
D
R

A
FT

A Web-based Toolkit for Collaborative Innovation

Donald Cowan
David R. Cheriton School of

Computer Science
University of Waterloo

Waterloo, Ontario Canada
N2L 3G1

dcowan@csg.uwaterloo.ca

Terry Wilkinson
Computer Systems Group

University of Waterloo
Waterloo, Ontario Canada

N2L 3G1
twilkinson@csg.uwaterloo.ca

Douglas Mulholland
Computer Systems Group

University of Waterloo
Waterloo, Ontario Canada

N2L 3G1
dwm@csg.uwaterloo.ca

Paulo Alencar
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario Canada N2L 3G1

palencar@csg.uwaterloo.ca

Fred McGarry
The Centre for Community

Mapping
50 Westmount Road North,

Suite 206
Waterloo, Ontario Canada

N2L 2R5
mcgarry@comap.ca

Technical Report CS-2012-23

ABSTRACT
In a previous report we outlined the need for a web-based
framework for collaborative innovation. In this report we
describe the toolkit, meta-components and meta-processes
that are needed to support such activity.

1. CATEGORIES AND SUBJECT DESCRIP-
TORS

H.1[Information Systems Models and Principles]:General;
H.4[Information Systems Applications]: Miscellaneous;

D.2.0[Software Engineering]: General

2. GENERAL TERMS
Web Science Applications

3. KEYWORDS
collaborative innovation; Web Science; asset-mapping; web-
based framework; software toolkit; software meta-components,
software meta-processes

4. INTRODUCTION
As part of our research in Web Science we have been explor-
ing web-based and mobile applications to support the activ-
ities of geographic communities or communities of practice.
We have labeled this type of application research collabora-
tive innovation (CI) [2]. CI is a part of Web Science from

Figure 1: CI and Software Engineering for the Web

two points of view: [1] CI embraces the use of the Web as a
vast information network of people and communities; and [2]
the software engineering approach envisioned for the Web is
the same approach used in creating CI systems as depicted
in Figure 1 [4].

CI systems based on the Web and mobility start as a micro
system and as the user base evolves, a viral effect comes into
play and emergent properties arise. CI changes the way we
think about problems or to quote McLuhan [6], “We shape
our tools, and then our tools shape us.” The Web provides
the connectivity to support CI, but how do we support the
emergent needs that arise as a virtual or geographic commu-
nity works toward a common understanding and solution of
a problem? We need to extract the general architectural
principles and interactions that occur and then look at the
tools and meta-tools that are needed for CI.

Although people collaborate to supply solutions as in the
“wisdom of the crowds” [8], there has to be an underlying



D
R

A
FT

social and information infrastructure that turns the infor-
mation supplied by the “crowd” into knowledge and action.
This is the purpose of these CI applications.

We have discovered that for CI to be truly effective the users
need access to meta-tools and frameworks to implement tai-
lored systems supporting CI directly rather than relying on
people with in-depth knowledge of software technologies. Al-
though we have not fully achieved this goal of usability we
have made significant advances toward realizing it by making
web and mobile applications easier to build and maintain.

This report describes some of our progress. The techniques
are evolving constantly as we learn from our experiences and
experiments. Using various versions of the software technol-
ogy outlined in this paper our research team and its partners
have produced over 80 web-based and mobile information
systems. These span many areas such as economic devel-
opment, social development, tourism, aboriginal affairs, en-
vironment, cultural heritage and population health. The
partners in these projects range from non-governmental or-
ganizations, local, provincial and federal governments to the
United Nations.

5. AN ILLUSTRATIVE EXAMPLE
In this section we describe a simple problem in collaborative
innovation that can be used to illustrate the fundamental
concepts behind a web-based meta-toolkit. Consider a com-
munity of sellers and buyers that wish to set up a web-based
and mobile system of mutual benefit.

The sellers wish to notify the buyers about items for sale
and a buyer wishes to be notified when anything of specific
interest is offered for sale. The sellers can specify items
offered for sale by type, description, location, time of sale
and price. Similarly buyers provide similar specification for
items they want to purchase.

The software system would notify the buyers of items of
interest based on their specifications. The location of the
item would be specified on a map so that the buyer can
see where the item is available. If a new buyer joins the
system they will be notified of both new items for sale and
of any items that are still on sale. The seller has the right
to withdraw or delete any item from a sale, because it is no
longer available.

This example could have also introduced buyer agents that
would locate the “best” deal among all articles of the same
type that are for sale. The agent could have used price,
reputation, warranty and location as parameters to deter-
mine what should be purchased and either buy the object
or provide the buyer with a recommendation. We will not
consider agents in this example except in our discussion of
the meta-toolkit.

5.1 What components do we need?
Based on the brief specification provided in the previous
paragraphs what type of components are needed to build
the application?

5.1.1 Data model

The key component is a common data model shared by the
buyer and seller. Of course parts of the data model may
only be accessible to the buyer and part to the seller.

5.1.2 User interfaces
Sellers need to be able to provide data about themselves
(name, address, type of business) and about the item for
sale (type, description, price, duration of sale, sale location)
through an input form. The seller then needs an output
form to check the validity of the input. Buyers need similar
facilities to describe themselves and the articles of interest.
Both groups need some form of access control to ensure each
seller and buyer uses the correct forms and thereby modifies
the appropriate part of the database that implements the
data model.

5.1.3 Behaviour
Sellers notify buyers of articles for sale and the buyers de-
cide what items are of interest based on what is available.
Thus, sellers are publishers of information and buyers are
subscribers with the proviso that the buyers are not just
able to look at what goes on sale in the future but can also
look at anything that is still on sale. In addition a seller can
withdraw or delete an item from the sale.

6. WIDE SOFTWARE ASSETS
The Web Informatics Development Environment (WIDE)
toolkit and its predecessors have been under development
for over 20 years. The primary purpose of this toolkit is to
simplify the implementation and maintenance of web-based
and mobile applications with the ultimate goal of providing
many of the tools to users. Although development is contin-
uing a number of the essential features have been determined
and this section is intended to provide a description of them.
The example system described in Section 5 is used to moti-
vate many of the meta-components and meta-processes that
constitute the toolkit.

The WIDE toolkit is really a meta-toolkit in that it pro-
vides meta-components or outlines that can be completed to
construct a component, and meta-processes that are needed
compose the components into an application. In this sec-
tion we describe some of the basic meta-components that
are needed to construct most web-based and mobile sys-
tems that we have encountered. In Section 7 we describe the
meta-processes that are used to compose components into
an application. Of course the list of such meta-components
and meta-processes will never be complete as new applica-
tions will be conceived. However we can view the contents
of the meta-toolkit as stabilizing over time.

6.1 Data meta-model and model
The data model and corresponding database is often difficult
to implement as the data model depends on identifying the
entities and relations that support the application system.
Simply put, experience is a key factor in constructing data
models. However, meta-components can be provided that
make the data modeler’s task easier.

One meta-component of course is the ability to generate
or re-generate a database and database views from entity-
relationship diagrams or equivalent XML descriptions. A



D
R

A
FT

view creates a virtual table that presents data gathered from
one or more tables. Views can be used to isolate an appli-
cation from changes in the underlying data model. Views
to support output are straightforward whereas views where
input is provided and then must be posted to a new data
model can be more complex.

Since data models and the databases are often restructured
as the problem space changes, there must be mechanisms to
unload the data from the old database and reload it to the
new version.

Good database facilities try to make these processes as trans-
parent as possible but improving the abstraction is impor-
tant when trying to provide the application user with ap-
propriate tools.

6.1.1 Indexing and searching
The data must be able to be searched both by value and
time. Therefore the database should support indexing and
time-stamping mechanisms.

6.1.2 Triggers
A database trigger is procedural code that is automatically
executed in response to certain events on a particular table
or view in a database. Triggers need to be supported in the
model to handle events related to changes in the content of
the database. Such triggers can handle events for agents or
publish-subscribe patterns.

6.2 The Human-Computer Interface
Once the data model is operational it becomes necessary to
construct a human-computer interface to support the input
of data or its presentation. The data is either structured,
that is, searchable by data type or unstructured in that it
is not easily broken into component parts. Items such as
books, documents or pictures are viewed as unstructured
data. Both types of data can be stored in a modern rela-
tional database.

6.2.1 Output
Output can consist of the following items:

• structured reports,

• documents,

• multimedia content (audio, video, pictures),

• diagrams or maps and

• statistical reporting (charts and graphs).

Any output presentation can consist of one or more of these
items in various combinations. For example a document
may have a structured report with embedded multimedia
presentation, chart or map.

Structured reports consist of rows and columns. A docu-
ment is unstructured or semi-structured text like a book
where each section is identified; documents often have asso-
ciated meta-data that provides information such as author,

publisher, topic and date of publication. Multimedia is also
unstructured and similar to documents in that it is a chunk
of information usually with accompanying meta-data.

Diagrams or maps consist of a background and layers with
various controls to manipulate the background and layers.
The layers are geo-referenced relative to the map and often
come from a database containing geo-spatial information.
Details of maps are presented separately in Section 6.2.4 as
they are a comprehensive form of output and input. Statis-
tical reports and charts are graphical methods for presenting
structured data and are an important form of output.

6.2.2 Input
Input can consist of the same items as output namely: struc-
tured data, documents, maps, diagrams, graphs and charts;
or multimedia. Maps are usually delivered from a special-
ized spatial map-server as described in Section 6.2.4. Graphs
and charts are usually generated from structured data and
rarely used as input. Multimedia and diagrams are usu-
ally produced using separate tools that produce common
file formats and can easily be incorporated into structured
or document data through standard file extension naming
or a hyperlink.

Based on these thoughts we need input forms for struc-
tured data and documents. Structured data can be handled
through a meta-form that allows the construction of fields
that accept data and store the data in the related database.
Documents can be constructed using a wiki-like tool that
supports text and hyper-linking but can also incorporate
the other types of information (maps, diagrams, graphs and
charts; or multimedia) as well.

Of course the input mechanism must support bulk upload
of data and documents. This topic as related to data was
covered in 6.1. With respect to documents the system must
be able to upload many of the common document formats
(doc, pdf, html, ...) and allow them to be stored and in-
dexed. It should be possible to choose a common format
such as text or HTML to allow the documents to be easily
indexed for later searching. Documents should also be time-
stamped to allow time-dependent searching. The Windows
IFilter [10] approach is a valuable extension that provides
indexing support for various document file formats.

6.2.3 Interactive interfaces - combined output/input
The interface should also be able to support interaction.
Fields and documents from a database should support edit-
ing. In addition, one should be able to ask what-if questions
with respect to data. Views of data can be exported as
comma-separated values (csv) to a spreadsheet application
that would support changing data to see the effects. The
changed data might not be used to update the database,
but could be stored in an auxiliary database that could be
used to drive the interface.

6.2.4 Maps and Diagrams
The map interface or map client should be interactive and
contain a map and a bounding box with controls. The map is
delivered from a map-server of properly geo-referenced base
maps and features such as roads and water courses or lakes.



D
R

A
FT

The base maps are delivered as tiles while any features are
overlaid on the map as translucent tiles, vectors or points
represented as dots or other symbols. The maps can rep-
resent any spatial or map-based concept including thematic
maps such as ones showing environmental or demographic
data, roadmaps or even floor plans. Combinations of maps
or map layers can be displayed such as a road map with a
superimposed thematic map. Vector-based maps can also
be displayed where required.

Map-client controls in conjunction with the map server sup-
port zoom-in or zoom-out functionality and positioning over
areas of interest. Positioning can be performed by scrolling
the map with a pointing device such as a mouse or finger.
When connected to a database or directory of geo-referenced
information the controls on the interactive map can be used
to:

1. Search for geo-referenced data in multiple databases.
The map-area searches are defined by the frame around
the map or a shape including a circle, rectangle or gen-
eral polygon. The search function displays the results
as the search frame is defined.

2. Display the results of the search as a point, circle or
polygonal shape on the map depending on the result of
the search. For example, a building would normally be
displayed as a point while a park would be displayed
as a polygon.

3. Interact with the location and shape of a geo-referenced
object by re-locating it or changing its shape.

4. Interact with a geo-referenced object to cause more
information about the object to appear on or next to
the map.

5. Interact with a geo-referenced object by completing a
form associated with the object that creates or adds to
the information about the object in the geo-referenced
databases.

6. Display layers of information related to different datasets.
By supporting map layers and their associated data it
is possible to show how different groups of data are
related geographically.

The map client should accept maps from different map servers
such as those of Google, bing or OpenStreetMap (OSM),
thus providing the same functionality no matter the source
of the maps.

The map client and server can support interchange of map
data with traditional geographic information systems (GIS)
software to support the mapping functionality. The server
and client should support appropriate sections of the cur-
rent version of the Open Geospatial Consortium (OGC) [7]
standards. Supporting these standards allows direct com-
munication between applications based on the interactive
map client and connected databases and any GIS incorpo-
rating the OGC standard. Thus it is possible to commu-
nicate with GIS systems used by community governments.
The map server and map client should support the import
and export of shapefiles [11] as another common interchange
format between a GIS and the map client.

6.3 Interaction modes
In developing applications that can operate on the desktop,
tablet and smartphone, one needs to consider the screen
layout and the interaction modes available to the user. For-
tunately the interaction modes are very similar in that one
can use a pointing device such as a mouse or finger and can
scroll over multiple windows and apps.

The screen area available to the different classes of devices
does govern the presentation of information. For example,
when indicating a point or object on a map on a desktop
machine or reasonable size tablet with a view to querying
associated information, one can continue to show the map
and the results of the query. However the screen of a smart-
phone is too small to allow this type of presentation. In
that case the results of the query should replace the map
with the ability to show the map instead of the query result.
Smartphone and tablet native application development tools
support this differentiation.

6.4 Notification and Publish-Subscribe
A critical function in almost any computer system is the
ability to notify the user or other components when there
is a change of state. For example, the clock is ticking over
indicating that an appointment on the user’s calendar is
about to occur, or a document has just been published and
all subscribers need to be notified in case they are interested
in it. The type of “document” that can be published can
vary widely. For example, it can be an event such as an
appointment, a request, a document or a message. Based
on these comments it is clear that web-based and mobile
systems require a form of publish-subscribe pattern [9].

We first describe the ideas behind the basic publish-subscribe
pattern and show why it is not adequate to meet all the
needs of a general web-based information system. In the
basic publish-subscribe pattern an author creates a docu-
ment and sends it to a publisher who distributes (publishes)
the document to unknown subscribers. The subscribers are
notified that there are documents.

The subscribers then retrieve the documents based on some
criteria or message filters. Criteria could be content (news
mentioning the European Union), type (sports or cooking),
context (time of day or location of subscriber). This ap-
proach is similar to putting a newspaper or magazine on
a newsstand where the publisher does not know the iden-
tity of the subscriber and the subscriber chooses to acquire
the publication based on the subscriber’s interests. A typ-
ical publish-subscribe pattern is shown in Figure 2 where
the message filters capture the criteria under which the sub-
scriber obtains a document.

There are concerns related to this form of publish-subscribe
pattern. The publisher may need to have a direct or indirect
means of knowing who has the documents. Some publishers
may require a recall or update in the event that a defect is
discovered in a published document or data set, or if a new
version of publication is made available. A document may
only be published if certain contextual conditions are met or
the publisher may want to put restrictions on the document
such as only publish to subscribers on a restricted list. A
subscriber may want to edit and re-publish a document, in



D
R

A
FT

Figure 2: Publish-Subscribe

Figure 3: Mediated Publish-Subscribe

effect a subscriber may want to switch roles and become a
publisher.

The primary change to the publish-subscribe pattern is shown
in Figure 3 where publish filters have been added to the pat-
tern. After the document is published it passes through a
number of publish filters. Who are the recipients?; What
type is the document (sports, local news)?; What is its con-
tent (indexed)?; What is its history (time of publication,
recipients etc.)?; What is its context (time/place to be pub-
lished)? Note that the publisher may or may not know know
the identity of the subscribers directly, but they are at least
known to the system because we may want to replace or
recall a document (bad data). This situation is similar to
a paid subscription to a magazine or newspaper where the
delivery agent knows the identity of the subscriber.

The subscriber also has extra filters based on history in case
the subscriber wants to recover documents that have been
lost. Context could be time or place or more complex situ-
ations as in “I only want documents from my boss between
9am and 5pm.” Whenever a subscriber joins a publish-
subscribe situation the subscriber must be able to specify
whether documents published in the past should also be
made available.

6.4.1 Collaboration and Mediated Social Networks
Although social networks connect individuals, there is a need
for a social network for groups. A mediated social network
is such an object and can be viewed as a group of individuals
seated around a real or virtual conference room table collec-
tively working on collaborative tasks. The group and its set
of purposes form around a geographic community or com-
munity of interest and the group may break into sub-groups
to divide the tasks and make them more manageable. The
assets and the value created from them are held and con-
trolled by the group. The group may appoint mediators to
manage the composition of the group and sub-groups, to as-
sign tasks, and manage and control the group’s assets and
derived value. In contrast a social network is focused on
the individual rather than the group. The individual con-
trols what can be seen and shared, and ownership of assets
and derived value belong to the individual. The group may

collaborate synchronously or asynchronously.

Such a social network can use tools already described for the
human interface including maps, input forms, reports, text,
video, pictures, audio, wikis, blogs, and databases. Tags,
social bookmarks, and other social networking tools can help
bring order to the avalanche of information that is involved
in forming a creative network and managing the output from
the collaboration.

One key component of a mediated social network is the
publish-subscribe pattern where documents and events are
published to members of the network who then subscribe to
them. Role reversal also occurs in that publishers become
subscribers and vice-versa. Asynchronous collaboration oc-
curs when an artifact is published and then consumed at
some unspecified time in the future, although time limits
may apply as in a sale. Synchronous collaboration occurs
when an artifact is published and is immediately seen by
the subscriber. There may be other conditions as well, in-
cluding the subscriber becoming a publisher and responding
within a specific time frame.

6.4.2 Agents
Software agents may be characterized as reactive, persistent,
autonomous and social. Reactive means that a software
agent acts upon the occurrence of some event. In other
words an agent can be characterized as a subscriber in a
publish-subscribe context.

The agents then have many other properties primarily re-
lated to their social aspects. Thus, patterns for agents can
evolve.

6.5 Access Control Rules
Collaboration requires that a group forms around an idea or
situation with the objective of working together. The group
is self-limiting by expertise or interest although it may grow
or change in composition as the collaboration forms and
changes. By its nature collaboration is not completely open.
Therefore there must be moderators who manage the group
composition and delegate authority to members of the group
related to responsibilities. These moderators must be given
a set of tools not only to enable the collaboration but to ad-
mit participants with responsibilities, so-called transactional
access control rules. Such access controls can be role-based
[1], attribute-based [3] or use other confidentially models [5].
Participants could be allowed a subset of operations on the
asset base such as read, write, update, or write/update with
history log. These same participants could also be limited
in the collaborative tools that they can use or the portion
of the asset base they can see through an interface such as
a map. For example, experts on some scientific topic could
use a wiki or blog to discuss issues around protocols for iden-
tification and remediation, whereas laymen could read the
content of the wiki or blog, but could not offer an expert
opinion.

7. THE WIDE TOOLKIT
The Web Informatics Development Environment (WIDE)
toolkit has been under development for over 20 years and
has gone through many versions as our ideas have been re-
fined. The primary purpose of this toolkit is the holy grail of



D
R

A
FT

software development namely to make web-based and mobile
applications easier to build and maintain and to make appli-
cation development tools more accessible to domain experts
or users so that they can build and modify their own applica-
tions. Although development is continuing, many essential
features have been identified and this section is intended
to describe some of them and one approach to assembling
components. The example system described in Section 5
has been used in Section 6is used to motivate many of the
components that constitute the toolkit.

In the current version of WIDE under development we di-
vide an application into 2 parts. One part specifies what an
application is to do and the other part specifies how it is to
do it.

The first part is expressed in WIDE by a nested set of build-
ing blocks. Each block specifies a component of the applica-
tion, and the nesting specifies a relationship between those
components. The second part is the underlying implemen-
tation of those blocks and is expressed in a conventional pro-
gramming language. However, a developer does not have to
access the second part unless a new building block is needed.

WIDE has a built-in set of core building blocks, some of
which specify user-interface components while others, spec-
ify components of the data model. Among these are blocks
that variously support SQL databases, mapping via map
clients and chart plotting. A programmer can add new or
custom blocks to WIDE by writing them in a supported
language and putting them in the appropriate extension li-
braries. They are then available for use in other applications.

The current implementation of WIDE targets Javascript,
HTML5 and CSS3 and as a result, only operates in modern
browsers and mobile hybrid apps that support that technol-
ogy. However, the concepts can be applied to web-based ap-
plications in general where the target languages differ from
those just mentioned.

7.1 Introduction to WIDE
In the current version of WIDE, an application is viewed as
a nested collection of blocks, where each block has a parent
and possibly siblings and children. Blocks often have one or
more attributes. WIDE is designed to be extensible, mean-
ing that new functionality can be added to the language
either by:

• defining new blocks which would then be available for
use in other applications, or

• defining new blocks available only to a specific appli-
cation.

You might visualize such a set of blocks as shown in Fig-
ure 4. This Figure might represent the layout of some vis-
ible blocks, but it is important to realize that the nesting
represents the relationships between the blocks, rather than
their physical layout in a user-interface (UI). Not all blocks
in WIDE are UI blocks. For example, a block can represent
a line in a report or a database reference. Blocks can access
information described in blocks in which they are nested. An

Figure 4: Overview of WIDE

Figure 5: Hello World Application

application is one block that contains the individual page de-
scriptions and accompanying data descriptions to generate
those pages.

7.1.1 Two Examples
Here is the ubiquitous“Hello World!” application. The code
is shown in Figure 5. This simple application block consists
of a single PAGEBLOCK block within an APPLICATION
block. The APPLICATION block represents the entire ap-
plication while the PAGEBLOCK represents one viewable,
scrollable page. The PAGEBLOCK block has a TEXT at-
tribute with the value “Hello World!”.

To turn this simple definition into an executing application,
we compile it using the WIDE toolkit and then deploy the
compiled code either for execution in a modern browser such
as Google Chrome, or on a mobile device such as Apple,
Android or BlackBerry tablet or smartphone.

With default styling information, the application output will
appear as shown in Figure 6.

The second example is more extensive and illustrates some
of the core blocks and attributes in WIDE. It simply lists
the contents of a server database table. Assume a server-
side or remote database with a table named DBA.Customer

Figure 6: Hello World Application



D
R

A
FT

Figure 7: A Simple Example

Figure 8: The SQL View of the database

as shown in Figure 7.

The SQL View of this simple database is defined by the
SQL statements shown in Figure 8 that is stored in a file.
An appropriate configuration file entry links the file name
to the database name “db00” in Figure 9.

The WIDE source code is shown here in two parts. Figure 9
shows the part that describes the interface to DBA.vCustomer
in the database. The main block is REMOTESQL with an
attribute for the database name (DBNAME) and a block
(VIEW) describing a table/view in that database. The VIEW
block has an attribute referencing the database table (SQLVIEW-
NAME) at the bottom of the block in Figure 9, and FIELD
blocks for each of the fields we want to access. Each FIELD
block has appropriate meta-data attributes such as TITLE,
PRIMARY, WIDGET, PLACEHOLDER, and CHOICE.

Figure 10 shows the code for the application that displays
the database table. It consists of an APPLICATION block,
a couple of #INCLUDE directives, and a single PAGE-
BLOCK (of course, most applications would have more than
one PAGEBLOCK). The first #INCLUDE directive needs
to be there in most WIDE applications and references a
file containing locale-specific internal messages. The second
#INCLUDE directive references the file defined in Figure 9.

Since this application simply displays the content of the ta-
ble, our PAGEBLOCK contains a DATABLOCK with a
DATAVIEW attribute referencing the VIEW in the RE-
MOTESQL block Figure 9.

This technique, separating the definition of the database ta-
ble from the actual display of its contents, might seem un-
necessary here, but it does make things easier in applications
more complex than this one.

Inside the DATABLOCK is a SCROLLBLOCK and inside
that, a ROWSBLOCK. The ROWSBLOCK describes how
each row of data is to be composed. Each row will have
5 fields (specified by a FIELDBLOCK block and associated
DATAFIELD attribute), followed by action blocks for“Save”
and “Cancel” operations. Clicking on an ACTIONBLOCK
will invoke the associated DATAUPSERT or CANCELEDIT
built-in action.

Figure 9: Interface to the Database

Figure 10: Application Code



D
R

A
FTFigure 11: Output from Example

Figure 12: WIDE Blocks

With some default styling, the resulting window might look
like Figure 11.

7.2 WIDE System Overview
WIDE is an extensible system. This means that we expect
the blocks, attributes, events, actions and values available
to the developer to evolve over time. It also means that
specialized blocks can be defined for use in one application
and not be present in other applications.

7.2.1 Core Language Components
The current implementation of WIDE includes the following
types of core blocks, attributes, events, actions and values
as shown in Figures Figures 12 through 15. By their name
most of them should be self-explanatory and the use of some
of them has been described in Section 7.1.1

7.2.2 WIDE Data model
The WIDE data model describes various views of the un-
derlying database, separate from the user interface of the
application. The REMOTESQL, VIEW and FIELD blocks
describe the underlying database, while the DATABLOCK,
ROWSBLOCK and FIELDBLOCK blocks describe the data
used in the user-interface. We now consider each in turn.

7.2.3 Remote Data model
The REMOTESQL block describes a database that resides
on the server. Views onto the tables of the database are
described by the VIEW and FIELD blocks. In practice, the
VIEW block usually refers to an SQL VIEW. AN example
of the REMOTESQL block is shown in Figure 9

Figure 13: WIDE Attributes

Figure 14: WIDE Events

7.2.4 DATABLOCK and result sets
The DATABLOCK block describes a result-set, that is, the
rows resulting from a query executed on a VIEW block
shown in Section 7.2.3. Enclosed ROWSBLOCK and FIELD-
BLOCK blocks describe how that result-set is displayed. An
example is in Figure 10.

7.2.5 Displaying data values
Various attributes related to displaying database values in
the UI can be specified in either the FIELDBLOCK or FIELD
blocks.

In Figure 9 we have defined certain attributes in the FIELD
block. This allows a degree of isolation where things such
as whether to use radio-buttons or select drop-downs can
be defined once and used consistently throughout the ap-
plication. Most of those attributes could instead have been
placed in the FIELDBLOCK blocks in Figure 10.

7.2.6 Foreign-key relationships
WIDE has a data model component that supports the foreign-
key relationships between tables of a relational database. It
does this using the VIEW block and MASTERVIEW at-
tribute, along with the FIELD block and PRIMARY and
MASTERFIELD attributes.

We consider one table to be the starting point or top view,
and then we use foreign-key relationships to move to lower

Figure 15: WIDE Actions and Values



D
R

A
FTFigure 16: WIDE Customer List Example

levels of detail.

Consider the following example of a list of customers, their
invoices and invoice items:

You can see that the following relationships exist:

• the VIEW vCustomer in this case is the top view.

– the FIELD custId is its primary key

• the VIEW vInvoice refers to vCustomer as its MAS-
TERVIEW

– the FIELD custId refers to the MASTERFIELD
custId in the MASTERVIEW vCustomer

– the FIELDs custId and invoiceId make up its the
primary key

• the VIEW vInvoiceItem refers to vInvoice as its MAS-
TERVIEW

– the FIELDs custId and invoiceId refer to MAS-
TERFIELDs custId and invoiceId in the MAS-
TERVIEW vInvoice

– the FIELDs custId, invoiceId and invoiceItemId
make up its primary key

7.2.7 Styling and Layout
The present implementation of the WIDE language includes
only minor features to support the styling and layout of the
user-interface (UI).

Currently, one can select a theme from a set of defined
themes (essentially pre-written CSS files), and then extend
it with additional CSS code provided by the developer.

Figure 17: WIDE Message Example

Figure 18: WIDE Message Example continued

7.2.8 Mobile devices
Mobile devices come in a variety of screen sizes and densities
and WIDE supports this situation with the PLATFORM
attribute. Using this value, WIDE will dynamically select
appropriate CSS files and screen height and width values at
run-time allowing the application to adapt to the platform
on which it is running.

7.2.9 Localization
WIDE supports localization or internationalization by al-
lowing the developer to define the text messages used in the
application in a separate set of blocks and then reference
those messages from the TEXT attribute.

You define messages as a MESSAGE in theMESSAGEPACK
block and then reference it using MESSAGEID in TEXT
and IMAGE blocks. The application can then set an inter-
nal value that represents the desired locale (usually one of
the ISO country codes) and the appropriate messages and
images will be used by WIDE.

Every WIDE application should include the directive #IN-
CLUDE adlmessages.adl. This file defines the messages used
internally by the WIDE core modules. It can be overridden
with an application-specific set of messages if desired.

For example, you could define some messages as shown in
Figure 17 and then use them with code as in Figures 18
or 19.

Depending on the internal value set for locale, either the
French or the English version of each message would be ren-
dered. That value could be managed with code as in Fig-
ure 20

Figure 19: WIDE Message Example continued



D
R

A
FTFigure 20: WIDE Multi-lingual Example

Figure 21: WIDE Map Blocks

7.2.10 Mapping Module
There are WIDE modules which support mapping. They
have the blocks, attributes, events and actions as shown in
Figures 21 through 23.

Figure 24 is a block fragment that displays a list of points
on a Google map. Currently there are mapblocks for each
type of map. Each map is retrieved and presented based
on some default values. There is a GMAPBLOCK that de-
fines the map, and a nested DATABLOCK that selects the
point data from a DATAVIEW. The GFEATURESBLOCK
and GFEATUREBLOCK specify how the data is to be pre-
sented.

7.2.11 Charting module
WIDE has a charting module which can plot data on a chart
in various ways. They have the Block and Attributes as
shown in Figure 25 and 26.

Figure 27 is a block fragment that shows a simple list of
points on a chart. There is CHARTBLOCK that defines the
chart and a nested DATABLOCK that selects data from a
DATAVIEW. The CHARTSERIES block specifies the data
to be charted.

The output might then look like Figure 28.

8. CURRENT IMPLEMENTATION
WIDE is currently implemented to generate HTML5 con-
tent which is displayed in a web browser such as Google

Figure 22: WIDE Map Block Attributes

Figure 23: WIDE Map Block Events

Figure 24: Map Block showing a list of points on a

Google Map

Figure 25: A WIDE Chart Block

Figure 26: WIDE Chart Block Attributes

Figure 27: WIDE Chart Example

Figure 28: Sample Chart produced from Chart Ex-

ample



D
R

A
FT

Chrome, or some other web-view container such as is found
on Android, Apple and Blackberry smartphones and tablets.

There are 3 fundamental components to the system, de-
scribed below and illustrated in Figure 29.

8.1 Development-component
This is where the application definition code is translated
into HTML5, CSS, Javascript and PHP.

The main pieces are:

1. WIDE Compiler (written in PHP)

2. the application code written in WIDE

3. any custom application blocks written in PHP and/or
Javascript

8.2 Server-component
This server-side code supports the remote database require-
ments of a WIDE application.

The main pieces are:

1. WIDE Server/Database modules (written in PHP)

2. Application database (Sybase SQL Anywhere)

3. Application-specific modules (written in PHP)

8.3 Client-component
This component is the compiled version of the application.
Most of this code is generated by the compiler (see development-
component).

The main pieces are:

1. Application-specific code (generated from the WIDE
code)

2. WIDE Run-time modules (core Javascript code pro-
vided by WIDE)

3. Any necessary application-specific code written by the
developer (Javascript).

4. CSS3 styling code written by the developer (see Styling
and Layout)

The files that form the client-component will initially reside
on a server. From there they can be deployed to be executed
in a browser or a web-view container.

In the typical mobile environment, these client-component
files would be packaged and installed on a smartphone or
tablet as an ‘app’. If the ‘app’ uses REMOTESQL, it would,
at run-time, access the remote database via HTTP and the
server-component.

Figure 29 shows how they interact in a typical configuration.

Theoretically, these components can be arranged in a num-
ber of ways. We have chosen a structure that allows us to:

Figure 29: Code Production and Operation

• compile and execute the application in a single step,
or

• simply execute a pre-compiled version of the applica-
tion.

8.4 WIDE Application designer - the IDE
We are developing an application designer tool for assem-
bling the block components into an application and speci-
fying the necessary attributes. Currently it is a text-based
tool but will shortly use a graphical format with drop-down
menus to specify types of blocks, attributes, events and val-
ues. Its operation is illustrated in Figure 30.

9. CURRENT AND FUTURE WORK
We have provided an overview of the WIDE toolkit as it is
currently used for building mobile apps. However, there is
significant development occurring to make it more broadly
applicable.

Currently there is new graphical user interface being con-
structed by Toacy Oliveira and one of his students at the
Federal University of Rio de Janeiro. The objective is to
allow the developer to “draw” the interface.

The system now incorporates a local database that supports
synchronization with remote databases thereby supporting
disconnected operations.

Interaction with maps through map editing is also a feature
being added.

Future work includes improvements to the charting capabil-
ity, possible new block structures and new target languages
such as Java.

We are also examining how to expose the event manager



D
R

A
FTFigure 30: Application Design

structure so as to support various versions of publish-subscribe
and the systems that can be derived from it. Finally we
need to keep looking at the language and ensuring that it
meets the needs of the user community. Creating data mod-
els and views of those models are exercises in abstraction
which many developers and users find difficult. One open
question focuses on how we can provide the right tools to
guide developers and users to the “right” abstractions par-
ticulary with data models and data views. Tools such as
spreadsheets and file systems such as WATFILE [12] might
provide some guidance.

10. CONCLUSIONS
This paper has outlined our thinking on simplifying devel-
opment and maintenance for web-based and mobile appli-
cations and to putting software development tools in the
hands of the domain experts or users. Although the work
is not complete we believe we have identified many of the
basic approaches to constructing software assets or meta-
components and meta-processes to fit our model, particu-
larly in the area of data models, human interfaces and event
handling.

The work outlined in this paper is our latest attempt at
constructing a framework for our thinking. The method has
been partially validated in that it was used by one person
to construct two successful mobile apps over three months
while the model was under development by that same indi-
vidual. The mobile apps are “Crush the Crave” and “Build-
ing Stories.” The first one was developed for the Android
platform, while the second one runs on Android, BlackBerry
Torch and iPhone. Both apps also required development of
an extensive back-end portal and database, which was per-
formed by a second member of our team.

We have many years experience in understanding and work-
ing with complex programming structures and have also
developed methods that will deal with complex publish-
subscribe, mediated social networks, and synchronous col-

laboration that will be supported by the model. Agents are
very broad in application and we dealt with them in a lim-
ited way, but believe they can fit in our framework although
agent development will likely require programmers for the
foreseeable future.

11. ACKNOWLEDGMENT
The authors would like to thank the Ontario Research Fund
(ORF), the Natural Science and Engineering Research Coun-
cil of Canada (NSERC) and the Centre for Community Map-
ping for their financial support and cooperation in the tech-
nology described in this paper. They would also like to
thanks Carlos Lucena, Arndt von Staa and Toacy Oliveira
for their valuable and valued input. A special thank you
is owed to Doug Mulholland who has been involved in the
various versions of WIDE since the beginning of the project.
Thanks are also due to Kyle Young, Anthony Robins, Jes-
sica Battrick and Marcus Doran who have worked on many
of the applications developed using various versions of the
WIDE toolkit and have made many valuable suggestions on
research directions.

12. REFERENCES
[1] E. Bertino, L. Martino, F. Paci, and A. Squicciarini.

Security for Web Services and Service-Oriented
Architectures. Springer, 2010.

[2] D. Cowan, P. Alencar, F. McGarry, and C. Lucena. A
web-based framework for collaborative innovation.
Technical Report Technical Report CS-2012-02, David
R. Cheriton School of Computer Science, University of
Waterloo, 2012.

[3] D. Gollman. Computer Security. Wiley Publishing, 3
edition, 2011.

[4] J. Hendler, N. Shadbolt, W. Hall, T. Berners-Lee, and
D. Weitzner. Web science: An interdisciplinary
approach to understanding the web. Communications
of the ACM, 51(7):60–69, July 2008.

[5] J. Longstaff, M. Lockyer, and J. Nicholas. The tees
confidentiality model: an authorisation model for
identities and roles. In Proceedings of the eighth ACM
symposium on Access control models and technologies,
2003.

[6] M. McLuhan. Understanding Media: The Extensions
of Man. MIT Press, 1994.

[7] Open GeoSpatial Consortium (OGC). OGCR©

Standards and Supporting Documents. Web, 2012.
Available at:
http://www.opengeospatial.org/standards.

[8] J. Surowiecki. The Wisdom of Crowds: Why the Many
Are Smarter Than the Few and How Collective
Wisdom Shapes Business, Economies, Societies and
Nations. Random House, 2004.

[9] Wikipedia. Publish-subscribe pattern. Available at
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe pattern.

[10] Wikipedia. Web, 2012. Available at:
http://en.wikipedia.org/wiki/IFilter.

[11] Wikipedia. Shapefiles. Web, 2012. Available at:
http://en.wikipedia.org/wiki/Shapefile.

[12] T. Wilkinson. The watfile tutorial and user’s guide,
February 1985. Available at:
http://www.uic.edu/depts/adn/infwww/txt/v4407001.txt.


