
Algorithms in the Ultra-Wide Word Model

University of Waterloo Technical Report CS-2012-21

Arash Farzan1, Alejandro López-Ortiz2, Patrick K. Nicholson2, and Alejandro Salinger2

1 Max-Planck-Institut für Informatik
afarzan@mpi-inf.mpg.de

2 David R. Cheriton School of Computer Science, University of Waterloo
{alopez-o,p3nichol,ajsalinger}@uwaterloo.ca

Abstract. The effective use of parallel computing resources to speed up algorithms in current multi-
core and other parallel architectures remains a difficult challenge, with ease of programming playing
a key role in the eventual success of these architectures. In this paper we consider an alternative
view of parallelism in the form of an ultra-wide word processor. We introduce the Ultra-Wide Word
architecture and model, an extension of the word-RAM model, that allows for constant time operations
on thousands of bits in parallel. Word parallelism as exploited by the word-RAM model does not suffer
from the more difficult aspects of parallel programming, namely synchronization and concurrency. In
practice, the speedups obtained by word-RAM algorithms are moderate, as they are limited by the
word size. We argue that a large class of word-RAM algorithms can be implemented in the Ultra-
Wide Word model, obtaining speedups comparable to multi-threaded computations while keeping the
simplicity of programming of the sequential RAM model. We show that this is the case by describing
implementations of Ultra-Wide Word algorithms for dynamic programming and string searching. In
addition, we show that the Ultra-Wide Word model can be used to implement a non-standard memory
architecture, which enables the sidestepping of lower bounds of important data structure problems such
as priority queues and dynamic prefix sums.

1 Introduction

In the last few years, multi-core architectures have become the dominant hardware platform. The
potential of these architectures to improve performance through parallelism remains to be tamed,
as effectively using all cores on a single application has proven to be a difficult challenge. We
consider an alternate view of parallelism for a modern architecture in the form of an ultra-wide
word processor. This can be implemented by replacing one or more cores with a very wide word
Arithmetic Logic Unit (ALU) that can perform operations on a very large number of bits in parallel.

The idea of executing operations on a large number of bits simultaneously has been successfully
exploited in different forms. In Very Long Instruction Word (VLIW) architectures [12] several
instructions can be encoded in one wide word and executed in one single parallel instruction. Vector
processors allow execution of one instruction on multiple elements simultaneously, implementing
Single-Instruction-Multiple-Data (SIMD) parallelism. This form of parallelism led to the design of
supercomputers such as the Cray architecture family [30], and is now present in Graphics Processing
Units (GPUs) as well as in Streaming SIMD Extensions (SSE) extensions to scalar processors.

As CPU hardware advances so does the model used in theory to analyze it. The increase in word
size was reflected in the word-RAM model in which algorithm performance is given as a function
of the input size n and the word size w, with the common assumption that w = Θ(log n). In its
simplest version, the word-RAM model allows the same operations of the traditional RAM model.
Algorithms in this model take advantage of bit-level parallelism through packing various elements
in one word and operating on them simultaneously. Although similar to vector processing, the

word-RAM provides more flexibility in that the layout of data in a word depends on the algorithm,
and data elements can be packed in an arbitrary way. Unlike VLIW architectures, the Ultra-Wide
Word model we propose is not concerned with the compiler identifying operations which can be done
in parallel but rather with achieving large speedups in implementations of word-RAM algorithms
through operations on thousands of bits in parallel.

As multi-core chip designs evolve, chip vendors try to determine the best way to use the available
area on the chip, and the options traditionally are more cores or more cache. We believe that the
current stage in processor design allows for the inclusion of an architecture such as the one we present
in this work. In addition, ease of programming is a major hurdle to the eventual success of parallel
and multi-core architectures. In contrast, bit parallelism as exploited by the word-RAM model does
not suffer from this drawback: there is a large selection of word-RAM algorithms (see, e.g. [1, 20, 18,
8]) that readily benefit from bit parallelism without having to deal with the more difficult aspects of
concurrency such as mutual exclusion, synchronization and resource contention. In this sense, the
advantage of an on-chip ultra-wide word architecture is that it would enable word-RAM algorithms
to achieve speedups comparable to multi-threaded computations, while at the same time keeping
the simplicity of sequential programming that is inherent to the RAM model. We argue that this
is the case by showing several examples of implementations of word-RAM algorithms using the
wide word, usually with simple modifications to existing algorithms, and extending the ideas and
techniques from the word-RAM model. We also show how the Ultra-Wide architecture can be used
to simulate a non-standard memory layout, which has been used to sidestep known lower bounds
in important data structure problems [6, 7].

In terms of the actual architecture, we envision the Ultra-Wide ALU together with multi-cores
on the same chip. Thus, the Ultra-Wide architecture adds to the computing power of current
architectures. The results in this paper, however, do not use multi-core parallelism.

1.1 Summary of Results

In this paper, we introduce the Ultra-Wide Word architecture and model, which extends the w-bit
word-RAM model by adding an ALU that operates on w2-bit words. We show that several broad
classes of algorithms can be implemented in this model. In particular:

– We describe Ultra-Wide Word implementations of dynamic programming algorithms for the
subset sum problem, the knapsack problem, the longest common subsequence problem, as well as
many generalizations of these problems. Each of these algorithms illustrates a different technique
(or combination of techniques) for translating an implementation of an algorithm in the word-
RAM model to the Ultra-Wide Word model. In all these cases we obtain a w-fold speedup over
word-RAM algorithms.

– We also describe Ultra-Wide Word implementations of popular string searching algorithms: the
Shift-And/Shift-Or algorithms [2, 34], and the Boyer-Moore-Horspool algorithm [22]. As with
the dynamic programming algorithms, we obtain a w-fold speedup over the original algorithms.

– Finally, we show that the Ultra-Wide Word model is powerful enough to simulate a non-standard
memory architecture called Random Access Memory with Byte Overlap (RAMBO). This allows
us to implement data structures and algorithms that circumvent known lower bounds for the
word-RAM model.

The rest of this paper is organized as follows. In Section 2 we describe the Ultra-Wide architec-
ture and model of computation. We show in Sections 3 how to simulate a Random Access Machine

2

with Byte Overlap (RAMBO) memory architecture. In Sections 4 and 5 we show examples of UW-
RAM implementations of algorithms for Dynamic Programming and String Searching. We present
concluding remarks in Section 6.

2 The Ultra-Wide word-RAM model

The Ultra-Wide word-RAM model we propose is an extension of the word-RAM model. We briefly
review the key features of the word-RAM model together with some of its most representative
algorithms.

2.1 Algorithms in the word-RAM model

The word-RAM is a variation of the RAM model in which a word has length w bits, and the
contents of the memory are assumed to be integers in the range {0, . . . , 2w−1} [18]. This implies
that w ≥ log n, where n is the size of an input problem, and that the size of the memory is at
most 2O(w); otherwise a memory cell cannot be addressed using a constant number of words. The
word-RAM includes the usual load, store and jump instructions of the RAM model, allowing for
immediate operands and for direct and indirect addressing. In this model, arithmetic operations
on two words are modulo 2w and the instruction set includes left and right shift operations (equal
to multiplication and division by powers of two) and boolean operations. All instructions take
constant time to execute. There are different versions of the word-RAM model depending on the
instruction set assumed to be available. The restricted model is limited to addition, subtraction, left
and right shifts and boolean operations AND, OR, and NOT. These instructions augmented with
multiplication constitute the multiplication model. Finally the AC0 model assumes that all functions
computable by an unbounded fan-in circuit of polynomial size (in w) and constant depth are
available in the instruction set and execute in constant time. This definition includes all instructions
from the restricted model and excludes multiplication. We refer to the reader to the survey by
Hagerup [18] for a more extended description of the model and a discussion of its practicality.

Algorithms in the word-RAM model take advantage of the intrinsic parallelism in instructions
that operate on words. The simplest examples are boolean operations: in one instruction we can
compute the AND or OR of w sets of 1 bit each. In general, word-RAM algorithms exploit this
parallelism by operating on various elements in parallel using operations on w-bits words. Word-level
parallelism is the only source of increased efficiency with respect to traditional RAM algorithms,
and hence w is the maximum speedup that can be obtained [18].

There are various algorithms for fundamental problems that take advantage of word-level par-
allelism or a bounded universe, some of which fit into the word-RAM model, although are not
explicitly designed for it [33]. Much attention has been given to sorting and searching, for which
known lower bounds in the comparison model do not carry to the word-RAM model [15]. For ex-
ample, in a word-RAM model with multiplication, sorting n words can be done in O(n log log n)
time and O(n) space deterministically [20], and in expected O(n

√
log log n) time and O(n) space

using randomization [21]. Word-RAM techniques have also been applied in many different areas,
such as succinct data structures [23, 26], computational geometry [8, 9], and text indexing [16].

2.2 Ultra-Wide RAM

The Ultra-Wide word-RAM model (UW-RAM) extends the word-RAM model by introducing an
Ultra-Wide ALU with w2-bit wide words, where w is number of bits in a word-RAM model. The

3

W1W0 W2 Ww−1

lsb msb

Fig. 1. A wide word in the Ultra-Wide Word architecture. The wide word is divided in w blocks of w bits each, shown
here in increasing number of block from left to right.

Ultra-Wide ALU supports the basic operations available in a word-RAM model with multiplication
on the entire word at once. Thus the supported operations are: addition, subtraction, left and right
shift, bitwise boolean operations, and multiplication. In principle we allow multiplication, although
the results of this paper require only two multiplications by constants, which can be replaced by
straightforward AC0 operations. The model maintains the standard w-bit ALU, as well as w-bit
memory addressing. In terms of real world parameters, the wide word in the Ultra-Wide ALU would
presently have between 1,000 and 10,000 bits, and could increase even further in the future.

Provided that the UW-RAM supports the same operations as the word-RAM, the techniques
to achieve bit-level parallelism in the word-RAM extend directly to the UW-RAM. However, since
the word-RAM assumes that a word can be read from memory in constant time, many operations
in word-RAM algorithms can be implemented through table lookups. For example, counting the
number of one bits in a word of log n bits can be implemented through two table lookups to a
precomputed table that stores the number of set bits for each number of log n/2 bits. The space
used by the table is

√
n words. We cannot expect to achieve the same constant time lookup operation

with words of w2 bits since the size of the lookup tables would be prohibitive. However, we allow
for parallel table lookup operations within a wide word, implemented through parallel memory
accesses in blocks within a wide word.

Before describing the memory access operations supported by the model we introduce some
notation. Let W denote a w2-bit word. Let W [i] denote the i-th bit of W , and let W [i..j] denote
the contiguous sub-block of W from bit i to bit j > i, inclusive. The least significant bit of W

is at W [0], and thus W =
∑w2−1

i=0 W [i] × 2i. For the sake of memory access operations we divide
W into w-bit blocks that can access different w-bit words in memory. Let Wj denote the j-th
contiguous block of w bits in W , for 0 ≤ j ≤ w − 1, and let Wj [i] denote the i-th bit within Wj .
Thus Wj = W [jw..(j + 1)w − 1] and W =

∑w−1
j=0 2j × (

∑w−1
i=0 Wj [i] × 2i). The division of a wide

word in blocks is solely intended for certain memory access operations, and other operations have
no notion of block boundaries. Figure 1 shows a representation of a wide word, which depicts bits
with increasing significance from left to right. Thus, shifts to the left (right) by i are equivalent to
division (multiplication) by 2i. In the description of operations with wide words we generally refer
to variables with uppercase letters, and to regular variables that use one w-bit word with lower
case. In addition, we use 0 to denote a wide word with value 0. We use standard C-like notation
for operations AND (‘&’), OR (‘|’), NOT (‘∼’) and shifts (‘<<’,‘>>’).

Memory access operations. In this architecture, w (not necessarily contiguous) words from
memory can be transferred into the w blocks of a wide word W in constant parallel time. These
blocks can be written to memory in parallel as well. Let MEM denote regular RAM memory,
indexed by addresses to words3. The memory access operations provided by the model that involve

3 A more sophisticated version of the model could consider accessing half-words and individual bytes as well, which
would contribute to space savings for some algorithms.

4

Name Input Semantics

read block W , j, address Wj ←MEM[address+j]

read word W , address for all j in parallel: Wj ←MEM[address+j]

read content W , address for all j in parallel: Wj ←MEM[address+Wj]

write block W , j, address MEM[address+j]←Wj

write word W , address for all j in parallel: MEM[address+j]←Wj

write content W , V , address for all j in parallel: MEM[address+Vj]←Wj

Table 1. Wide word memory access operations supported by the UW-RAM.

wide words are specified in Table 1. Note that reading several (possibly non-contiguous) words from
memory simultaneously is an assumption that is already made by any shared memory multiprocess-
ing model. While, in reality, simultaneous access to all addresses in actual physical memory (e.g.,
DRAM) might not be possible, in shared memory systems, such as multi-core processors, the slow-
down is mitigated by truly parallel access to private and shared caches, and thus the assumption
is reasonable. We therefore follow this assumption in the same spirit.

2.3 UW-RAM Subroutines

We now describe some operations that will be used throughout the UW-RAM implementations
we describe in later sections. A procedure we call transpose serves to bring together bits from all
blocks into one block in constant time, while a procedure called reverse transpose is the inverse
function. We also describe a parallel comparator, which is a standard technique used in word-RAM
algorithms.

Transpose Let W be a word in which all bits are zero except possibly for the first bits of each
block. The transpose operation moves the first bit of each block of a word W to the first block of
the word, i.e., if X = transpose(W), then X[j] = Wj [0] for 0 ≤ j < w, and the rest of the bits of
X are zero (See Figure 2). The transpose operation can be implemented by using the compression
operation described by Brodnik [5, Ch 4.]. This operations takes a (regular size) word x whose bits
all zeros but possibly for the bits in t blocks of k bits each that can have set bits (not necessarily
equal across blocks). These blocks start at regular intervals of s bits4. The operation returns a word
y with the contents of all blocks of x concatenated at the beginning of the word, and zeros in the
rest of the word. More specifically, y[i + j · k] = x[i + j · s] for 0 ≤ i < k and 0 ≤ j < t [5]. This

operation can be implemented in constant time by first multiplying x by the constant c = 2ts−2tk
2s−k−1 ,

then shifting the result to the left by (t−1)s+k, and finally doing a bitwise AND with 2tk−1 [5]. In
the case of the transpose operation we have t = s = w and k = 1. Note that the three constants can
be computed in constant time in the UW-RAM model, and since it t, s, k are fixed for any call to
transpose, they can be hardwired in the transpose procedure. Note as well that the multiplication
in the compression operation leaves relevant bits of the result in up to bit ts− s+ tk+ k− 1, which
is w2 in our model. In order to accommodate this operation, we assume that the wide word has a
constant number of extra bits after the (w2−1)-th bit in a word. The pseudocode for the transpose
procedure is shown in Algorithm 1.

4 This is called an (s, k)-sparse register in [5].

5

Algorithm 1 transpose(W)

X ←W × 2w
2
−2w

2w−1−1
{brings bits to contiguous positions in X[(w − 1)w + 1..w2]}

X ← (X << (w − 1)w + 1) & (2w − 1) {shifts bits to X0 and cleans the rest of X}
return X

W1W0 W2 Ww−1

W

X

Fig. 2. The transpose operation takes a wide word W whose set bits are restricted to the first bits of each block and
compresses them to the first block of a wide word.

Reverse Transpose This operation is the inverse of the transpose operation. It takes a word
W whose set bits are all in the first block and spreads them across blocks of a word X so that
Xj [0] = W [j] for 0 ≤ j < w. We implement this operation by modifying the spreading operation
in [5, Algorithm 4.3] to avoid reversing the order of the bits, and to end with all bits at the beginning
of each block. We first replicate the contents of the first block in all blocks, and then extract the
j-th bit of each block j. We then move this bit to the first bit of the block via four constant time
operations. Algorithm 2 describes the details of this procedure.

Note that the transpose and reverse transpose operations require one multiplication by a con-
stant each, and these are all the multiplications that we use in our results. Both operations are
clearly in AC0, and thus the model can also be regarded as a restricted model with two non-standard
AC0 operations.

Comparators Many word-RAM algorithms perform operations on pairs of elements in parallel by
packing these elements in fields within one word. It is useful to be able to do fieldwise comparisons
between two words. Suppose a word (either regular or wide) is divided in f -bit fields, with each
field representing an (f − 1)-bit number. Let G and F be two such words and let Fi and Gi denote
the contents of the i-th field in F and G, respectively. Suppose that we want to identify all Fi such
that Fi ≥ Gi. Fieldwise comparisons can be done by setting the most significant bit of each field
in F as a test bit and computing H = F − G. The most significant bit of the i-th field in H will
be 1 if and only if Fi ≥ Gi [18]. Suppose we now want to operate only on the values of F that are
greater than or equal to their corresponding value in G. We first mask away all but the test bits in
H. A mask M with ones in all bits of the relevant fields and zeros everywhere else (including test
bits) can be obtained by computing M = H− (H << (f−1)). The result of (A & F) contains then
only the values of fields that pass the test [18]. Clearly this operation takes constant time, and it
can be easily adapted to other standard comparisons. We shall assume that direct comparisons as
well as operations that build on these (such as taking the fieldwise maximum between two words)
are available and take constant time [18].

3 Simulation of RAMBO

The Random Access Machine with Byte Overlap (RAMBO) is a model of computation first in-
troduced by Fredman and Saks [13] and further described by Brodnik [5]. In the standard RAM

6

Algorithm 2 reverse transpose(W)

C ← 2w
2
−1

2w−1
{Cj = 1 for all j}

X ←W × C {Xj = W0 for all j}
D ← 2(w+1)w−1

2w+1−1
{Dj = 2j for all j}

X ← X & D {Xj [j] = W [j]}
M ← C >> (w − 1) {Mj = 2w−1 for all j}
X ←M −X {Xj [w − 1] = 0⇔ Xj [j] = 1 for all j}
X ← (∼ X & M) << (w − 1) {Xj = W [j] for all j}
return X

B4

B8 B9

B5

B10 B11

B6

B12 B13

B7

B!4 B15

B2 B3

B1

Register 0 1 2 3 4 5 6 7

Bit
0

1

2

3

Fig. 3. Yggdrasil memory layout: each node in a complete binary tree is a RAMBO bit and registers are defined as
paths from a leaf to the root. For example, register 3 contains bits B11,B5,B2, and B1 (shaded nodes).

model of computation, memory is organized in registers or words, each word containing a set of
bits. Any bit in a word belongs to only that word. In contrast, in the RAMBO model words can
overlap, that is, a single bit of memory can belong to several words. The topology of the memory,
i.e., a specification of which bits are contained in which words, defines a particular variant of the
RAMBO model. Variants of this model have been used to sidestep lower bounds for important data
structure problems. For example, Brodnik et al. [6] use a variant of RAMBO called Yggdrasil in
a data structure that achieves constant time for the operations insert, delete, membership, min,
max, deletemin, deletemax, predecessor, and successor over a bounded universe of integers (known
as the discrete extended priority queue problem [31]). In the Yggdrasil variant of RAMBO, words
in memory are organized as paths from leaves to the root in a complete binary tree. Thus, bits
might belong to several paths. Figure 3 shows an example of this this RAMBO layout.

We show how the UW-RAM can be used to implement memory access operations for any given
RAMBO of word size at most w bits in constant time. Thus, the time bounds of any algorithm in
the RAMBO model carry directly to the UW-RAM.

3.1 Implementing RAMBO operations in the UW-RAM

Let B1, . . . ,BB denote the bits of RAMBO memory. A particular RAMBO memory layout can be
defined by its appearance sets, this is, the locations of each bit Bi in the RAMBO memory [5]. For
example, in the Yggdrasil model depicted in Figure 3, the appearance set of B1 is {reg[i].bit[3]|i =
0, . . . , 7}, the one of B4 is {reg[0].bit[1],reg[1].bit[1]}, and the one of B12 is {reg[4].bit[0]}. Equiva-
lently, the layout can be specified by the registers and the bits contained in them. In the example
above, reg[0]=B8B4B2B1, and in general reg[i].bit[j]= Bk, where k = bi/2jc + 2m−j−1 (m = 4 in
the example) [6].

7

Algorithm 3 rambo read(t)

1: read block(W,R[t]) {wj ←R[t, j]}
2: read content(W,&A) {wj ← A[R[t, j]]}
3: transpose(W)
4: write block(W, 0,&ret) {ret←W0}
5: return ret

Algorithm 4 rambo write(t,B = Bi0 . . .Bib−1
)

1: read block(W, 0,B) {w0 ← B}
2: reverse transpose(W)
3: read block(V,R[t]) {Vj ←R[t, j]}
4: write content(W,V,&A) {A[R[t, j]]←Wj}

In order to implement memory access operations on a given RAMBO using the UW-RAM,
we need to represent the memory layout of RAMBO in standard RAM. We assume that the
RAMBO memory layout is given as a table R that stores, for each register and bit within the
register, the number of the corresponding RAMBO bit. Thus, if reg[i].bit[j]= Bk, for some k, then
R[i, j] = k. This is without loss of generality as this representation can be easily precomputed from
the appearance sets. We assume that R is stored in row major order.

Given a RAMBO memory of r registers of b ≤ w bits each, and B ≤ br distinct appearance
sets, we want to store its contents in RAM. For this, we simply store each bit Bi in a different word.
Thus, A[i] stores the value of Bi, where A is an array of integers in RAM. The total space used by
this representation is then Bw bits, where w is the number of bits in a RAM word. Naturally we
could store more than one bit in each word of A, however, this representation allows us to avoid
concurrent writes to a same word.

Given an index t of a register of a RAMBO represented by R, we can read the values of each
bit of reg[t] from RAM and return the b bits in a word. Doing this sequentially for each bit might
take O(b) time. Using the wide word we can take advantage of parallel reading and the transpose
operation to retrieve the contents of reg[t] in constant time. Let reg[t]= Bi0 . . .Bib−1

. The read
operation first reads the value of a bit Bij into block Wj of W by assigning Wj = A[R[t, j]]. The
second step consists of one transpose operation, after which the b bits are stored in W0. Algorithm 3
shows the read operation, which takes constant time.

In order to implement the write operation reg[t]= Bi0 . . .Bib−1
of RAMBO, we first set W0 =

Bi0 . . .Bib−1
and perform a reverse transpose operation to place each bit Bj in block Wj . We then

write the contents of each Wj in A[R[t, j]]. Algorithm 4 shows this operation, which takes constant
time as well.

Since the read and write operations described above are sufficient to implement any operation
that uses RAMBO memory (any other operation is implemented in RAM), we have the following
result.

Theorem 1. Let R be any RAMBO memory layout of r registers of at most b bits each, and B
distinct appearance sets, with b ≤ w and logB ≤ w. Let A be any RAMBO algorithm that uses R,
and runs in time T . Algorithm A can be implemented in the UW-RAM, to run in time O(T), using
rb+B additional words of RAM.

Proof. Table R indicating the RAMBO bit identifier for each register and bit within register can
be stored in rb words of RAM, while the values of each bit can be stored in B words of RAM.

8

Since both rambo read and rambo write are constant time operations, any t-time operation that
uses RAMBO memory can be implemented in UW-RAM in the same time t. In the case that R
is not given, it can be computed from the appearance sets in O(rb) time. This translation from
appearance sets to R is fixed for the same RAMBO layout and needs only to be precomputed
once. ut

By Theorem 1, we can implement any arbitrary RAMBO memory layout and word-RAM algo-
rithm with a moderate space overhead. Note that since any RAMBO implementation requires at
least B bits of RAMBO memory, the relative overhead in space is reduced. The space overheads
above are stated for a generic implementation of RAMBO. However, for particular RAMBO mem-
ory layouts one can save space by storing more than one RAMBO bit per RAM register, or by
replacing table R with a constant time calculation of bit numbers from RAMBO registers and bits
within registers (and adjusting rambo read and rambo write appropriately).

3.2 Constant time priority queue

Brodnik et al. [6] use the Yggdrasil RAMBO memory layout to implement priority queue operations
in constant time using 3M bits of space (2M of ordinary memory and M of RAMBO memory),
where M is the size of the universe. This problem has non-constant lower bound for several models,

including an Ω
(

min
(

lg lgM
lg lg lgM ,

√
lgN

lg lgN

))
lower bound in the RAM model when the memory is

restricted to NO(1), where N is the number of elements in the set to be maintained [32].
For a universe of size M = 2m, the Yggdrasil RAMBO layout consists of r = (M+1)/2 registers

of b = logM bits each, and B = M − 1 distinct appearance sets (See Figure 3 for an example with
M = 16). Thus, applying Theorem 1 we obtain the following:

Corollary 1. The discrete extended priority queue problem can be solved in O(1) worst case time
per operation using 2M + ((M + 1)/2) logMw + (M − 1)w bits, and thus in O(M logM) words of
RAM.

3.3 Constant time dynamic prefix sums

Brodnik et al. [7] use a modified version of the Yggdrasil RAMBO to solve the dynamic prefix sums
problem in constant time. The dynamic prefix sums problem consists of maintaining an array A of
size N , supporting the operations update(j, d) which sets A[j] to A[j] + d, and retrieve(j), which
returns

∑j
i=0A[i] [7], where the sum can be any binary operation. This RAMBO implementation

sidesteps various lower bounds for dynamic prefix sums on different models: there is an Ω(logN) al-
gebraic complexity lower bound [14] as well as and under the semi-group model of computation [19],
and a Ω(logN/ log logN) information-theoretic lower bound [14].

The result of Brodnik et al. [7] uses a complete binary tree on top of array A as leaves. The tree
is similar to the one used in the priority queue problem, but it differs in that only internal nodes
store any information, and that there are m = dlogMe bits stored in each node, where M is the
size of the universe. This tree is stored in a variant of the Yggdrasil memory called m-Yggdrasil,
in which each register correspond again to a path from a leaf to the root, but this time each node
stores not only one bit but the m bits containing the sum of all leaves in the left subtree of that
node [7]. It is assumed that nm ≤ w, where n = dlogNe and w is the size of the word in bits. Thus
an entire path from leaf to root fits in a word and can be accessed in constant time. An update

9

or retrieve operation consists of retrieving the values along a path in the tree and processing them
in constant time using bit-parallelism and table lookup operations. The space used by the lookup
table can be reduced at the expense of an increased time for the retrieve operation. In general,
both operations can be supported in time O(ι+ 1) with (N −1)m bits of m-Yggdrasil memory and
O(Mn/2ι ·m+m) bits of RAM [7].

In order to represent the m-Yggdrasil memory in our model, we treat each bit of a node in the
tree as a separate RAMBO bit. Thus the RAMBO memory has r = N registers of b = nm bits
each, and there are B = (N − 1)m distinct bits to be stored. Thus by Theorem 1 we have:

Corollary 2. The operations update and retrieve of the dynamic prefix sums problem can be sup-
ported in the UW-RAM model in O(ι+1) time with O(Mn/2ι ·m+Nmnw) bits of RAM. For constant
time operations (ι = 1) the space is dominated by the first term, i.e. the space is O(M

√
logN) bits.

For ι = log logN , the time is O(log logN) and the space is O(Nmnw) bits.

4 Dynamic programming

In this section we show how to speed up various dynamic programming algorithms in the UW-RAM.
We show that an existing word-RAM algorithm for the subset sum problem can be directly trans-
lated to the UW-RAM, and show how to adapt an existing algorithm for the knapsack problem. We
note that these problems have many generalizations that can be solved using the same techniques.
Based on similar techniques, we describe a word-RAM algorithm (and UW-RAM implementation)
for the longest common subsequence (LCS) problem. The implementation for subset sum as well as
the first solution to LCS are examples of pure bit parallelism, while the knapsack implementation
and the second algorithm for LCS use the parallel lookup power of the UW-RAM.

4.1 Subset Sum

Given a set S = {x1, x2, . . . , xn} of nonnegative integers (weights), and an integer t (capacity),
the subset sum problem is to find S′ ⊆ S such that

∑
ai∈S′ ai = t. The optimization version asks

for the solution of maximum weight which does not exceed t [10]. This problem is NP-hard but it
can solved in pseudopolynomial time via dynamic programming in O(nt) time, using the following
recursion by Bellman [4]: for each 0 ≤ i ≤ n and 0 ≤ j ≤ t, Ci,j is true if there is a subset of
elements {a1, . . . , ai} that adds up to j. Thus C0,0 is true, C0,j is false for all j > 0, and value Ci,j is
true if Ci−1,j is true or Ci−1,j−ai is true (Ci,j is false for any j < 0). The problem admits a solution
if Cn,t is true.

Pisinger [29] gives an algorithm that implements this recursion in the word-RAM model with
word size w by representing up to w values of a row of C. Using bit parallelism, w bits of a row can
be updated simultaneously in constant time from the values of the previous row: row Ci is updated
by computing Ci = (Ci−1 | (Ci−1 >> ai)) (which might require shifting words containing Ci−1 first
by bai/wc words and then by ai − bai/wc) [29]. Assuming w = Θ(log t), this approach leads to a
O(nt/ log t) solution in O(t log t) space. The actual values in S′ that compose the solution can be
then recovered with the same space and time bounds with a recursive technique by Pferschy [28].

Pisinger’s algorithm can be implemented directly in the UW-RAM: entries of a row Ci are stored
contiguously in memory, thus we can load and operate on w2 bits simultaneously when updating
each row. Hence, UW-RAM implementation runs in O(nt/ log2 t) time using the same O(t log t)
space.

10

4.2 Knapsack

Given a set S of n elements with weights and values, the knapsack problem asks for a subset
of S of maximum value such that the total weight is below a given capacity bound b. Let S =
{(wi, vi)}ni=1 where wi and vi are the weight and value of the i-th element. Just like the subset sum
problem, this problem is NP-hard but can be solved in pseudopolynomial time using the following
recurrence by Bellman [4]. Let Ci,j be the maximum value of a solution containing elements in
the subset Si = {(wk, vk)}ik=1 with maximum capacity j. Then C0,j = 0 for all 0 ≤ j ≤ b, and
Ci,j = max{Ci−1,j , Ci−1,j−wi+vi}. The value of the optimal solution is Cn,b. This leads to a dynamic
program that runs in O(nb) time.

The word-RAM algorithm by Pisinger represents partial solutions of the dynamic programming
table with two binary tables g and h and operates on the O(w) entries at a time [29]. More
specifically, the entry gi,w = 1 and hi,v = 1 if and only if there is a solution with weight w and
value v that is not dominated by an other solution in Ci,∗ (i.e. there is no entry Ci,w′ such that
w′ < w and Ci,w′ ≥ v). Pisinger shows how to update each entry of g and h with a constant time
procedure, which can be encoded as constant size lookup table. By composing this table α = w/10
times, α entries of the tables can be computed in constant time, so an entire row can be computed
in O(m/w) time and O(m/ logm) space, where m is the maximum of the capacity b and the value
of the optimal solution5. The optimal solution can then be computed in O(nm/w) time [29].

Compared to the subset sum algorithm, which relies mainly on bit-parallel operations, this word-
RAM algorithm for knapsack relies on table precomputation and lookup to achieve a w speedup.
In this sense, the UW-RAM implementation of the knapsack algorithm is a good example of the
parallel lookup power of the architecture. While we cannot precompute a composition of Θ(w2)
lookup tables to compute Θ(w2) entries of g and h at a time, we can use the same tables with
α = w/10 as in Pisinger’s algorithm and use the block of the wide word to make w simultaneous
lookups to the table. Since the values a row i of h and g depend only on row i− 1 of these tables,
then there are no dependencies between values in the same row.

One difficulty, however, is that in order to compute the values in row i in parallel we must
first preprocess row i − 1 in both h and g, such that we can return the number of one bits in
both gi−1,0, ..., gi−1,j and hi−1,0, ..., hi−1,j in O(1) time for any column j ∈ {0,m− 1}. That is, the
prefix sums of the one bits in the row i − 1 up to column j. Note that since we are only required
to compute the prefix sums of row i − 1 one time, this is not the same as the dynamic problem
described in Section 3.3, i.e., it is a static problem. Furthermore, since the algorithm is the same
for both g and h, we describe the computation for g alone.6

Static Prefix Sums: We begin by computing the number of ones in gi−1,k, ..., gi−1,k+w−1 for each
column k ∈ {0, w, 2w, ..., bm/wcw} using a lookup table, and store the results in an array A of
length bm/wc. Next, we compute the prefix sums of A in two steps. The first step is to set

A′[k] = A[bk/wcw] +A[bk/wcw + 1] + ...+A[k] ,

for each k ∈ {0, ..., bm/wc}. This can be done for w array indices at a time, k0, ..., kw−1, where
k` = k′ + `w, and k′ iterates over the sequence

0, 1, ..., w − 1, w2, w2 + 1, ..., w2 + w − 1, 2w2, 2w2 + 2,

5 This value is not known in advanced but an upper bound of at most twice the optimal value can be used [29, 11].
6 We note that it is possible to simulate the standard parallel prefix sums algorithm (for w processors in this case) [24]

using the UW-RAM, though we believe the algorithm described in the sequel to be more straightforward.

11

Note that we can compute all w array entries in constant time, for each k′ in the previous sequence,
since

A′[k′ + `w] =

{
A′[k′ + `w − 1] +A[k′ + `w] if k 6= 0 mod w,

A[k′ + `w] otherwise.

The second step is to set A′[k] = A′[k] +A′[bk/wcw − 1], for k ∈ {w,w + 1, ..., bm/wc}. This can
also be done for w values at once, k0, ..., kw−1, where k` = k′ + `, and k′ ∈ {w, 2w, ..., bm/wc}. At
this point A′ contains the prefix sums of A, and took O(|A|/w) = O(m/w2) time to compute, by
exploiting the block read and write operations of the UW-RAM.

Let f be the number of ones in gi−1,bj/wc, ..., gi−1,j , which can be computed using the lookup
table. To compute gi−1,0, ..., gi−1,j we return f + A′[bj/wc]. Since each row of g and h requires
O(m/w2) to compute, and there are n rows, the total time to compute g and h (and thus to
compute the optimal solution) on the UW-RAM is O(nm/w2). This achieves a w-speedup over
Pisinger’s word-RAM solution.

4.3 Generalizations of Subset Sum and Knapsack Problems

Pisinger [29] uses the techniques of the word-RAM algorithm for subset sum and knapsack to obtain
a word-RAM algorithms for obtaining a path in a layered network: given a graph G = (V,E), a
source s ∈ V and a terminal t ∈ V , and a weight for each edge, is there a path of weight b from s
to t? Again, this algorithm translates directly to a UW-RAM algorithm, thus yielding a w speedup
over the word-RAM algorithm. Pisinger uses these algorithms to implement word-RAM solutions
for other generalizations of subset sum and knapsack problems, such as: the bounded subset sum
and knapsack problems (each element can be chosen a bounded number of times), the multiple
choice subset sum and knapsack problems (the set of numbers is divided in classes and the target
sum must be matched with one number of each class), the unbounded subset sum and knapsack
problems (each element can be chosen an arbitrary number of times), the change-making problem,
and, finally, the two-partition problem. UW-RAM implementations for all these generalizations are
direct and yield a w speedup over the word-RAM algorithms.

4.4 Longest Common Subsequence

The final dynamic programming problem we examine is that of computing the Longest Common
Subsequence (LCS) of two string sequences. Given a sequence of symbols X = x1x2 . . . xm, a
sequence Z = z1z2 . . . zk is a subsequence of X if there exists an increasing sequence of indices
i1, i2, . . . , ik such that for all 1 ≤ j ≤ m, xij = zj [10]. Let Σ be a finite alphabet of symbols, where
σ = |Σ|. Given two sequences X = x1x2 . . . xm and Y = y1y2 . . . yn, where xi, yj ∈ Σ, the LCS
problem asks for a sequence Z = z1z2 . . . zk of maximum length such that Z is a subsequence of
both X and Y . This problem can be solved via a classic dynamic programming algorithm in O(nm)
time. In what follows, we show how to combine techniques used for subset sum and knapsack, as
well as the four Russians technique, in order to achieve further speedups in the UW-RAM model.
The first algorithm presented runs in O(nm

w2 log σ+m+ n) time, while the second is more involved

and runs in time O(n2 log2 σ/w3 + n log σ/w), assuming m = n for simplicity.

Let ci,j denote the length of the LCS of X[1..i] = x1x2 . . . xi and Y [1..j] = y1y2 . . . yj , then the
following recurrence allows us to compute the length of the LCS of X and Y [10]:

12

ci,j =


0, if i = 0 or j = 0
ci−1,j−1 + 1, if xi = yj
max{ci,j−1, ci−1,j}, otherwise

(1)

The length of the LCS is cm,n, which can be computed in O(mn) time. Consider an (m+1)×(n+1)
table C storing the values ci,j . The idea of the UW-RAM algorithm is to compute various entries
of this table in parallel. We assume w = Θ(max{log n, logm}).

Let dk denote the values in the k-th a diagonal of table C, this is dk = {ci,j |i+ j = k}. Since a
value in a cell i, j > 0 depends only on the values of cells (i− 1, j), (i− 1, j − 1) and (i, j − 1), all
values in the same diagonal dk are independent of each other and can be computed in parallel. Thus,
we use the wide word to compute various entries of a diagonal in constant time. Since each value
in the cell might use up to min{log n, logm} bits, each value might use up to an entire block of the
wide word (if m = Θ(n)), thus w cells can be computed in parallel. Since the total number of cells is
O(mn) and the critical path of the table is m+n+2 cells, this approach requires O(mn/w+m+n)
parallel time, resulting in a speedup of w. However, we can obtain better speedups by using fewer
bits per entry of the table, which enables us to operate on more values in parallel. For this sake,
instead of storing the actual values of the partial longest common subsequences we store differences
between consecutive values as described in [25] for the related string edit distance problem.

Let Vi,j = ci,j − ci−1,j and Hi,j = ci,j − ci,j−1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n denote the tables of
vertical and horizontal differences of values in C. We adapt Corollary 1 in [25] for the computation
of V and H:

Proposition 1. Let [xi = yj] = 1 if xi = yj and 0 otherwise. Then Vi,j = max{[xi = yj] −
Hi−1,j , 0, Vi,j−1 −Hi−1,j} and Hi,j = max{[xi = yj]− Vi,j−1, 0, Hi−1,j − Vi,j−1}.

Proof. Directly from Recurrence 1 we obtain Vi,j = 1−Hi−1,j if xi = yj and Vi,j = max{0, Vi,j−1−
Hi−1,j} otherwise. Similarly Hi,j = 1−Vi,j−1 if xi = yj and Hi,j = max{0, Hi−1,j−Vi,j−1} otherwise.
It is easy to verify from the definition of longest common subsequence and Recurrence 1 that
0 ≤ Hi,j ≤ 1 and 0 ≤ Vi,j ≤ 1 for all i, j, which implies that the maximum in max{[xi =
yj] −Hi−1,j , 0, Vi,j−1 −Hi−1,j} and max{[xi = yj] − Vi,j−1, 0, Hi−1,j − Vi,j−1} is equal to the first
term if xi = yj and to the second or third terms otherwise. ut

We compute tables H and V according to Proposition 1 diagonal by diagonal using bit paral-
lelism in the wide word. Assume an alphabet Σ = {0, 1, 2, . . . , σ−1} with dlog σe ≤ w−1. Although
all entries in tables H and V are either 0 or 1 we will use fields of O(log σ) bits to store these values,
since we can only compare at most w/ log σ symbols simultaneously in the wide word. We divide
the wide word W in f -bit fields with f = max(dlog σe, 2) + 1. Each field will be used to store both
symbols and intermediate results for the computation of diagonals of H and V , plus an additional
bit to serve as a test bit in order to implement fieldwise comparisons as described in Section 2.3.
We require at least 3 bits because although all entries in tables H and V use one bit, intermediate
results in calculations can result in values of -1. Thus we require 2 bits to represent values -1, 0,
and 1, and a test or sentinel bit to prevent carry bits resulting from subtractions to interfere with
neighbouring fields. We represent -1 in two’s complement. It is not hard to extend the techniques
for comparisons and maxima to the case of positive and negative numbers [18].

Let Hk and Vk denote the k-th diagonal of H and V , respectively, i.e., Hk = {Hi,j |i + j = k}
and Vk = {Vi,j |i+ j = k}. Consider table H. We will operate with each diagonal Hk using d|Hk|/`e

13

words, where ` = w2/f . Let f0, . . . , f`−1 denote the fields within W , in increasing order of bit
significance within W . In each wide word, cells of Hk will be stored in increasing order of column,
i.e., if Hi,j is stored in field fr, then fr+1 stores Hi−1,j+1. In order to compute each diagonal we
must compare the relevant entries of strings X and Y . We assume that each symbol of X and Y is
stored using dlog σe+1 bits (including the test bit), and that X is stored in reverse order. X and Y
can be preprocessed in O(m+ n) to arrange this representation, which will allow us to do parallel
comparisons of symbols for each diagonal loading contiguous words of memory in wide words.

Consider a diagonal Hk. Assume that the entire diagonal fits in a word W . This will not be
the case for most diagonals, but we describe the former case for simplicity. The latter case is
implemented as a sequence of steps updating portions of the diagonal. We update the entries of Hk

as follows: (1) we load the symbols of the relevant substrings of X and Y into words WX and WY ,
with the substring of X in reverse order. More specifically, for a diagonal k, WY = yj1yj1+1 . . . yj2
where j1 = k − min(m, k − 1) and j2 = min(n, k), and WX = xi2xi2−1 . . . xi1 with i2 = k − j1
and i1 = k − j2. We subtract WY from WX , mask out all non-zero results and write a 1 in each
field that resulted in 0. We store the resulting word in Weq, a 1 in each field corresponding to
a cell (i, j) with xi = yj and a 0 otherwise (this can be implemented through comparisons as
described in Section 2.3). (2) We load Vk−1 into a word WV and subtract it from Weq to obtain
[ai = bj]−Vi,j−1 for all i, j in Hk simultaneously and store the result in W1. (3) We load Hk−1 into
a word WH and subtract WV to it to obtain Hi−1,j − Vi,j−1 for all i, j in Hk, storing the result in
W2. (4) Finally, using fieldwise comparisons we obtain the fieldwise maximum of W1,W2 and and
the word 0. The resulting word is Hk. The procedure to compute Vk is analogous. Note that the
entries corresponding to base cases in the first row and column in the LCS table correspond to the
base cases of the horizontal and vertical vectors, respectively. When computing diagonals Hk with
k ≤ n+ 1 and Vk with k ≤ m+ 1, the entries corresponding to base cases are not computed from
previous diagonals but should be added appropriately at the end of Hk and beginning of Vk.

Example 1. Let X = abbab and Y = aabbba be two strings. Figure 4 shows the entries of the
dynamic programming table for computing the LCS of X and Y , as well as the values of horizontal
and vertical differences.

j 1 2 3 4 5 6
LCS a a b b b a

i 0 0 0 0 0 0 0
1 a 0 1 1 1 1 1 1
2 b 0 1 1 2 2 2 2
3 b 0 1 1 2 3 3 3
4 a 0 1 2 2 3 3 4
5 b 0 1 2 3 3 4 4

j 1 2 3 4 5 6
H a a b b b a

i 0 0 0 0 0 0
1 a 1 0 0 0 0 0
2 b 1 0 1 0 0 0
3 b 1 0 1 1 0 0
4 a 1 1 0 1 0 1
5 b 1 1 1 0 1 0

j 1 2 3 4 5 6
V a a b b b a

i
1 a 0 1 1 1 1 1 1
2 b 0 0 0 1 1 1 1
3 b 0 0 0 0 1 1 1
4 a 0 0 1 0 0 0 1
5 b 0 0 0 1 0 1 0

Fig. 4. Dynamic programming tables for the longest common subsequence and vector differences for X = abbab and
Y = aabbba.

In this example σ = 2, thus we use one bit for each symbol (‘a’=0, ‘b’=1), but we use f = 3 bits
per field. Consider the diagonal H6 in table H (in dark gray). We now illustrate how to obtain H6

from H5 and V5 (in light gray). In what follows we represent the number in each field in decimal
and do not include the details of fieldwise comparison and maxima.

14

WX = 1 0 1 1 0 (=x5x4x3x2x1)
WY = 0 0 1 1 1 (=y1y2y3y4y5)
Weq = 0 1 1 1 0 (Weq[f · (j − 1)] = 1⇔ x|H5|−j = yj)

V5 = 0 0 0 1 1
W1 = Weq − V5 = 0 0 1 0 -1

H5 = 1 0 1 0 0
W2 = H5 − V5 = 1 0 1 -1 -1

max{W1,W2,0} = 1 1 1 0 0
H6 = 1 1 1 0 0 0 (last 0 is the base case)

Once all diagonals are computed, the final length of the longest common subsequence of X and
Y can be simply computed by (sequentially) adding the values of the last row of H or the values of
last column of V (which can be done while computing H and V). The entire procedure is described
in Algorithm 5 and leads to the following theorem.

Theorem 2. Let Σ be an alphabet of size σ. Given two strings X and Y over Σ of lengths m
and n, respectively, the length of the longest common subsequence of X and Y can be computed in
O(nm

w2 log σ +m+ n) and O(min(n,m)w/ log σ) memory words in addition to the input.

Proof. A diagonal of H and V of length ` entries can be computed in time O(` log σ/w2+1). Adding
this time over all m+n diagonals yields the total time. For the space, each diagonal is represented
in d`f/w2e wide words, where f = O(log σ) is the number of bits per field. Since we can compute
each diagonal Hk and Vk using only Hk−1 and Vk−1, we only need to store 4 diagonals at any given
time. Since the maximum length of a diagonal is min(n,m) and each wide word can be stored in
w regular words of memory, the result follows. ut

Recovering a Longest Common Subsequence It is known that given a dynamic programming
table storing the values of the LCS between strings X and Y one can recover the actual subsequence
by, starting from cm,n following the path through the cells corresponding to the values used when
computing each value ci,j according to Recurrence (1): if xi = yj then we add xi to the LCS and
continue with cell (i− 1, j− 1). Otherwise the path follows the cell corresponding to the maximum
of ci−1,j or ci,j−1. Although Algorithm 5 does not compute the actual LCS table, a path of an
LCS can be easily computed using tables H and V . The path starts at cell (m,n) (of either table)
and to continue from a cell (i, j), if xi = yj then xi is part of the LCS and we continue with cell
(i−1, j−1). Otherwise, if Hi,j = 1 and Vi,j = 0 then we continue with cell (i−1, j), and if Hi,j = 0
and Vi,j = 1 we continue with cell (i, j − 1) (and with any of the two if Hi,j = Vi,j = 0). This
can be easily done in O(m+ n) time if all diagonals of tables V and H are kept in memory while
computing the LCS length in Algorithm 5. This would require Algorithm 5 to use O(nmw/ log σ)
words of memory to store all diagonals.

Four Russians Technique The computation of the longest common subsequence can be made
even faster by combining the diagonal-by-diagonal order of computation described above with
the Four Russians technique. The Four Russians technique [33] was applied to the string edit
problem (and also the LCS) by Masek and Paterson [25], and it consists of dividing the dynamic
programming table in blocks of size t × t cells. In a precomputation phase, all possible blocks are

15

Algorithm 5 LCS-length(X,Y,m = |X|, n = |Y |, σ)

1: f ← max(dlog σe, 2) + 1 {field length in bits}
2: H1

1 ← 0 {H0,1 = 0}
3: V 1

1 ← 0 {V1,0 = 0}
4: length← 0 {length of longest common subsequence}
5: for k = 2 to m+ n do
6: `← min(n, k − 1) + min(m, k − 1)− k + 1 {length of diagonal}
7: j1 ← k −min(m, k − 1) {indices of relevant substrings of X and Y }
8: j2 ← min(n, k)
9: i2 ← k − j1

10: i1 ← k − j2
11: j ← j1
12: i← i2
13: s← d`f/w2e {number of wide words per diagonal}
14: for t = 1 to s do
15: j′ ← min(j + s− 1, j2)
16: i′ ← max(i+ s− 1, i1)
17: WY ← Y [j..j′]
18: WX ← X[i..i′] {substring of X is in reverse order}
19: Weq ←equal(WX ,WY)
20: W1 ←Weq − V tk−1

21: W2 ← Ht
k−1 − V tk−1

22: Ht
k ← max(W1,W2,0) {base case is implicitly added at rightmost field}

23: W1 ←Weq −Ht
k−1

24: W2 ← V tk−1 −Ht
k−1

25: V tk ← max(W1,W2,0)
26: if t = 1 AND k ≤ m+ 1 then
27: V tk ← V tk >> f {add 0 in the first field for the base case}
28: i← i′ + 1
29: j ← j′ + 1
30: if t = 1 AND k ≥ m+ 1 then
31: length← length+H1

k [0..f − 1] {length = length+Hm,k−m}
32: return length

computed and stored as a data structure indexed by the first row and column of each block. The
LCS can be then computed by looking up relevant values of the table one block at a time using
the data structure. In a RAM with indirect addressing and under a suitable value of t, the last
row and column of a block can be obtained by looking up the entry corresponding to the first row
and column of that block in constant time. This technique yields a speedup of O(t2) with respect
to computing all cells in the table, for a total time of O(n2/t2) (for two strings of length n) plus
the time for the precomputation of all blocks. By setting t = O(log n) and encoding the table with
difference vectors the precomputation time can be absorbed by the time to compute the main table
(See [25, 17] for a more detailed description of the technique).

We can use the power of the parallel memory access of the UW-RAM to speedup the com-
putation of the LCS even further by looking up blocks in parallel, in a similar fashion to the
diagonal-by-diagonal approach described above. For simplicity assume m = n. Using the same
encoding for H and V , we first precompute all possible blocks of H and V of size t × t. Since a
block is completely determined by the first column and rows, whose values are 0 and 1, and the
two substrings of length t (over an alphabet of size σ), there are O((2σ)2t) possible blocks. Note
that we can encode each cell now with one bit, since we do not need to do symbol comparisons

16

in parallel. Each block can be computed in O(t2) time with the standard sequential algorithm,
so the precomputation time is O((2σ)2tt2). We set t = log2σ n/2, and thus the precomputation
time is O(n log2 n) [17]. Since t ≤ w/2 we can use each block of the wide word to lookup the
entry for each block by using a parallel lookup operation. Thus, as described previously, we can
compute tables H and V in diagonals of blocks, computing min(`, w) blocks simultaneously in
a diagonal of length ` blocks. There are (n/t)2 blocks to compute and the critical path of the
table has length n/t blocks. Therefore, the computation of H and V can be carried out in time
O(n2/(t2w) + n/t) = O(n2 log2 σ/w3 + n log σ/w), since t = Θ(w/ log σ). For a constant alphabet
size and w = Θ(log n) this time is O(n2/ log3 n).

5 String Search

Another example of a problem where a large class of algorithms can be sped up in the UW-RAM
is String Searching. Given a text T of length n and a pattern P of length m, both over an alphabet
Σ, the string matching problem consists of reporting all the occurrences of P in T . We focus here
on on-line searching, this is, with no preprocessing of the text (though preprocessing the pattern
is allowed), and we assume in general that n� m. We use two classic algorithms for this problem
to illustrate different ways of obtaining speedups via parallel operations in the wide word. More
specifically, we obtain w-speedups for UW-RAM implementations of the Shift-And and Shift-Or
algorithms [2, 34], and the Boyer-Moore-Horspool algorithm [22]. For a string S, let S[i] denote the
i-th character of S, and let S[i..j] denote the substring of S starting at position i and ending at
position j. Indices start at 1.

5.1 Shift-And and Shift-Or

The Shift-And and Shift-Or algorithms keep a sliding window of length m over the text T . On
a window at positions at substring T [i −m + 1..i], the algorithms keep track of all prefixes of P
that match a suffix of T [i −m + 1..i]. Thus, if at any time there is one such prefix of length |P |
then an occurrence is reported at T [i − m + 1]. This is equivalent to running the (m + 1)-state
non-deterministic automaton that recognizes P starting from every position of T . For a window
T [i−m+ 1..i] in T , the j-th state of the automaton is active if and only if P [0..j] = T [i− j + 1..i].
These algorithms represent the automaton as a bit vector and update the active states using bit-
parallelism. More specifically, the Shift-And algorithm keeps a bit vector v = b0b1 . . . bm−1, where
bj = 1 whenever the j-th state is active. If vi represents the automaton for the window ending at
T [i], then vi+1 = ((vi >> 1) | 1) & Y [T [i]], where Y [σ] is a bit vector with set bits in the positions
of the occurrences of σ in P . The OR with a 1 corresponds to the first state always being active to
allow a match to start at any position. The Shift-Or algorithm is similar but it saves this operation
by representing active states with zeros instead of ones. We describe two UW-RAM algorithms
for Shift-And that illustrate different techniques, noting that the UW-RAM implementation of
Shift-Or is analogous. The running times of the UW-RAM algorithms are O(nm/w2 + n) and
O(nm/w2 + n/w), which are O(n) and O(n/w), resp., for m = O(w2).

w2-bit Automaton The straightforward way of taking advantage of the wide word when imple-
menting Shift-And is to use the entire wide word for bit vectors. We first compute the mask array
Y [σ] for each σ ∈ Σ and store each w2-bit vector in contiguous words of memory starting at address

17

Algorithm 6 Shift And(T, P, n = |T |,m = |P |, Σ)

1: {Preprocessing}
2: for each σ ∈ Σ do
3: Y [σ]← 0
4: for j = 1 to m do
5: Y [P [j]]← Y [P [j]] | (1 >> (j − 1))
6: {Search}
7: V ← 0
8: C ← 1 >> (m− 1)
9: for i = 1 to n do

10: V = ((V >> 1) | 1) & Y [T [i]]
11: if V & C 6= 0 then
12: report an occurrence at i−m+ 1

Y + σ. Then the code of the UW-RAM is essentially the same as the original code, replacing all
references to the array Y with memory access operations for the wide word: assuming m ≤ w2,
reading and writing to Y [σ] implemented with by read word(W,Y + σ) and write word(W,Y + σ),
for some word W . Otherwise bit vectors are represented in dm/w2e wide words (and stored in mem-
ory in dm/w2ew words). The rest of the operations are done on registers and constants are part of
the precomputation. The pseudocode for this algorithm is shown in Algorithm 6, which assumes
m ≤ w2 and is based on the pseudocode for Shift-And given in [27, Ch 2.2.2]. Since we can now
update v in O(m/w2 +1) time, the running time of Algorithm 6 is O(nm/w2 +n). Thus, compared
to the original algorithm, the UW-RAM algorithm achieves a speedup of w when m ≥ w2, and a
speedup of dm/we otherwise (no speedup is achieved for m ≤ w).

w-bit Parallel Automata Another way of using the wide word to speedup the Shift-And algo-
rithm is take advantage of the parallel memory access operations of the UW-RAM to perform w
parallel searches on disjoint portions of the text. This is done by using each block of a wide word
to represent the automaton in each search: block j is used to search P in T [jn/w..(j + 1)n/w− 1],
for 0 ≤ j ≤ w−1 (we assume w divides n). Since the operations involved in updating the automata
are the same across blocks, an update to all w automata can be done with a constant number of
single wide word operations. All bit vectors of the precomputed table Y are now again w-bit long,
as in the original algorithm. In each step of the search, w entries of Y are read in parallel to each
block according to the current character in T in the search in each portion. The pseudocode for
this procedure is shown in Algorithm 7. The code assumes m ≤ w, though it is straightforward to
modify it for the m > w case. The running time of this algorithm is now O(nm/w2 + n/w + occ),
where occ is the number of occurrences found. This is always faster than the first version above.

5.2 Boyer-Moore-Horspool (BMH)

We give one more example of how to use the wide word to speed up string searching by using the
BMH [22] algorithm as an example. This algorithm keeps a sliding window of length m over the
text T and searches backwards in the window for matching suffixes of both the window and the
pattern. More specifically, for a window T [i..i+m− 1], the algorithm checks if T [i+ j − 1] = P [j]
starting with j = m and decrementing j until either j = 0 (there is a match) or a mismatch is
found. Either way, the window is then shifted by so T [i+m− 1] is aligned with the last occurrence
of this character in P (not counting P [m]). The worst case running time of BMH is O(nm) (when

18

Algorithm 7 Parallel Shift And(T, P, n = |T |,m = |P |, Σ). For technical reasons assume T [n+ j] = $ for

j = 1, . . . ,m− 1, with $ /∈ Σ, and that w ≥ log(n+m). In order to report matches at each step in time proportional

to the number of matches (and not the number of blocks), we move directly to blocks with matching positions by

using a function that for every word of length w returns an array A with the positions of set bits. For example, for

w = 5 and x = 01011, A = {1, 3, 4}. We do this by table look up to a table with w/2-bit entries, whose space is

O(2w/2w) words, which for w = logn is O(
√
n logn).

1: {Preprocessing}
2: for each σ ∈ Σ do
3: Y [σ]← 0 {|Y [σ]| = w}
4: for j = 1 to m do
5: Y [P [j]]← Y [P [j]] | (1 >> (j − 1))
6: Y [$]← 0
7: V ← 0

8: ONES ← 2w
2
−1

2w−1
{ONESj = 1 for all j}

9: C ← ONES >> (w − 1) {Cj = 2w−1 for all j}
10: {Search}
11: n′ ← n/w
12: POSNS ← 0 {current positions in text}
13: for j = 0 to w do
14: POSNS ← POSNS | ((jn′ + 1) >> wj)
15: for i = 1 to n′ +m− 1 do
16: V 1← (V >> 1) | ONES
17: V 2← POSNS
18: read content(V 2, T) {load characters in each position (V 2j = T [POSNSj])}
19: read content(V 2, Y) {lookup masks in array Y (V 2j = Y [T [POSNSj]])}
20: V ← V 1 & V 2
21: W ← V & C {check for matches at each block}
22: transpose(W << w − 1)
23: matches←W0 {matches[j] = 1 if there was a match at block j}
24: write word(POSNS,matching positions) {write all current positions in an array matching positions}
25: A← lookup(matches) {position in T of k-th matching block is at matching positions[A[k]]}
26: while A[k] 6= −1 do
27: report match at matching positions[A[k]]
28: k ← k + 1
29: V ← V & ∼ C {clear most significant bit in each block}
30: POSNS ← POSNS +ONES {update positions in T (POSNSj ≤ n+m− 1 for all j, thus there is no carry

across blocks)}

the entire window is checked for all window positions) but on average the window can be shifted
by more than one character, making the running time O(n) [3]. We can take advantage of the wide
word to make several character comparisons in parallel, achieving a w speedup over the worst case
behaviour of the standard algorithm.

First, we divide each wide word in f -bit fields so that each field contains one, thus f = dlog σe.
At each position of the window, we do a field-wise comparison between a wide word containing
the characters of the text and one containing the characters of the pattern. We do this simply by
subtracting both words. Since we only care if all symbols in the words match, we only need to
check if the result is zero, without having to worry about carries crossing fields (and hence we do
not need a test bit). We shift the window to the next position if the result is not zero. Note that
this check can be done in constant time and it is quite simple as we do not need to identify where
there was a mismatch. Thus in each window we can compare up to w2/f symbols in parallel, and

19

Algorithm 8 BMH(T, P, n = |T |,m = |P |, Σ). For simplicity we assume that w divides m log σ.
We assume also that T and P are represented with log σ bits per symbol. We still use T [i] to denote
one character, which can be easily obtained from the packed representation in constant time (the
same applies to the actual address of starting characters of substrings).

1: {Preprocessing}
2: for each σ ∈ Σ do
3: jump[σ]← m
4: for j = 1 to m− 1 do
5: jump[P [j]]← m− j
6: m′ ← w2/ log σ {characters per wide word}
7: {Search}
8: i = 0
9: while i ≤ n−m do

10: k ← m′/m {number of window segment}
11: while k > 0 do
12: W ← T [i+ (k − 1)m′ + 1..i+ km′] {W contains the substring of T of k-th window segment}
13: V ← P [(k − 1)m′ + 1..km′] {V contains the substring of P of k-th window segment}
14: if W − V 6= 0 then
15: break
16: else if k = 1 then
17: report occurrence at i+ 1
18: k ← k − 1
19: i← i+ jump[T [i+m]]

hence the running time in the worst case becomes O(mn log σ/w2). We show the pseudocode in
Algorithm 8 which, again, is based on the pseudocode of this algorithm presented in [27, Ch. 2.3.2].
Note that for a given input the distance of the shifts is exactly the same as in the original version
of the algorithm, and therefore the expected running time remains the same. Note as well that the
expected running time can be reduced by using each block to search in disjoint parts of the text at
the expense of increasing the worst case time to O(mn log σ/w) due to the reduction in the number
of characters that can be compared simultaneously.

6 Concluding Remarks

We have introduced the Ultra-Wide Word architecture and model, and showed that several classes
of algorithms can be readily implemented in this model to achieve a speedup over traditional word-
RAM algorithms. The examples described in this paper already show the potential of this model to
enable parallel implementations of existing algorithms with speedups comparable to that of multi-
core computations. We believe that this architecture could serve as well to simplify many existing
word-RAM algorithms, that in practice do not perform well due to large constant factors. Finally,
we conjecture that this model will lead to new efficient algorithms and data structures that can
sidestep existing lower bounds.

References

1. Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search trees. J. ACM, 54(3):13,
2007.

2. Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text searching. Commun. ACM, 35(10):74–82,
October 1992.

20

3. Ricardo A. Baeza-Yates and Mireille Régnier. Average running time of the boyer-moore-horspool algorithm.
Theoretical Computer Science, 92(1):19 – 31, 1992.

4. Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition, 1957.
5. Andrej Brodnik. Searching in Constant Time and Minimum Space. PhD thesis, Unviersity of Waterloo, 1995.

Also available as Technical Report CS-95-41.
6. Andrej Brodnik, Svante Carlsson, Michael L. Fredman, Johan Karlsson, and J. Ian Munro. Worst case constant

time priority queue. Journal of Systems and Software, 78(3):249 – 256, 2005.
7. Andrej Brodnik, Johan Karlsson, J. Ian Munro, and Andreas Nilsson. An O(1) solution to the prefix sum problem

on a specialized memory architecture. In Gonzalo Navarro, Leopoldo E. Bertossi, and Yoshiharu Kohayakawa,
editors, IFIP TCS, volume 209 of IFIP, pages 103–114. Springer, 2006.

8. Timothy M. Chan. Point location in o(log n) time, voronoi diagrams in o(n log n) time, and other transdichoto-
mous results in computational geometry. In FOCS, pages 333–344. IEEE Computer Society, 2006.

9. Timothy M. Chan and Mihai Patrascu. Transdichotomous results in computational geometry, i: Point location
in sublogarithmic time. SIAM J. Comput., 39(2):703–729, 2009.

10. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The
MIT Press, 2nd edition, 2001.

11. George B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):pp. 266–277, 1957.
12. Joseph A. Fisher. Very long instruction word architectures and the eli-512. SIGARCH Comput. Archit. News,

11:140–150, June 1983.
13. M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proceedings of the twenty-

first annual ACM symposium on Theory of computing, STOC ’89, pages 345–354, New York, NY, USA, 1989.
ACM.

14. Michael L. Fredman. The complexity of maintaining an array and computing its partial sums. J. ACM, 29(1):250–
260, January 1982.

15. M.L. Fredman and D.E. Willard. Surpassing the information theoretic bound with fusion trees. Journal of
Computer and System Sciences, 47(3):424–436, 1993.

16. R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-compressed text indexes. In Proceedings of the four-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 841–850. Society for Industrial and Applied
Mathematics, 2003.

17. Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and computational biology. Cam-
bridge University Press, New York, NY, USA, 1997.

18. Torben Hagerup. Sorting and searching on the word ram. In Michel Morvan, Christoph Meinel, and Daniel
Krob, editors, STACS 98, volume 1373 of Lecture Notes in Computer Science, pages 366–398. Springer Berlin /
Heidelberg, 1998. 10.1007/BFb0028575.

19. Haripriyan Hampapuram and Michael L. Fredman. Optimal biweighted binary trees and the complexity of
maintaining partial sums. SIAM J. Comput., 28(1):1–9, 1998.

20. Yijie Han. Deterministic sorting in o(nlog logn) time and linear space. J. Algorithms, 50:96–105, January 2004.
21. Yijie Han and Mikkel Thorup. Integer sorting in 0(n sqrt (log log n)) expected time and linear space. In

Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS ’02, pages 135–144, Washington,
DC, USA, 2002. IEEE Computer Society.

22. R. Nigel Horspool. Practical fast searching in strings. Software: Practice and Experience, 10(6):501–506, 1980.
23. G. Jacobson. Space-efficient static trees and graphs. Foundations of Computer Science, IEEE Annual Symposium

on, pages 549–554, 1989.
24. Joseph JáJá. An introduction to parallel algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood

City, CA, USA, 1992.
25. William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J. Comput. Syst. Sci.,

20(1):18–31, 1980.
26. J. Ian Munro. Tables. In Vijay Chandru and V. Vinay, editors, FSTTCS, volume 1180 of Lecture Notes in

Computer Science, pages 37–42. Springer, 1996.
27. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical on-line search algorithms for texts

and biological sequences. Cambridge University Press, 2002. ISBN 0-521-81307-7. 280 pages.
28. Ulrich Pferschy. Dynamic programming revisited: Improving knapsack algorithms. Computing, 63(4):419–430,

1999.
29. David Pisinger. Dynamic programming on the word ram. Algorithmica, 35:128–145, 2003. 10.1007/s00453-002-

0989-y.
30. Richard M. Russell. The cray-1 computer system. Commun. ACM, 21(1):63–72, 1978.

21

31. P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue. Theory
of Computing Systems, 10:99–127, 1976. 10.1007/BF01683268.

32. Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical Computer Science, Volume
A: Algorithms and Complexity (A), pages 1–66. 1990.

33. Arlazarov V.L., Dinic E.A., Kronrod M.A., and Faradzev I.A. On economic construction of the transitive closure
of a directed graph. Dokl. Akad. Nauk SSSR, 194:487–488, 1970. (In Russian). English translation in Soviet
Math. Dokl., 11,1209-1210, 1975.

34. Sun Wu and Udi Manber. Fast text searching: allowing errors. Commun. ACM, 35(10):83–91, October 1992.

22

