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Abstract. The broadcasting problem asks for the fastest way of trans-
mitting a message to all nodes of a communication network. We consider
the problem in conflict-aware multi-channel networks. These networks
can be modeled as undirected graphs in which each edge is labeled with
a set of available channels to transmit data between its endpoints. Each
node can send and receive data through any channel on its incident edges,
with the restriction that it cannot successfully receive through a channel
when multiple neighbors send data via that channel simultaneously.
We present efficient algorithms as well as hardness results for the broad-
casting problem on various network topologies. We propose polynomial
time algorithms for optimal broadcasting in grids, and also for trees when
there is only one channel on each edge. Nevertheless, we show that the
problem is NP-hard for trees in general, as well as for complete graphs.
In addition, we consider balanced complete graphs and propose a pol-
icy for assigning channels to these graphs. This policy, together with its
embedded broadcasting schemes, result in fault-tolerant networks which
have optimal broadcasting time.

1 Introduction

Multi-channel networks constitute a class of networks in which communication is
achieved via a set of orthogonal channels. Two nodes of a multi-channel network
can directly communicate if they share at least one common channel. Channels
may represent different frequencies in Multi-radio Wireless Networks [T4U17],
different wavelengths in Free Space Optical Networks (FSON) [2], or different
communication buffers in parallel computers [19].

A multi-channel network can be modeled as an undirected graph with mul-
tiple labels on edges, where vertices represent nodes in the network and labels
represent available channels between connected nodes. Communication is as-
sumed to occur in discrete rounds in which a node can transmit data through

* A preliminary version of this paper is to appear in WALCOM 2013



one of its channels. For a node u and channel ¢, we say that a conflict occurs
when two or more neighbors of u send data to u through channel ¢ in the same
round, in which case u does not receive data through this channel. This definition
of conflict arises in many practical scenarios; for example, in wireless networks,
conflicts represent the interference of radio waves with the same frequency.

Multi-channel networks have been already studied in the context of wireless
networks, in which the underlying network is modeled as a geometric graph
in Euclidean metric space (e.g., [12122123]). However, geometric graphs are not
good representatives of all types of wireless networks. For example, in the case of
indoor networks in which walls can block transmissions between pairs of nodes,
the underlying network can form any graph topology [20]. There are also several
works that provide heuristics for information dissemination in the wireless multi-
channel networks, mostly assuming that conflicts do not occur (e.g., [QUITIIT3]).

A realistic model that considers conflicts is known as the conflict-aware model
[1U21]. In this paper, we present the conflict-aware multi-channel model, a com-
prehensive model that captures several aspects of multi-channel networks that
are tied to existing network technologies, in particular conflict awareness and
the advantage of simultaneous communication through one channel. Theoretical
analysis of this model can provide insights into the capabilities of multi-channel
networks for future technology advances, particularly because the model repre-
sents a broad spectrum of network technologies such as wireless mesh networks,
FSONSs, and parallel computers.

The focus of this work is on the Broadcasting Problem in multi-channel net-
works, in which the goal is to transmit one message from a given source node
to all other nodes in the minimum number of rounds. In the classical model
of broadcasting, each node can send data to at most one of its neighbors via a
telephone call (hence the model is called telephone model). In contrast, in multi-
channel networks, when a node u transmits through one channel ¢, all the nodes
connected to u via channel ¢ will receive the message (if no conflicts occur).
In wireless networks, this is termed the Wireless Broadcast Advantage [18], and
makes the broadcasting problem more complicated compared to broadcasting
under the telephone model [4[7]. Note that the telephone model can be consid-
ered as a restricted version of the multi-channel model in which there is a single
and unique channel associated with each edge, i.e., each node is connected to its
neighbors via distinct channels. Similarly to the related works in multi-channel
wireless networks [IO[T4YT5|T7], we assume the broadcasting algorithms are cen-
tralized, i.e., the algorithms know the topology of the network and the channels
available for each edge.

Channel Assignment is another problem that has been studied for multi-
channel wireless networks [I4JI5]. This problem asks to assign channels to the
edges in a given network in order to optimize the network performance — where
the performance can refer to network goodput or traffic [I5] — or the number
of conflicts or interference within the network [I4]. We consider the channel
assignment problem in complete graphs, in which the goal is to assign channels in
a way to perform broadcasting in minimum time. In particular, it is desirable that



such channel assignment enables broadcasting of multiple messages in parallel.
We focus on the problem in homogeneous multi-channel networks that can be
modeled by complete graphs with a balanced distribution of channels for each
node.

Summary of Results. In Section [2| we describe the conflict-aware multi-
channel model. In general, it is assumed that there can be any number of channels
between a pair of nodes, however in some occasions we consider the case when
there is only one channel on each edge of the graph. The broadcasting problem
seems to be much easier for this restricted case. In Section [3 we show that the
broadcasting problem is NP-hard for trees in the general case, while we describe
a polynomial time algorithm when there is only one channel on each edge of the
tree. We also provide a polynomial time algorithm for optimal broadcasting in
grids (in the general case). In Section we show that the broadcasting problem is
NP-hard for complete graphs, even if restricted to graphs with only one channel
on each edge.

In Section [5] we focus on the special case of complete graphs when there is
only one channel on each edge and the channel assignment is balanced, i.e., each
node is connected to approximately same number of nodes with each channel. We
refer to these graphs as balanced complete graphs, and show that broadcasting
in these networks requires at least three rounds, when the number of different
channels does not grow too fast with the size of the network (which is the case in
practical settings). On the positive side, we introduce a channel assignment pol-
icy that yields a balanced complete network for which broadcasting can always
be completed in two rounds. This channel assignment also enables broadcasting
of k messages simultaneously in three rounds, where k is the number of channels
in the network.

2 Conflict-Aware Multi-Channel Model

A multi-channel network is modeled as an undirected graph G = (V, E) where
V is the set of nodes and E the set of edges. Each edge e € E has a set of labels
C(e) C{c1,ca,...,cx} that denotes its set of available channels.

The communication of messages through the network occurs in discrete rounds
and is governed by the following assumptions and restrictions. In any given
round, a node may be involved in receiving and/or transmitting (sending) mes-
sages through the channels on its incident edges. If a node u transmits through
a channel ¢, it cannot transmit through any other channel in the same round,
and also cannot receive through channel ¢. When v sends a message through
channel ¢, the message is simultaneously transmitted through all incident edges
of u that have channel ¢ in their set of labels. A key restriction is that a node
cannot successfully receive any data through a channel when more than one of
its neighbors send data through that channel. More precisely, a node v can only
receive a message through channel ¢ in round r if exactly one of the nodes that
are adjacent to it with edges labeled with channel ¢ is transmitting through
channel ¢ in round r. Otherwise we say there is a conflict at node v on channel



Fig.1. An illustration of broadcasting in the conflict-aware multi-channel model.
Assume node A is the source and sends the message through channel 1 in the first
round. Hence, at the beginning of the second round, A, B, and C have the message.
Assume B sends the message through channel 1, and A and C through channel 2. At
the end of the round, node D receives the message through both channels, node F
receives the message through channel 1 (via B); there is a conflict on channel 2 at node
F', which does not receive the message in this round.

c. A node will successfully receive the message if it is transmitted by any of its
neighbors through a channel without conflict.

The transmission of a message on any edge completes in one round: if in
round r node u transmits a message through channel ¢, then every node v such
that e = (u,v) € E and ¢ € C(e) will receive the message during this round,
provided that there is no conflict at v on channel c. In this case we say that
u informs v during round r, and node v is ready to transmit in round r + 1 if
desired. For any round r during the execution of the broadcast, we say that a
node is active if it is transmitting the message in round r and inactive otherwise.

Given a network represented by a graph G, the broadcasting problem is de-
fined as follows. At the beginning, a single node, called the source, has a message.
In each round, those vertices that have the message can transmit through one
channel to inform some uninformed vertices. The broadcasting completes when
all vertices successfully receive the message. The broadcasting problem asks for
a scheme that completes this procedure in minimum time. We are interested in
centralized broadcasting schemes, i.e., we assume the broadcasting algorithm can
be determined in advance and with full knowledge of the network topology. Fi-
nally, we assume that the network is static, thus nodes, edges, and their channel
assignment remain fixed during the broadcast. Figure [I] illustrates broadcasting
in this model.

3 Basic Topologies

3.1 Trees

In this section, we show that the broadcasting problem in the general case is
NP-hard even if the network topology is a tree. On the positive side, we show



Fig.2. The instance of the broadcasting problem when the set cover instance I
contains the subsets W = {1,2,3}, X = {2,4}, Y = {3,4}, and Z = {4, 5}.

that when there is a single channel on each edge of the tree, there is an algorithm
that finds the optimal broadcasting scheme in polynomial time.

Theorem 1. The broadcasting problem in the conflict-aware multi-channel model

18 NP-hard for trees.

Proof. We use a reduction from the set cover problem, which is NP-hard [6].
Recall that an instance of set cover includes a collection of subsets of a universe
U, and the goal is to find the minimum number of subsets that cover the universe.
Given an instance I of set cover, we create an instance of the broadcasting
problem in a tree as follows. We create a tree T" with a root node and u children,
where u = |U]| is the size of the universe. Each child of the root is a leaf of the
tree and represents a member of the universe (hence T is a star). Each subset S
in I is assigned a label that represents a channel in the broadcast instance. For
each member of S, the label of S is added to the edge that connects the root with
that member. For example, if S = {z,y}, the label of S is added to the edges
that connect the root to the leaves z and y (See Figure . It is not hard to see
that there is a set cover of size k if and only if the broadcast finishes in k rounds:
assume there is a set cover of size k, then if the root sends the message through
the &k channels associated with the k subsets (in any order), after k& rounds all
the nodes of T' are informed. This is because there are no conflicts (one channel
is used at each round), and all the nodes are covered by k channels. Similarly, if
there is a broadcasting scheme that completes in k rounds, the subsets associated
with the k channels used by the root cover the universe. a

The problem becomes easy when there is a single channel on each edge.
Consider a tree of n nodes with only one channel on each edge. The optimal
broadcasting scheme can be obtained in O(nlogn) time with a simple recur-
sive algorithm. Given a root node v, we compute the cost (number of rounds)
of broadcasting from each of v’s children recursively, and associate with each
outgoing channel of v the cost of the most expensive child connected to v with
that channel. We then sort these channels in decreasing order of associated cost
and transmit through each one following this order. It is not hard to see that
this strategy is optimal. Note as well that there are no conflicts in this topol-
ogy. Algorithm [I| shows the procedure for computing the optimal broadcasting



Algorithm 1 treeCost(root,7 = (V,E),C)
time < 0
for v child of root do
Cost[v] « treeCost(v,7,,C) {7, denotes the tree rooted at v}
p — 1 {p counts the number of different channels seen so far}
for v in children of root sorted by Cost[v] do
if no message is transmitted through channel C((root,v)) then
time = max(time, p + Cost[v])
p—p+l
inform through channel C((root,v))
return time

scheme for a tree 7 and channel assignment C. A simple implementation of the
algorithm runs in O(nlogn) time.

3.2 Grids

Unlike trees, the broadcasting problem can be solved in polynomial time for
grids, even if there are multiple channels on edges. In what follows, we describe
a scheme for optimal broadcasting in a grid of size n x m.

Consider first the simple case when the source is one of the corner nodes.
W.l.o.g., assume the source is on the upper-leftmost node (strategies for sources
at other corners are symmetric). A simple scheme is to send the message to
the nodes in the first row: after receiving the message, each node transmits to
its right neighbor through any one of the available channels. This takes n — 1
rounds. Then, in parallel, the message is transmitted in each column downwards,
again through any available channel. The broadcast finishes in m+n — 2 rounds,
which matches a trivial lower bound determined by the diameter of the grid.
Note that conflicts do not arise in this strategy.

Combinations of small variations of the strategy described above will serve
for the general case in which the source is any node (4, j) in the grid. Consider
the set of nodes N = {(k,{)|k = 1,0 # j or { = j, k # i}, i.e., nodes in the same
row or column as the source node, not including the source. Let (); denote the
i-th quadrant defined by N in G in clockwise order starting from the upper-left
quadrant (See Figure [3| (a)). We say that a node u € N is a splitter if it is
connected to neighbors in two different quadrants with at least one channel in
common. Similarly, we say that the source is a vertical (resp. horizontal) splitter
if it is connected to neighbors above and below (resp. to the left and right) with
at least one common channel.

Broadcasting schemes may differ depending on the availability of splitters
and the relative sizes of the quadrants. If there are no splitters or the sizes of all
the quadrants are different, then optimal strategies for broadcasting in grids in
the telephone model [5] apply to our model as well. For other cases, we derive
optimal strategies by taking advantage of the splitters (See Figure [3| (b) for an



| n | | n |

(1,1 (1,n) 1,1) (1,n)

Q1 Q2

m - - m

(i, )
Q4 Qs J {

(m,1) (m,n) (m,1) (m,n)

(a) (b)

Fig. 3. (a) Quadrants defined by the source (i, j) in a grid of size m x n. (b) Example
of a broadcast from a source in the center of the grid. The source is a horizontal
splitter and there are two splitters in row ¢, depicted by black discs. Arrows indicate
the route of the message to any node; in particular black arrows show the first direction
of transmission from each node on the critical path of the scheme. Note that splitters
have two black arrows. The broadcasting completes in optimal (n + m — 2)/2 rounds.

example), thus proving the following theorem. The proof requires a tedious case
analysis, hence we provide a sketch of it.

Theorem 2. Given an m x n grid G with k channels and a source node (i, j),
where 1 <4 <m, 1 < j <n, an optimal broadcasting scheme can be computed
in O((n+m)k) time.

Proof. (sketch) Assume first that no node is a splitter in G for the given source
(7,7). In this case, lower and upper bounds for broadcasting coincide with the
ones in the telephone model. Broadcasting in this model for grid graphs was
studied in [5], in which broadcast times are shown for any location of the source.
In the case of no splitters, the following simple strategy achieves the lower bounds
in [B]. Let |Q;| denote the diameter of quadrant 4, which equals the minimum
distance from (i,j) to the corner of Q;. Let iy,142,43,44 be indices such that
|Qi| > 1Qis] > |1Qis] > |Qi,]- The message is transmitted from (4,7) along
row 4 in the direction corresponding to the corner of @;,, and simultaneously
(starting in the second round) in the same row but in the opposite direction.
When an end node of the row is reached, the nodes in row i between the source
and the end node start informing the nodes in their corresponding columns, first
in the direction of the quadrant with the largest diameter. Let ¢(Q;) denote the
time that it takes to inform all nodes in quadrant @;. This strategy achieves
t(Qil) = |Qi1|ﬂ t(Qiz) < ‘Qill +1, t(Qis) < |Q21| + 1, and t(QM) < |Q21| +2.

Broadcasting times may differ with respect to the telephone model when
there are splitters. Note, however, that the strategy above is optimal even when
there are splitters if the sizes of all quadrants are different (i.e., the source is not
in the middle row or column): in this case ¢(Q;) < |Q,| for all i = 1...4, and
|Q:, | is a lower bound.

Splitters make a difference in the case when the source is in the middle row
or middle column, or both. For the sake of brevity, we describe here only the



case in which the source is in the middle of the grid. Assume that the source is
at (4,7) = ((m+1)/2,(n+1)/2), and thus all quadrants have the same diameter

d:|Q1|-

The following strategy takes advantage of splitters to reduce the broadcasting
time by transmitting the message simultaneously through the critical path of
two quadrants. Suppose the source is a splitter. If it is a vertical splitter but
not a horizontal one, we start informing nodes in column j above and below
simultaneously. If it is only a horizontal splitter, we inform nodes in row i, to
the left and right. If it is both, we pick an orientation based on other splitters:
inform vertically if there is at least one splitter between Q1 and @2, and one
between Q3 and ()4, and inform horizontally otherwise. If there are no splitters,
just like before, when messages reach the end of the row, each node in a row
informs nodes above and below in their corresponding column. Suppose, for
example, that the message reaches a splitter (,5’) dividing Q2 and Q3. Nodes
on row ¢ that have the message act as if the message had reached the end of the
row: they inform above and below in their column in two rounds. The splitter
informs (¢ — 1,5') and (i + 1,4') in one round. When the message reaches the
beginning and end of column j’, each of the nodes in the column informs to the
right, completing the broadcast in quadrants Q2 and Q3 at the same time (See
Figure [3| (b)). The broadcast is analogous for other splitters.

It is not hard to see that if there is at least one splitter in each of the
directions in which the source informs, then the broadcasting time is d, and it
is d + 1 otherwise. These are optimal. To see this, note that nodes in N (i.e.,
nodes in the same row or column as the source) are in the critical path from the
source to two corners. Since at least one of these nodes must send messages to
neighbors in different quadrants, if this cannot be done simultaneously one of
the quadrants will suffer a delay of one round.

Suppose now that the source is not a splitter. The source informs vertically
in column j if there is at least one splitter in this column, and horizontally
otherwise, sending the message first in the direction opposite of the splitter (or
any if both directions have splitters). For example, if the only splitter is in row
1 between quadrants Q2 and @3, the source informs first to its left neighbor and
then to its right neighbor. The broadcast is completed in d + 1 rounds, which
is again optimal: since the source is not a splitter, none of the nodes of two
quadrants will have received a message in the first round. This inevitably adds
one round to the lower bound of d.

The same arguments can be used to show that the broadcast can be com-
pleted optimally in cases when the source is in the middle row or column but not
both. Note as well that the strategies above also apply in the cases when there
are two or three empty quadrants. Computing the optimal scheme for each case
requires calculating the quadrants’ diameters (which takes constant time), and
possibly searching for splitters, which can be done in O((n + m)k) time. O



4 Complete Graphs

In this section we show that the broadcasting problem in multi-channel networks
is NP-hard for complete bipartite graphs and complete graphs. Through this
section, we assume there is a single channel on each edge of concerned graphs.
Using a reduction from the exact cover problem, we show that the broadcasting
problem is NP-hard for complete bipartite graphs; then we show a reduction from
the broadcasting problem in complete bipartite graphs to the same problem in
complete graphs.

Lemma 1. The broadcasting problem is NP-hard for complete bipartite graphs
in the conflict-aware multi-channel model (assuming there is a single channel on
each edge), even in the special case when there are a total of 2 channels and the
source is connected to all its neighbors with the same channel.

To prove the lemma we use a reduction from the exact cover problem. To
simplify the proof, we define exact cover with neighborhood as a variant of exact
cover. We show that exact cover reduces to exact cover with neighborhood and
then show a reduction from exact cover with neighborhood to the broadcasting
problem in complete bipartite graphs. Recall that the exact cover problem is
defined over bipartite graphs; given a bipartite graph in which the vertex set is
partitioned into left and right subsets, the exact cover problem asks if there is a
subset S of vertices on the left such that all vertices on the right are connected to
exactly one of the vertices in S. This problem is a classical NP-hard problem [6].

Definition 1. The exact cover with neighborhood problem is a decision prob-
lem, which giwen a bipartite graph G = (V,E) [V = LU R, where L and R
are vertices on the left and right sides respectively] asks if there exists a vertex
u € L and also a subset X C L,u ¢ X, such that all neighbors of u are exactly
covered by X, i.e., any neighbor of u is connected to eractly one vertex in X

(See Figure[f).

Lemma 2. Ezact cover with neighborhood is NP-hard.

Proof. We show a reduction from the exact cover problem. Given a bipartite
graph G as an instance of exact cover, let L = {aj,as,...,a,} and R =
{b1,b2,...,bm} be the vertices of G on the left and right sides, respectively.
We create a bipartite graph H as follows: start with a copy of G and add n
vertices x1,Z9,...,T, on the right. Connect each x; to all vertices on the left
except a;. Moreover, add a single vertex y on the left, and connect it to all b;’s
and none of z;’s (See Figure [5)).

We claim that there is an exact cover for G if and only if there is an exact
cover with neighborhood for H. Assume there is an exact cover for G, i.e., there
is a subset of L that exactly covers all members of R. Note that the members
of R are exactly the neighbors of y; so all neighbors of y are covered and we are
done. Now assume there is an exact cover with neighborhood for H, so there is
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Fig.4. An instance of ex- Fig.5. Reduction from exact cover to ex-
act cover with neighborhood. act cover with neighborhood.
(X ={ai1,a3},u = ay4) is a solution.

a vertex u such that all its neighbors on the right are exactly covered by some
other vertices on the left. We claim that y is the only vertex with this property.
For the sake of contradiction, suppose that a; (¢ < n) is such a vertex. All x;’s
except z; are connected to a;, hence they should be covered by some of the
vertices in L — {a;,y} (note that y is not connected to z;’s). Moreover, at most
one of the vertices in L — {a;, y} can be selected since any two vertices of this set
will conflict in n —2 of z;’s. Let a, (a # t) be the selected vertex, i.e., a, should
cover all x;’s but z;. In particular a, should cover z,, which is not possible as
they are not connected by definition. So ¥ is the vertex with all its neighbors
covered by other vertices on the left. Since y is connected to all vertices of G on
the right, there is an exact cover for GG, which completes the proof. a

We are now ready to prove Lemma

Proof. (of Lemma 1)) We show a reduction from the exact cover with neighbor-
hood problem to broadcasting in complete bipartite graphs. Given an instance
of exact cover with neighborhood, which is a bipartite graph H = (L, R), we
create a complete bipartite graph with a single channel on each edge as follows.
We start with a copy of H with channel 1 on all edges and add two vertices r
and v on the right side. In order to form a complete bipartite graph G, we add
all missing edges and assign channel 2 to them (See Figure @ Also, let r be
the source in an instance of the broadcasting problem defined over GG. We claim
that there is an exact cover with neighborhood for H if and only if there is a
broadcasting scheme that completes in 2 rounds for G.

Assume there is a subset X C L that exactly covers all neighbors of a vertex
u € L. In the broadcast instance, in the first round r informs all vertices on the
left (using channel 2). In the second round, the vertices in X use channel 1 to
inform the neighbors of u (there will be no conflict by definition of exact cover),
and u uses channel 2 to inform other vertices including v. Hence, the broadcast
completes in 2 rounds.



Fig. 6. The exact cover with neighborhood instance and the resulting broad-
casting scheme (the bold edges have channel 1 and the rest have channel 2).

Now assume there is a broadcasting scheme that completes in 2 rounds. So
v receives the message in round 2 as it is not connected to r. Also, since all
incident edges of v are labeled with channel 2, there is exactly one vertex on the
left that can be used to transmit on channel 2 in round 2, otherwise there will
be a conflict in v. Let u be the vertex on the left that uses channel 2 to inform
v and its own non-neighbors in H. The other vertices on the right are neighbors
of w in H, which receive the message via some other vertices on the left. This
set of vertices forms an exact cover for neighbors of u in H. a

Next, we show a reduction from the instance described in the Lemma [1] to
the broadcasting problem in complete graphs. The reduction uses a construction
that we call a ladder bipartite graphs defined as follows (See Figure [7)).

Definition 2. A ladder bipartite graph with channels i,j is a balanced complete
bipartite graph with n vertices on each side. There is a one-to-one mapping
between the wvertices of two sides such that the edge connecting a vertex u to
its mapped vertex u' has channel j and all the other edges incident to u have
channel i.

Lemma 3. Assume all vertices on one side of a ladder bipartite graph with
channels i, j have received the message. If these vertices need to inform the ver-
tices on the other side in one round, all the vertices should be active in that
round, i.e., they need to transmit the message either through channel ¢ or j.

Proof. By contradiction, suppose a vertex u is inactive, so its opposite vertex
u’ should receive the message through channel ¢ from another vertex v. Thus v
uses channel ¢ and its opposite vertex v’ should receive from another vertex z
via channel 4. Then there will be a conflict in 4’ since x and v both use channel .
Hence, not all vertices can be informed in one round and we get a contradiction.

Theorem 3. The broadcasting problem in the conflict-aware multi-channel model
18 NP-hard for complete graphs, when there are at least 8 channels in the network
(assuming there is a single channel on each edge).
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Fig. 7. (left) A ladder bipartite graph with channels 1,2; grey edges are labeled with
channel 1. (right) A schematic representation of a ladder graph.

Proof. Given an instance (G, 1) of the broadcasting problem in a complete bi-
partite graph in which there are two channels and the edges adjacent to the
source 1o are labeled with the same channel, we create an instance of the broad-
casting problem in a complete graph in which there are 8 channels. Let L and
R denote the two partitions of the vertices of GG so that rog € R. We create a
complete graph H as follows (See Figure . We take two copies of L and three
copies of R — {ro} (ro is the source in the original instance). Call these compo-
nents L1, Lo, and Ry, Rs, R3, respectively, and also add a new vertex r as the
new source. The channels of edges connecting vertices in L1 and Ly to any of Ry,
Rs, R3 are copied from the original bipartite graph G. Let vertex r be connected
to the 5 components via 5 different channels so that the edges connecting r to
the vertices in the same component have the same channel.

Moreover, we assign the channels to the edges connecting vertices in Ry to
vertices in Ry in a way that these edges form a ladder bipartite graph with
channels 3,4. Similarly, we set the edges between Ry and R3 to form a ladder
graph with channels 5, 6, and between R; and R3 to form a ladder with channels
7,8. The edges connecting vertices in L; and Lo get channel 3 and all other
edges (the edges inside components) get arbitrary channels. We claim that there
is a broadcasting scheme for the instance (G,rg) that completes in 2 rounds if
and only if there is a broadcasting scheme for (H,r) that also takes 2 rounds.

Assume there is a broadcasting scheme for (G, ro) that completes in 2 rounds.
In the first round r¢ informs the vertices of L via its single channel, so in the
new instance r can inform the vertices of L, via the single channel that connects
them (channel 1 in Figure[§)). In the second round of the broadcast in (G, 7o), a
subset of L informs all vertices of R. In the new instance the same subset can
inform all vertices of Ry, Ro, R3 (via the same edges used in the first instance),
while r informs Lo via the unique connecting channel (channel 2 in Figure .
Hence, the broadcast completes in 2 rounds.

Now assume that there is a broadcasting scheme for (H,r) that completes
in 2 rounds. First, we show that r cannot inform any of R;, Re, R3 in the first
round. For the sake of contradiction, suppose r informs R; in the first round (the
same reasoning holds for Ry and Rs); in the second round r cannot inform both
L1 and L. Thus, at least one vertex in Ry should use channels 1 or 2 to inform
some vertices of I.; and Ls. Since the edges between R; and Rs form a ladder
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(a) An instance of the (b) The resulting instance in
problem in a complete the complete graph H.

bipartite graph G.

Fig. 8. The broadcasting problem in complete bipartite graphs (with one channel
on the edges incident to the source) reduces to the broadcasting problem in complete
graphs. Here, a number ¢ on the solid edge connecting two components indicate that
all edges between the vertices of the two components are labeled with channel i. The
channels of the edges between two components connected by curved blue edges are
copied from the reduced bipartite graph. Solid and dashed paired lines indicate that
the components form a ladder bipartite graph.

bipartite graph and at least one vertex of R; is busy informing vertices of L,
and Lo, by Lemma[3] R; cannot inform all vertices of Ry. Thus, some vertices of
R are to be informed by the source. Similarly, some vertices of R3 are also left
for the source to inform them. However, the source is connected to R, and Rz
with two different channels, thus it cannot inform both in a single round. Hence,
the broadcast cannot be completed in 2 rounds and we get a contradiction. As
a result, we may assume that in the first round r informs either L or Ls.
Assume r informs L; in the first round (the same reasoning holds for Ls).
Since in the second round 7 can inform at most one of the R;’s, the other two
should be informed via L, which implies a subset of vertices in L; can inform
all vertices in two R;’s. The same subset can be used for the instance (G,rg) to
inform all the vertices on the right in the second round. Therefore, there is a
broadcasting scheme for (G, rg) that completes in 2 rounds. a

5 Balanced Complete Graphs

As the broadcasting problem is NP-hard for complete graphs, we consider a
particular case of complete graphs in which there is a single channel on each
edge, and every node is connected to ”T’l nodes through edges with the same
channel. Thus, all the nodes use k different channels. We refer to this subset of
complete graphs as balanced complete graphs. Since this would restrict us from
considering networks where n is not congruent to one modulo k, we relax the
condition slightly in order to include almost balanced assignments. For a given

e > 0, we require that for every node v and every channel ¢, the number of



nodes connected to v using channel i is at least (1 — €)(n — 1)/k and at most
(14 €)(n —1)/k. We call this family of graphs e-balanced complete graphs.

In this setting, k& corresponds to a trivial upper bound on the broadcast time.
It suffices that the source transmits once through each channel and, since the
graph is complete, the broadcasting is done. If we ignore all possible conflicts,
it is easy to obtain a simple lower bound on the transmission time. Consider a
graph where at any round a node can transmit to at most (1+¢)(n—1)/k nodes
without conflicts. It is clear then that after the first round, we have at most
(1+€)(n—1)/k + 1 nodes informed. The general formula for an upper bound
for the number of nodes that have been informed after ¢ rounds is ((1 + €)(n —
1)/k + 1), and thus we get a lower bound for the total number of rounds to
inform all nodes.

Lemma 4. Let € > 0. For e-balanced complete graphs, at least [logn/log((1 +
€)(n —1)/k + 1)] rounds are required to complete a broadcast.

When k£ =n —1 and € < 1 (i.e., each node is connected to exactly one node
using each channel) a simple greedy algorithm finds the optimal broadcasting
scheme and it takes [log, | rounds. This is because there are no conflicts when
receiving the message, since all channels are different. The solution matches the
lower bound in Lemma 4] This example shows that there are some cases where
the broadcast time is not as bad as the trivial upper bound of k. When aiming
at practical applications, a more interesting scenario is one in which the number
of channels is relatively small compared to the number of nodes. Note that for
E<(@l+¢€n-1)/(v/n—1) = O(y/n) the lower bound in Lemma [4| asserts
that the broadcast requires at least 2 rounds. Therefore, it would be desirable
to have the property that there exists a constant C' > 0 such that for every e-
balanced complete graph G with at most C'v/n channels, a broadcast can always
be completed in 2 rounds. Unfortunately, we can show that this is not true by
constructing a counterexample using a random assignment of channels.

For given natural numbers n and k, let G(n,k) be a complete graph with
node set [n] = {1,2,... ,n}lﬂ in which two nodes are connected via channel
¢ € [k] with probability 1/k, independently for each such pair. As is typical in
random graph theory, we shall consider only asymptotic properties of G(n, k) as
n — 00, where k£ may and usually does depend on n. We say that an event in
a probability space holds asymptotically almost surely (a.a.s.) if its probability
tends to one as n goes to infinity. The following theorem implies that there are
e-balanced complete graphs for which the broadcast requires 3 rounds.

Theorem 4. Let ¢ > 0, co = 1—1/e , f = f(n) be any function tending to
infinity together with n, k' = k'(M) = log, ., n — 3logy ., logn — M, k" =

logy /e, n + f, and k"' = \/n/(2logn). Then, there exists a sufficiently large
constant M such that the following holds a.a.s.:

— G(n, k) is an e-balanced complete graph for any k such that 2 < k < k",

® By [m] we denote {1,2,...,m} for any positive integer number m.



— Broadcasting in G(n, k) requires at least 3 rounds for any k such that 3 <
k <k (M),
— Broadcasting in G(n, k) requires 2 rounds for any k such that k" <k < k.

Proof. Throughout the proof, we will use the following version of the Chernoff
bound (See for example Theorem 2.8 [§]). Let Z be a random variable that can
be expressed as a sum Z = Z?:l Z; of independent random indicator variables
where Z; € Be(p;) with (possibly) different p; = P(Z; = 1) = EZ;. Then the
following holds for ¢ > 0:

2
P(Z >EZ+t) <exp <2(]EZt+ t/S)) ,

t2

The proof that G(n, k) is an e-balanced complete graph a.a.s. follows imme-
diately from the Chernoff bound. Note that for a given node v and channel ¢, we
expect (n —1)/k = £2(y/n) neighbors connected through channel c. Hence, with
probability 1 —o(n~2) the number of edges of this type is n/k+O(y/n/klogn) =
(I+0(1))n/k. We get that a.a.s. for every node v and every channel ¢ the number
of edges adjacent to v with channel c assigned is (1+o0(1))%. Hence, the property
holds for any € > 0.

Let 3 < k < k’. Now, we will show that broadcasting in G(n, k) requires at
least 3 rounds a.a.s. Fix a node v that transmits at the first round, nodes from
the set X receive the message (|X| = (1 + o(1))n/k). Now, fix nodes that are
going to transmit the message during the second round, and assign channels to
them. In particular, y; nodes of X use channel i € [k].

We have two possibilities to consider: a) v transmits during the second round,
and b) v does not transmit during the second round. For a given sequence
(y1,Y2,--.,Yk), the total number of configurations to consider (that is, the num-
ber of broadcasting schemes) is at most

n < 3t Yi
nk(k +1) 1:[ <yl> <n
(There are n choices for v, k choices for a channel used by v at the first round,
k+1 choices for a behavior of n in the second round. Finally, (;) nodes transmit
on channel ¢ at the second round.) ‘
Fix any configuration of nodes of X sending the message during the second
round. Let u be a node in V'\ (X U {v}). The probability that node u does not

receive the message from X is

n(-e(-1))

(We select one node that sends the message to u via channel i (term y;). The
probability that the edge from this node to u has label i is 1/k. Nobody else



sending on channel i at this round can reach u (term (1 — l)yi_l).) So in case

%
a) we expect to see

e (R0

nodes not informed after two rounds. Case b) is slightly more complicated but
it is easy to provide a lower bound on the number of nodes not receiving the
message. Some of the nodes receiving message from v (via channel i) at the
second round can have conflicts from nodes of X sending on the same channel
(unless y; = 0). Therefore, perhaps more nodes do not get the message but, in
any case, we expect to see at least

w5 (1))

nodes not informed after two rounds.

If £ > 3 is a constant, then clearly a positive fraction of nodes remain uni-
formed after two rounds a.a.s., and we are done. Suppose then that k = k(n)
grows together with n. Due to the symmetry, the probability is minimized when
vi =y/k+0O(1) (y =3,y for all values i, and so the probability of not being
informed is at least

(1+o(1)) (1 1+ O(k’l))% exp (_%))k

If y/k — c, then this is asymptotic to @((1 — ce°)*) and so we get that
the probability of being not informed is of order at least ck. Note that cy =
mingso(1l — ce™¢) = 1 — 1/e. Therefore, the expected number of nodes not in-
formed is at least

(1+0(1))(1 — 2/k)nQ(ch) > C(M)log* n,

where C'(M) is a function of M that grows to infinity together with M. (Recall

that k < log; /o, n—3logy /., logn — M.) It follows from the Chernoff bound that

the probability that every node is informed is at most exp(—C/(M)(log®n)/2).
Since the total number of configurations with y < 2k? is at most

y'n® TV < exp((3+ k +y)logn) < exp(O(log® n)),

we can use the union bound (with C'(M) large enough) to get that a.a.s. there
is no broadcasting scheme that informs every node after two rounds, provided
that y < 2k? nodes are active at the second round. For y > 2k? we use the fact
that the probability of u not receiving a message via a random channel 7 is not
(1+0(1))co anymore but slightly larger (for k?/y = o(1) it is, in fact, tending to
one). It is straightforward to check that there is no chance to have more active
nodes (y > 2k?) in the two-round broadcasting scheme.



Suppose now that & < k < k. We will show that this time there is a
broadcasting scheme that informs all nodes in two rounds a.a.s. Choose any
node v and any channel c. At the first round, v transmits on channel ¢, X nodes
are informed (|X| = (140(1))n/k). The probability of receiving a message at the
second round is maximized when exactly k nodes transmit on each of k channels.
However, this is not possible for large values of k. Therefore, we need to consider
three sub-cases depending on the range for k.

Suppose first that k < 1n!/3. Since (2 4 o(1))n?/3 nodes are informed after
the first round, there is no problem with desired assignment. Choose any k?
nodes of X, partition them such that exactly k£ nodes transmit on each channel.
The expected number of nodes not informed after the second round is

O(n) (1= (1+0(k™))/e)" = O(neh) = o(1),

and so a.a.s. every node receives the message by Markov’s inequality.

Suppose now that (1/2)n'/? < k < n?/°. This time all nodes of X transmit
the message: (14 o(1))n/k? nodes transmit on each channel. The expectation is
now

n/k2 n/k?
O(n) (1 —(1+0(1)) /kk <1 - llc) > < exp (logn — O(n/k?)) = o(1).

Finally, for n?/®> < k < k", the calculations can be done slightly more care-
fully to get that the expectation is

O(n) (1 1+ 0(1))”/:2> ' < exp (logn 1+ 0(1))]%) = o(1).

The result holds by Markov’s inequality, as before. a

Although this is an asymptotic result, one can take n large enough to get
that with probability at least 1/2 the first and one of the other two properties
hold, and thus we get a counterexample of this order. We conjecture that there
exist constants c¢1,co > 0 such that for any e-balanced complete graph G with
c1logn <k < cay/n/logn channels, a broadcast can always be completed in 2
rounds. Since a random assignment of channels seems to be a natural candidate
for a counterexample, the fact that the conjecture holds a.a.s. for G(n, k) strongly
supports it.

Note that, for example, a greedy algorithm cannot always find a broadcasting
schema of two steps. Instead, we provide a construction algorithm for balanced
complete graphs where a broadcast can always be completed in two steps and
the broadcast schema is easily computable.

Since there are e-balanced complete graphs with bounded number of channels
(k = O(1)) in which broadcasting requires at least 3 rounds, it is interesting to
design e-balanced complete graphs (or even, balanced complete graphs) that can
be broadcasted in 2 rounds. Since the topology is fixed (a complete graph), such
design is equivalent to a promising channel assignment. Our channel assignment
algorithm relies on the following known result for edge coloring.
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(a) Base case: (b) Inductive (c) First two itera-
Gp = K;y. step: G1 = K. tions (¢t = 2) of the
construction.

Fig. 9. Construction example using K4 as base case and K3 in the inductive step.

Lemma 5. [16, problem 16.5, p. 133] The minimum number of colors required
for an edge coloring of a complete graph K, isn—1 if n is even, and n otherwise.

A constructive proof of this lemma leads to the following edge-coloring al-
gorithm. When n is odd, assign the color ((¢ + j) mod n) + 1 to each edge
e = (v;,v;) with v;,v; € V.= {v1,v2,...,v,} (an edge-coloring for K3 is shown
in Figure. We say that a node v; uses a color c if there is an edge (v;, v;),
1 # j colored with ¢. For even values of n, the graph K,,_1 is colored using the
above method, any edge e = (v;, v,,) incident to the remaining vertex v, is col-
ored with the color not used by v; (See Figure . Note that coloring an edge
e and assigning a channel to e are assumed to be equivalent terms. Thus, from
now on we shall refer Lemma [5| using the terminology defined for our problem.

Relying on this result, we obtain the following theorem (our construction
algorithm follows immediately from its constructive proof).

Theorem 5. Given an odd number of channels k and a positive integer t, it is
possible to construct a balanced complete graph with kt + 1 nodes (i.e., Kity1).

Proof. We use induction on ¢ to prove a stronger statement as follows. For given
values of k and ¢, there is a complete graph with k¢t + 1 nodes that satisfies the
following properties: (i) the vertices of the graph can be classified in & classes
with ¢ vertices in each class (and one root vertex in no class), (ii) vertices in the
same class are all connected with one channel, and are connected to the root
with the same channel, and (iii) for each pair of classes, all edges connecting
vertices in the two classes are connected with the same channel. It is not hard
to see that proving this statement proves the theorem.

Let Gp = K41 be the base case. As we define k to be odd, G is a complete
graph with an even number of nodes. Hence, we can assign k different channels
to G in such a way that no two edges adjacent to the same node use the same
channel (by Lemma [5). Note that each node in Gp uses a different channel to
connect with the other k nodes. Define the last node added by the coloring given
by Lemma [5] as the root. We assign each non-root node to a class defined by
the channel that connects it to the root. In Figure the root is the center
node, and we name each non-root node with one of the 3 channels (black, gray,
and dashed). For the inductive step, assume G is a complete graph with kt + 1



nodes satisfying the desired properties. We add k new nodes to G¢ to form G4 1.
For this sake, we connect all vertices of G to the vertices of a complete graph
G = K}. Thus G441 is a complete graph with kt +1+k = k(t+ 1) + 1 vertices.
Since k is odd, we can assign k different channels to G in such a way that no
two edges adjacent to the same node use the same channel (by Lemma [5)). By
construction, each node in G uses k — 1 different channels. We assign each node
to the class corresponding to the channel it does not use. Consequently, Gyi1
satisfies (i).

Let class(c) be the set of nodes in G4 1 that belong to the class corresponding
to channel ¢. We assign channel ¢ to each edge (u,v) such that u,v € class(c),
and also to each edge (u, root), Vu € class(c). Thus G4 satisfies (ii), and all the
nodes in the same class are interconnected and connected with the root using the
channel that defines the class. The remaining step is to assign channels to edges
with end-points in different classes. Consider two classes ¢; and cy. By property
(iii) all edges in G¢ connecting nodes in these classes are labeled with the same
channel. We assign this channel to all edges (u,v) such that u € class(c;) and
v € class(cg), with w € Gy and v € Gy. This step is repeated for all pairs of
classes. Finally, since the color assignment for Gp given by Lemma [5] builds on
the assignment for Gy, for any pair of classes, edges connecting vertices in these
classes have the same colors in both G and G;. Thus for all pairs of classes ¢y
and ¢, the edge (u,v) with u,v € Gy and u € class(c1) and v € class(cz) has
the same color of the edges in G connecting vertices in class(c1) to vertices in
class(cy). Hence Gy satisfies (iii), which completes the proof. O

Figure[J]shows an example of the construction algorithm with £ = 3 channels
(thus, a balanced complete graph with 3t+1 nodes). K4 with 3 different channels
is used as the base case in the inductive construction. The graph used in the
inductive steps is a K3 designed using a channel assignment with 3 different
channels. The algorithm iteratively adds K3 at each step. Figure shows how
the construction algorithm connects G; and G g to obtain the final graph. Next,
we analyze the number of rounds required to broadcast in a graph constructed
with our algorithm.

Theorem 6. Let G be a complete graph with k channels and at least k% —2k+1
nodes constructed according to the inductive algorithm described in Theorem [5
Then, a broadcast in G from any node can be completed in 2 rounds.

Proof. First, consider the case when the source of the broadcast is the root. In
the first round, it informs all the nodes in one class (using for example channel 1).
The number of nodes in the graph guarantees that there are at least kK — 2 nodes
in that class. Thus, after the first round, at least kK — 1 nodes are informed. In
the second round, it suffices that the root transmits through a channel different
from the one used in round 1 (e.g., channel 2) to inform a new class, and other
k — 2 nodes among the informed ones take care of the remaining k — 2 classes.
Note that conflicts do not occur because all the nodes informed in the first round
belong to the same class.



When the source is not the root, in the first round the source transmits
through the channel that defines its class. This results in at least k£ — 1 informed
nodes (including the source and the root). In the second round, the source trans-
mits through a different channel to inform one class, while other k£ — 2 nodes
among the informed ones take care of the remaining k — 2 classes (one of those
nodes may be the root). Note that conflicts do not occur even when the root is
transmitting (no other node is transmitting to the same class). O

The broadcasting scheme follows from this constructive proof. Notice that
the broadcasting scheme together with the channel assignment constitute a fault-
tolerant system. The network may be much larger than k2 —2k-+1 nodes, and this
broadcasting scheme will still work when some of the nodes fail. More precisely,
if the root and £ — 2 nodes in each class do not fail, a message can still be
broadcasted to all functioning nodes in 2 rounds.

The described channel assignment is also efficient when several messages need
to be broadcasted from different sources at the same time. Specifically, up to &
messages can be broadcasted simultaneously, and all the broadcasts complete in 3
rounds. The fault-tolerance property that holds for the broadcast of one message
holds as well for this scheme. We formalize this in the following theorem.

Theorem 7. Let G be a complete graph with k channels and at least k* — 2k +1
nodes constructed according to the inductive algorithm described in Theorem [5
Then, broadcasting k messages from any k different nodes in G can be completed
in 8 rounds.

Proof. First, consider the case when the k sources of the broadcast belong to
different classes. Let m; be the message that must be broadcasted from a source
node in class(c;). Initially, each source transmits through the channel that de-
fines its class. Therefore, after the first round all the nodes in class(c;) have
been informed of message m;. Note that the root receives the k messages in the
first round. W.l.o.g., let us define a total order in the classes using the name
of the channel that defines the class (i.e., class(ci) < ... < class(ci)). We say
that class(c;) transmits a message to class(c;) if a node in class(c;) transmits
through the channel that connects it with all the nodes in class(c;). In the second
round, each class(c;) transmits the message m, to the k — ¢ higher classes. Note
that k — i nodes in class(c;) transmit in this second round. As the graph has at
least k2 — 2k +1 nodes, every class has at least k—2 nodes, and class(c;) can use
the root to complete the k — 1 necessary transmissions. After the second round,
all the nodes in class(c;) have been informed of messages mq,...,m;. In the
third round, each class(c;) transmits m; to the i — 1 lower classes. Analogously
to the previous round, ¢ — 1 nodes in class(c;) transmit in this third round,
and the number of nodes in the graph guarantees that the class have enough
nodes for all classes but ci, which uses the root to complete the k — 1 necessary
transmissions. Observe that the order in the transmissions avoids conflicts in the
second and third round.

In general, the k sources may not be distributed one in each class. For each
class with more than one source we arbitrarily choose one of the sources and call



it a proper source. All other sources in the class are non-proper. A class without
any source is called orphan. Note that there are as many orphan classes as non-
proper sources. In the first round, each proper source transmits through the
channel that defines its class, thus informing all the nodes in its class, and each
non-proper source adopts one of the orphan classes (i.e., it transmits through the
channel that connects it with all the nodes in the orphan class). After this round
the situation is similar to the case where each source belongs to one class. The
main difference is that the root has not been informed of any of the messages
broadcasted from non-proper sources. We define a total order among classes by
choosing any of the classes with a proper source as the first class, and we assign
any arbitrary order to the rest of the classes. Note that there is at least one
proper source. Then, the second and third rounds are analogous to the case in
which each class has one source, with the difference that in the second round
one of the nodes of each adopted class informs the root. Note that the first class
is the only one that needs to transmit through all the channels in the second
round, which is why we choose a non-orphan class to be the first class. The
special case where the root is one of the sources does not imply any difference
in the algorithm because the root can be considered as a proper source of one
of the orphan classes.

6 Conclusions

We studied the broadcasting problem in conflict-aware multi-channel networks,
and presented positive and negative results for various network topologies. These
include polynomial time algorithms that give optimal broadcasting schemes for
grids, and also for trees when there is a single channel on each edge. We proved
that the problem is NP-hard for trees in general case, and also for complete
graphs even in the restricted case with only one channel on each edge. We studied
the balanced complete graphs as a subclass of complete graphs in which each
node is connected to roughly the same number of nodes with each channel.
In this setting, we proposed a channel assignment that results in broadcasting
schemes that complete in two rounds, which is optimal for non-trivial networks.
Besides, we proved that broadcasting in some balanced complete graphs requires
at least three rounds, thus justifying the significance of our construction. The
construction results in fault-tolerant networks that enable efficient broadcasting
of multiple messages at the same time.
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