakened
with clause p. To ensure that the speci�cation of the clause to be extended is
unambiguous, it can be prefaced with the name of the feature that added that
clause7. Thus, if the above four weakening clauses are added by features F , G, H,
and J , respectively, then their full expressions would be:

transition t: [weaken with id1: k]
transition t: [weaken with id2: m]
transition t: [strengthen F{id1} with id3: n]
transition t: [weaken H{id3} with id4: p]

3.3.2.2.2 Requirements Retractions

Requirements retractions remove from the behaviour model behaviours associated with the
requirements of other feature types. For example, CDB removes CD 's behaviours. Require-
ments retractions are realized by adding additional criteria to the preconditions of transitions
or guards, so that they execute in fewer conditions. Because the behaviours to be removed
are speci�ed in other feature modules, a requirements retraction is necessarily speci�ed as an
enhancment.

Requirements retractions can be modelled as A strengthening clause that extends the
guard condition of a transition or of an action. Such an extension is speci�ed in the same form
as for a weakening clause, except that the keyword weaken is replaced with strengthen. For
example, CDB strengthens an action guard of CD.

3.3.2.2.3 Requirements Replacements

Requirements replacements replace behaviours associated with the requirements of other feature
types. For example, CW replaces some BCS behaviours that concern processing a second call.
Because the behaviours to be replaced are speci�ed in other feature modules, a requirements
retraction is necessarily speci�ed as an enhancment.

Syntactically, requirements replacements can be modelled as the following extensions of an
existing feature machine:

� A new transition that overrides a transition in the enhanced feature machine. It is
possible but cumbresome to specify overrides without introducing new syntax. Consider

7Clause identi�ers must be unique within a feature.

23

a new transition t2 that overrides transition t1 under condition c. First, t2 's enabling
condition should include that of t1, so that t2 is enabled whenever t1 would be. Thus, if
t1 has a source state s1 that is di�erent from t2 's source state, a triggering event e, and
a guard g, then t2 's label would be

t2: e [inState(s1) ∧ g ∧ c] / ...

where inState(s1) means that the feature machine is in state s1 (discussed in Sec-
tion 3.3.2.2.4). Second, t1 's guard should be strengthened, so that it never executes
when t2 is enabled. Thus, t1 's guard should be strengthened to g ∧ ¬(inState(s2) ∧ c)
where s2 is t2 's source state. If t1 and t2 have the same source state, then the inState
conjuncts are not needed. There are two problems with this approach to specifying over-
rides: (1) It is repetitious in that t1 's enabling condition is repeated within t2 's enabling
condition. Repetition hinders modi�ability: if t1 's enabling condition changes, that of t2
will also have to be changed. (2) It does not explicate the intent of one transition over-
riding another. In the above speci�cation, it is not clear that t2 is intended to override
t1.

To avoid these problems, we propose new constructs for specifying transition overrides:

� The transition override construct is used specify that one transition overrides
another under some world-state condition. Syntactically, the label (up to the actions)
of a new transition t1 that overrides transition t2 under condition c is expressed as
follows:

override(t2) [c] /

Literally, this means that t1 executes instead of t2, provided that the feature machine
is in t1 's source state and c is true. For example, one intended interaction of CW
with BCS is speci�ed by CW{t1} overriding BCS{t7}.

� The transition priority construct is used to specify a weaker form of override:
given two transitions with independent enabling conditions, we can specify that one
overrides the other when they are both enabled. This case di�ers from the above
scenario, in that the overriding transtion's enabling condition does not necessarily
include that of the overriden transition. Syntactically, the label (up to the triggering
event) of a transition t1 that overrides transition t2 when they are both enabled is
expressed as follows:

t2 > t1

� A new action that overrides an existing action in the same transition. Due to problems
analogous to those for specifying transition overrides, we propose a new construct for
specifying action overrides: A new action a2 that overrides action a1 under condition c
is expressed as follows, up to a2 's WCA:

a2: override(a1) [c]

Literally, this means that a2 executes instead of a1, provided c is true.

24

talking callWaiting

t2: ToggleHold() /
a1: active.voice := false,
a2: waiting.voice := true

t3: second@pre- / a1: BCS{call}.voice := true

t5: override(BCS{t2}) /
a1: -active,
a2: waiting.voice := true,
a3: [second = waiting] -CW.Second,
a4: [second = waiting] +Processing(BCS = BCS, Call = call)

feature-machine main

let second = CW.Second.Call
let active = if BCS{call}.voice then BCS{call} else second
let waiting = if not BCS{call}.voice then BCS{call} else second
let BCStalking = inState(BCS{main.inCall.callProcessing.talking})

SPL TelSoft
feature CW

t4: override(BCS{t3}) /
a1: [second = waiting] second.voice := true
a2: -CW.Second,
a3: +Processing(BCS = BCS, Call = second)

t1: override(BCS{t7}) /
a1: +Second(CW = CW, Call = o)

idle

t6: [BCStalking]

t7: [not BCStalking]

Figure 12: CW feature module (modelled as an enhancement in terms of a feature machine)

3.3.2.2.4 Specifying Enhancements as Feature Machines

Most enhancements can be equivalently speci�ed as one or more concurrent feature machines
that synchronize with the feature modules being enhanced. For example, Figure 12 shows a fea-
ture module that expresses the requirements of CW as a single feature-machine CW{main} that
synchronizes with feature-machine BCS{main}: the state CW{main.talking} is entered/exited
whenever state BCS{main.inCall.callProcessing.talking} is entered/exited. The rest of CW 's
requirements (including its retraction of BCS 's requirements) are modelled the same as that
shown in Figure 8. In general, the size and focus of models of enhancements expressed as syn-
chronizing feature machines are comparable to those expressed as feature-module extensions.
Which approach is better depends on which model is clearer.
FORML introduces two synchronizing constructs:

� Synchronization by state makes behaviour in one feature machine conditional upon
the state of another feature machine. To specify that a transition or action with guard g
is performed only when another feature machine is in state s, we strengthen g with the
predicate inState(s); e.g.,

inState(BCS{main.inCall.callProcessing.talking})

.

� Synchronization by transition synchronizes one transition with a transition of another
feature machine. To specify that transition t1 synchronizes with a transition t2 in another
feature machine, we give t1 the triggering eventwhen(t2), which means that t1 is enabled
when t2 executes.

25

In most cases, requirements additions can be speci�ed in terms of synchronizing feature ma-
chines, except for the weakening of conditions. A requirements replacement can be speci�ed
using the transition/action override constructs described in Section 3.3.2.2.3. A requirements
retraction can also be speci�ed as an override, where the overriding transitions/actions make
no changes to the world state.

Although the override constructs were introduced as a means to synchronize feature ma-
chines, they can also be used within a singe machine to coordinate the behaviours in concurrent
regions. The inState and when constructs can be used within a feature machine as well. Fi-
nally, all of the synchronization constructs above can be used in the speci�cation of standalone
requirements.

4 Composing Feature Modules

The requirements for a SPL are derived by composing the feature modules in the SPL's be-
haviour model. The composition yields an integrated model comprising a set of parallel feature
machines that have been extended with fragments. Figure 13 shows part of the integrated model
for the TelSoft SPL: BCS 's feature-machine main is extended with CW 's state callWaiting and
transitions t1-t5 ; and CD 's action a1, which itself is strengthened by feature CDB with clause
s1. The state and transitions extensions and the strengthening clause are shown in grey. Note
that the integrated model uses global names (e.g., CW 's transition t1 is named CW{t1}).

The presence condition of a feature module is manifested in the composed model in one of
two ways: (1) The presence condition is added as a conjunct to all transitions and action guards
introduced in the feature module; if a transition or action has no guard, the presence condition
is added as the guard to the transition or action. For example, the presence condition CW of the
CW feature module is added as a guard to transition CW{t1}, and the presence condition CD
of CD 's feature module is added as a conjunct to the guard of action CD{a1}. (2) Any condition
c (i.e., a guard or weakening/strengthening clause) that is introduced in the feature module is
prefaced with the presence condition as the antecedent. The above rules can be overriden by
adding a $ symbol before the name of a transition, action, or weakening/strengthening clause
(e.g., strengthening clause $s1 in Figure 32 in Appendix A).

More precisely, the semantics of the composition of a pair of feature modules is the super-
imposition of the feature-structure trees (FSTs) of the feature modules. The structuring of the
behaviour model as a composition of feature-modules with the above composition semantics
is based on the feature-oriented software development algebra by Apel et al. [2]. Section 4.1
describes feature-module FSTs, and Section 4.2 describes how FSTs are superimposed.

4.1 Feature-Module FSTs

The FST of a feature module is an abstract-syntax tree of the feature module. Figure 14 shows
a partial FST of CW . Each FST node speci�es the global name (if any) and the type of
feature-module elements, such as a state, a transition, an action, a condition, a clause within
a condition, and so on. A non-terminal node represents a composite element whose structure
is exposed as subtrees of the node. For example, the non-terminal node representing state-
machine BCS{main} has separate subtrees that represent the state hierarchy and transitions of

26

idle

callerWaitAnswer

calleeWaitAnswer

talking

inCall

SPL TelSoft

t5: [call.voice]

t6: AnswerCall() /
a1: call.voice := true

t1: StartCall(target) /
a1: c = +Call(caller = user, callee = target, voice = false),
a2: +Processing(BCS = BCS, Call = c)

t3: call@pre-

t2: EndCall() / a1: -call

callProcessing

busyTreatment

feature-machine BCS{main}

let call = BCS.Processing.Call
let user = Subscription.User
let CW{second} = CW.Second.Call
let CW{active} = if call.voice then call else CW{second}
let CW{waiting} = if not call.voice then call else CW{second}

waitCall

t7: Call+(o) [o.callee = user] /
a1: o-, a1: !Busy()

CW{callWaiting}

CW{t2}: ToggleHold() [CW] /
a1: CW{active}.voice := false,
a2: CW{waiting}.voice := true

CW{t1}: override(t7) [CW] /
a1: +Second(CW = CW, Call = o)

CW{t3}: CW{second}@pre- [CW] / a1: call.voice := true

CW{t4}: override(t3) [CW] /
a1: [CW{second} = CW{waiting}] CW{second}.voice := true
a2: -CW.Second,
a3: +Processing(BCS = BCS, Call = CW{second})

CW{t5}: override(t2) [CW] /
a1: -CW{active},
a2: CW{waiting}.voice := true,
a3: [CW{second} = CW{waiting}] -CW.Second,
a4: [CW{second} = CW{waiting}] +Processing(BCS = BCS, Call = call)

t4: Call+(o) [o.callee = user] /
a1: +Processing(BCS = BCS, Call = o),
CD{a1}:
[CD and CDB{s1}: no o.caller.Subscription.TelephoneService.CDB]
!Caller(user = o.caller)

Figure 13: Integrated TelSoft behaviour model (�...� in transition labels and regions elides
portions of the model)

BCS{main}. A terminal node (which is shaded for easy identi�cation) represents an element
whose structure is atomic in the FST; the element's content is shown as text below the node
(e.g., the triggering event of transition CW{t1}).

Note that a feature-module's FST captures not only elements introduced in the feature
module, but also the context of such elements. The context of an element is represented by the
path of nodes from the FST's root up to the node that represents the element. For example,
the context of transition CW{t1} is the BCS{main} state machine, within the TelSoft SPL,
within the behaviour model (named �machine�).

The grammar for feature-module FSTs is shown in Figure 15. The behaviour-model and
SPL nodes represent the grouping of state machines by SPL in the composite behaviour model.
All of the remaining non-terminals are e�ectively extension points of a behaviour model; that
is, they correspond to feature-module elements that can be extended by enhancements (e.g.,
states can be enhanced with new regions). Feature-module elements that cannot be enhanced
are represented by terminal nodes (e.g., WCAs and predicates). The terminal clause-type
represents the type of an enhancement clause, which can be either weakening or strengthening.

27

machine: behaviour-model

TelSoft: SPL

BCS{main}: state-machine

inCall: state

CW{callWaiting}: state

CW{t1}: transition ...

: destination

: source

"inCall.callProcessing.talking"

"override(t7)"

: trigger

"inCall.callProcessing.CW{callWaiting}"
CW{t1}: condition

: predicate

"CW"

callProcessing: region

a1: action

: WCA

"+Second(CW = CW, Call = o)"

Figure 14: Partial FST of the CW feature module

behaviour-model ::= SPL+

SPL ::= state-machine+

state-machine ::= state* initial-state? transition+ macro*

state ::= region*

region ::= state+ initial-state?

transition ::= source? destination? trigger? condition? action*

action ::= condition? WCA?

condition ::= predicate? condition* clause-type?

Figure 15: Abstract syntax of feature-module FSTs

4.2 Superimposition of Feature-Module FSTs

Two feature-module FSTs are superimposed by recursively merging their common non-terminal
nodes, starting from the FSTs' root nodes; two nodes are merged if they have the same name and
type8. When two nodes are merged, so are their non-terminal child nodes, where possible; both
the merged and unmerged child nodes (including terminal child nodes) are added as children
of the merged parent node.

The superimposition of feature-module FSTs is commutative and associative. A commuta-
tive and associative composition operator is desirable, becuase it avoids a class of unintended
feature interactions that arise due to di�erent composition orders yielding unexpectedly dif-
ferent behaviours [8, 5, 4]. Commutativity and associativity is ensured due to the fact that

8Because non-terminal nodes are matched in part by their names, it follows that all non-terminal nodes
in an FST must be named. All extensible feature-module elements are explicitly named, except for the guard
conditions of transitions and actions. To support composition, a guard condition is implicitly named after its
transition or action; for example, the guard of transition CW{t1} is also named CW{t1}.

28

feature-module FSTs are inherently unordered9: the state-machines in a composite behaviour
model, the regions of a composite state, and the actions of a transition are concurrent and are
therefore unordered; the sibling states of a state-machine or region are inherenetly unordered;
the order in which transitions execute is not given by their relative position in the FST; and
�nally, the order of the strengthening/weakening clauses applied to a condition does not mat-
ter, because the strengthening clauses are composed with the condition by conjunction, and
the result is composed with weakening clauses by disjunction.

5 Conclusions and Future Plans

We have presented FORML, a language for modelling the requirements for features in a set
of SPLs. A FORML model has interrelated views for describing the problem world and the
requirements, in accordance with the Jackson and Zave RE reference model [6]. In addition,
each feature's requirements are described separately in a feature module. The contribution
of FORML is to integrate and adapt best practices for modelling behavioural requirements
with techniques for decomposing artefacts into feature modules. The distinguishing aspects of
FORML are (1) the inclusion of feature phenomena and feature con�gurations in an SPL's
problem world; (2) a systematic treatment of how incremental features evolve a requirements
model, with respect to added, removed, or replaced behaviours; (3) language constructs for
explicitly modelling intended interactions among state-machine models of features; and (4) an
operator for composing feature modules that preserves intended feature interactions, yet is
commutative and associative.

Other advantageous properties of FORML include a UML-like syntax, to ease adoption;
and the ability to model incremental features as model fragments, in order to focus on the
feature's essential requirements.

We are currently investigating analyses of FORML models. We are interested both in
detecting unintended interactions among features and in exploring the con�guration space of a
SPL. This work entails determining how unintended feature interactions manifest themselves
in FORML models, so that we know what properties and patterns the analyses should look
for. It also means modifying analysis tools to so that they adhere to our semantics of feature
composition.

References

[1] S. Apel and C. Kastner. An overview of feature-oriented software development. Journal
of Object Technology, 8, 2009.

9Superimposition of FSTs in general merges nonterminal nodes. However, it is some times desirable to merge
terminal nodes. Two terminal nodes are merged using a rule de�ned for their node type. In these cases, the
commutativity and associativity of FST composition depends on whether such merging rules are commutative
and associative. However, in the superimposition of FORML's feature-module FSTs, merging terminal nodes
is not allowed (matching terminal nodes signals an error in the model), and so commutativity and associativity
is guaranteed by the fact that feature-module FSTs are unordered.

29

[2] S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner. An algebra for feature-oriented
software development, 2007.

[3] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Gri�eth, G. E. Herman, and L. Y-J. The
feature interaction problem in telecommunication systems. In Int. Conf. on Soft. Eng. for
Telecommunication Switching Systems, 1989.

[4] G. Bruns. Foundations for features. In Feature Interactions in Telecommunications and
Software Systems VIII, 2005.

[5] M. Calder, M. Kolberg, E. H. Magill, and S. Rei�-Marganiec. Feature interaction: a critical
review and considered forecast. Computer Networks, 41 (1):115�141, 2003.

[6] M. Jackson and P. Zave. Deriving speci�cations from requirements: an example. In
International Conference on Software Engineering, pages 15�24, 1995.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, 1990.

[8] A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature interaction as a context sharing problem.
In Feature Interactions in Software and Communication Systems X, 2009.

[9] A. van Lamsweerde. Requirements Engineering: From System Goals to UML Models to
Software Speci�cations. Wiley, 2009.

[10] P. Zave. Requirements for evolving systems: a telecommunications perspective. In Proc.
Fifth IEEE International Symposium on Requirements Engineering, pages 2�9, 27�31 Aug.
2001.

A Extended FORML Model of TelSoft

This section presents the FORML model of an extended TelSoft. The feature model for ex-
tended TelSoft is shown in Figure 16. The additional feature types supported are call-forwarding
on busy (CFB), call transfer (CT), three-way calling (TWC), group ringing (GR), ringback when
free (RBF), teenline (TL), terminating call screening (TCS), voice mail (VM), billing, reverse
charging (RC), split billing (SB). The world model for extended TelSoft is shown in Figure 17.
The feature modules of BCS, CW, CD, and CDB are repeated in Figure 18, Figure 19, Figure 20,
and Figure 21 for ease of reference.

Billing For every call, billing charges the caller's account, based on the designated billing
rate and the duration of the call. The Billing feature module is shown in Figure 22.

Call forwarding on busy (CFB) CFB forwards calls received while the subscriber is in
a call, to a designated user. The CFB feature module is shown in Figure 23.

Call transfer (CT) CT enables the subscriber to transfer an ongoing call to a second
remote party by putting the �rst remote party on hold, establishing a second call, and then
establishing a call between the �rst and second remote parties. The CT feature module is
shown in Figure 24.

30

BCS

CW

TelSoft

CFB CD CDB CT GR RBF TCS TL TWC VM

Billing

RC SB

Figure 16: Extended TelSoft feature model

Group ringing (GR) GR replicates a call to the subscriber, to two designated users. As
soon as the subscriber or either of the designated users accepts his/her call, the remaining two
calls are dropped. The GR feature module is shown in Figure 25.

Ringback when free (RBF) RBF remembers the caller of the �rst call received while the
subscriber is in a call, and calls that user when the subscriber ends his/her current call. The
GR feature module is shown in Figure 26.

Reverse charging (RC) RC charges the subscriber for incoming calls. The RC feature
module is shown in Figure 27.

Split billing (SB) SB splits the charge between the subscriber and his/her callers based
on a designated percentage. The SB feature module is shown in Figure 28.

Terminating-call screening (TCS) TCS blocks calls to the subscriber from designated
users. The TCS feature module is shown in Figure 29.

Teenline (TL) If the subscriber makes a call request within a designated curfew period, TL
requires authentication before starting the call. The TL feature module is shown in Figure 30.

Three-way calling (TWC) TWC allows the subscriber to bring a second remote party
into a call by putting the �rst remote party on hold, connecting a second call, and then linking
the two calls. The TWC feature module is shown in Figure 31.

Voice mail (VM) VM allows callers to leave messages for the subscriber when he/she
does not accept the call within some timeout period, and allows the subscriber to check his/her
messages. The VM feature module is shown in Figure 32.

31

User

Call

voice: bool
audio: Audio

caller callee

«TelSoft»
BCS

«inputs»
StartCall(target: User)
EndCall()
AcceptCall()

«outputs»
Busy()

2 0..1

TelSoft
Subscription

Processing

«TelSoft»
CW

«inputs»
EndCall()
ToggleHold()

«TelSoft»
CD

«outputs»
Caller(user: User)

«TelSoft»
CFB

Forwarding

*

«TelSoft»
CT

«inputs»
StartCall(target: User)
EndCall()
CTToggleHold()

«TelSoft»
TWC

«inputs»
StartCall(target: User)
EndCall()
CTToggleHold()
ConnectCalls()

Connect

«role»
 third

Transfer Second

«association»
TWCall

«TelSoft»
GR

«inputs»
AcceptCall()

Call1

Member2

Member1

Content

*

*

«TelSoft»
RBF

Missed

«TelSoft»
TL

pin: PINString

«inputs»
StartCall(target: User)
PIN(pin: PINString)

«outputs»
PINRequest()

Target

«TelSoft»
TCS

Screen

* *

«TelSoft»
VM

«outputs»
Messages(content [*]: VoiceMessage)

VoiceMessage

content: Audio EndPointVMservice

Call2
Service

Record

«TelSoft»
Billing

start [0..1]: DateTime
rate: Rate

BillEntry

start: DateTime
end: DateTime
charge: Currency

 «bm»
Charge

«TelSoft»
SB

rate: Rate

0..1

0..1

0..2 0..2

0..1

0..1

0..1

0..1

0..1 0..1

0..1 0..1

0..10..*

0..10..*

0..*

0..1

Figure 17: Extended TelSoft world model

32

idle

callerWaitAnswer

calleeWaitAnswer

talking

inCall

SPL TelSoft
feature BCS

t4: Call+(o) [o.callee = user] /
a1: +Processing(BCS = BCS, Call = o)

t5: [call.voice]

t6: AnswerCall() /
a1: call.voice := true

t1: StartCall(target) /
a1: c = +Call(caller = user, callee = target, voice = false),
a2: +Processing(BCS = BCS, Call = c)

t3: call@pre-

t2: EndCall() / a1: -call

callProcessing

busyTreatment

feature-machine main

let call = BCS.Processing.Call
let user = Subscription.User

waitCall

t7: Call+(o) [o.callee = user] /
a1: o-, a1: !Busy()

Figure 18: BCS feature module

33

BCS{talking} callWaiting

t2: ToggleHold() /
a1: active.voice := false,
a2: waiting.voice := true

t3: second@pre- / a1: BCS{call}.voice := true

t5: override(BCS{t2}) /
a1: -active,
a2: waiting.voice := true,
a3: [second = waiting] -CW.Second,
a4: [second = waiting] +Processing(BCS = BCS, Call = call)

fragment main extends BCS{main.inCall.callProcessing}

let second = CW.Second.Call
let active = if BCS{call}.voice then BCS{call} else second
let waiting = if not BCS{call}.voice then BCS{call} else second

BCS{main.inCall.callProcessing}

SPL TelSoft
feature CW [CW]

t4: override(BCS{t3}) /
a1: [second = waiting] second.voice := true
a2: -CW.Second,
a3: +Processing(BCS = BCS, Call = second)

t1: override(BCS{t7}) /
a1: +Second(CW = CW, Call = o)

Figure 19: CW feature module

fragment main extends BCS{main}

BCS{t4}:
/ a1: !Caller(user = o.caller)

SPL TelSoft
feature CD [CD]

Figure 20: CD feature module

34

SPL TelSoft
feature CDB

fragment main extends BCS{main}

BCS{t4}:
/ CD{a1}: [strengthen with s1: no o.caller.Subscription.TelephoneService.CDB]

Figure 21: CDB feature module

SPL TelSoft
feature Billing

feature-machine main

let call = BCS.Processing.Call
let user = Subscription.User
let isCaller = (user = call.caller)

idle talking

t1: [isCaller and call.voice = true] / a1: Billing.start = currDateTime()

t2: call@pre- /
a1: b = +BillEntry(start = Billing.start, end = currDateTime(), charge = charge()),
a2: +Charge(BillEntry = b, User = user)

Figure 22: Billing feature module

SPL TelSoft
feature CFB [CFB]

fragment main extends BCS{main}

BCS{t3}:
[strengthen with s1: no BCS{call}]

BCS{t7}:
/ a1: c = +Call(caller = o.caller, callee = CFB.Forwarding.User, voice = false),
 a2: +Processing(BCS = o.caller.Subscription.TelephoneService.BCS, Call = c)

Figure 23: CFB feature module

35

SPL TelSoft
feature CT [CT]

BCS{inCall.callProcessing}

BCS{talking}

waitStartCall

t1: CTToggleHold() / a1: BCS{call}.voice = false

t2: CTToggleHold() / a1: BCS{call}.voice = true

InTwoCalls

t3: StartCall(target) /
a1: c = +Call(caller = BCS{user}, callee = target, voice = false),
a2: +Transfer(CT = CT, Call = c)

fragment main extends BCS{main}

let transfer = CT.Transfer.Call
let remote = if BCS{call}.caller = BCS{user} then BCS{call}.callee else BCS{call}.caller
let service(u: User) = u.Subscription.TelephoneService

BCS{t3}:
[strengthen with $s1: no BCS{call}]

waitAnswer

talking

BCS{callerWaitAnswer}

t8: override(BCS{t3}) /
a1: -CT.Transfer,
a2: +Processing(BCS = BCS, Call = transfer)

t4: [transfer.voice]

t5: override(BCS{t2}) /
a1: -transfer, a2: BCS{call}.voice = true

t6: transfer@pre- /
a1: BCS{call}.voice = true t9: override(BCS{t2}) /

a1: -BCS{call}, a2: -transfer,
a3: c = +Call(caller = remote, callee = transfer.callee, voice = true),
a4: +Processing(BCS = service(remote).BCS, Call = c)
a5: +Processing(BCS = service(transfer.callee).BCS, Call = c),

t7: override(BCS{t3}) /
a1: -CT.Transfer,
a2: +Processing(BCS = BCS, Call = transfer)

BCS{idle}

Figure 24: CT feature module

SPL TelSoft
feature GR [GR]

fragment main extends BCS{main}

let user1 = GR.Member1.User
let user1 = GR.Member2.User
let call1 = GR.Call1.Call
let call2 = GR.Call2.Call
let service(u: User) = u.Subscription.TelephoneService

BCS{t4}:
/ a1: c1 = +Call(caller = o.caller, callee = user1),
 a2: c2 = +Call(caller = o.caller, callee = user2),
 a3: +Call1(GR = GR, Call = c1),
 a4: +Call2(GR = GR, Call = c2)

BCS{t6}:
/ a1: -call1, a2: -call2

BCS{inCall.callProcessing.callee.waitAnswer} BCS{idle}

t1: AnswerCall+(o) [o.to = service(user1)] /
a1: -BCS{call}, a2: -call2

t1: AnswerCall+(o) [o.to = service(user2)] /
a1: -BCS{call}, a2: -call1

Figure 25: GR feature module

36

SPL TelSoft
feature RBF [RBF]

fragment main BCS{main}

BCS{t7}:
/ a1: [no RBF.Missed] Missed+(RBF = RBF, User = o.caller)

BCS{idle} BCS{inCall.callProcessing.callerWaitAnswer}

t1: [one RBF.Missed] /
a1: c = +Call(caller = BCS{user}, callee = RBF.Missed.User, voice = false),
a2: +Processing(BCS = BCS, Call = c),
a3: -RBF.Missed

Figure 26: RBF feature module

fragment main extends Billing{main}

let service(u: User) = u.Subscription.TelephoneService
let callee = Billing{call}.callee@pre

Billing{t2}:
a1: override(Billing{a2}) [one service(callee).RC] +Charge(BillEntry = b, User = callee)

SPL TelSoft
feature RC

Figure 27: RC feature module

fragment main extends Billing{main}

let service(u: User) = u.Subscription.TelephoneService
let callee = Billing{call}.callee@pre

Billing{t2}:
a1: override(Billing{a1}) [one service(callee).SB] b = +BillEntry(start = Billing.start, end = Billing{currDateTime}(), charge = calleeCharge()),
a2: [one service(callee).SB] b2 = +BillEntry(start = Billing.start, end = Billin{currDateTime}(), charge = callerCharge()),
a3: [one service(callee).SB] +Charge(BillEntry = b2, User = caller)

SPL TelSoft
feature SB

Figure 28: SB feature module

37

t1: override(BCS{t4}) [o.caller in TCS.Screen.User] / a1: -o

SPL TelSoft
feature TCS [TCS]

fragment main extends BCS{main}

BCS{idle}

Figure 29: TCS feature module

SPL TelSoft
feature TL [TL]

fragment main extends BCS{main}

BCS{idle} waitPIN

t1: override(BCS{t1}) [curfew()] /
a1: !PINRequest(),
a2: [one RBF.Target] -RBF.Target,
a2: +Target(TL = TL, User = target)

BCS{inCall.callProcessing}

t1: PIN(pin) [validPIN()] /
a1: c = +Call(caller = user, callee = TL.Target.User, voice = false),
a2: +Processing(BCS = BCS, Call = c),

BCS{callerWaitAnswer}t2: PIN(pin) [not validPIN()]

Figure 30: TL feature module

38

SPL TelSoft
feature TWC [TWC]

BCS{inCall.callProcessing}

BCS{talking}

waitStartCall

t1: TWCToggleHold() / a1: BCS{call}.voice = false

t2: TWCToggleHold() / a1: BCS{call}.voice = true

InTwoCalls

t3: StartCall(target) /
a1: c = +Call(caller = BCS{user}, callee = target, voice = false),
a2: +Connect(TWC = TWC, Call = c)

fragment main extends BCS{main}

let connect = TWC.Connect.Call
let remote = if BCS{call}.caller = BCS{user} then BCS{call}.callee else BCS{call}.caller
let service(u: User) = u.Subscription.TelephoneService

BCS{t3}:
[strengthen with $s1: no BCS{call}]

waitAnswer

talking

BCS{callerWaitAnswer}

t8: override(BCS{t3}) /
a1: -TWC.Connect,
a2: +Processing(BCS = BCS, Call = connect)

t4: [connect.voice]

t5: override(BCS{t2}) /
a1: -connect, a2: BCS{call}.voice = true

t6: connect@pre- /
a1: BCS{call}.voice = true

t7: override(BCS{t3}) /
a1: -TWC.Connect,
a2: +Processing(BCS = BCS, Call = connect)

t9: ConnectCalls() /
a1: BCS{call}-, a2: connect-,
a3: twc = +TWCall(caller = BCS{call}.caller, callee = BCS{call}.callee, third = connect.callee, voice = true),
a4: +Processing(BCS = BCS, Call = twc),
a5: +Processing(BCS = service(remote).BCS, Call = twc),
a6: +Processing(BCS = service(connect.callee).BCS, Call = twc)

inTCW

Figure 31: TWC feature module

39

SPL TelSoft
feature VM [VM]

fragment connectCallertoVM extends BCS{main}

BCS{t3}:
[strengthen with $s1: no BCS{call}]

BCS{idle}BCS{inCall.callProcessing.waitCalleeAnswer}

t1: after(t) /
a1: -BCS{call},
a2: c = +Call(caller = BCS{call}.caller, callee = VM.VMService, voice = true),
a3: +Processing(BCS = service(BCS{call}.caller).BCS, Call = c),
a4: m = +VoiceMessage(content = WM{empty}),
a5: +Record(VoiceMessage = m, Call = c),
a6: +Content(VM = VM, VoiceMessage = m)

BCS{inCall.callProcessing.talking}

fragment recordMessage extends BCS{main}

let vmService = VM.Service.VMService
let message = BCS{call}.Record.VoiceMessage

fragment checkMessages extends BCS{main}

BCS{t1}:
/ a1: [target = VM.Service.VMService] !Messages(content = VM.Content.VoiceMessage)

$t1: after(t) [BCS{call}.callee in VMServices and not BCS{call}.callee = vmService] /
a1: message.content = audio(BCS{call})

Figure 32: VM feature module

40

