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Abstract

Using the Coq proof assistant, we present a mechanically verified proof that the operation transforms
defined on text buffer insertions and deletions, as outlined in Ressel et al’s adOPTed algorithm do not
satisfy Ressel’s transformation property TP2. We then apply similar techniques to Cormack’s Calculus
for Concurrent Update (CCU) and show that the CCU transformations also do not satisfy TP2.

1 Introduction and Notation

Distributed collaborative editing of shared data, in which each participant maintains a local copy of the data,
and in which there is no global reference copy, presents interesting challenges when it comes to ensuring that
local copies remain consistent with one another. Consider, for example, a shared data item z, and sites A
and B. Suppose sites A and B, generate, respectively, operations f and g, apply these operations to their
local copy of z, and then broadcast the update to other sites. Site A applies f to x, and then receives update
g from site B, so that it computes state g(f(x)). Site B applies ¢g to =, and then receives update f from
site A, so that site B computes state f(g(x)). Since f(g(z) and g(f(z)) are not necessarily equal, it is clear
from this example that concurrently-generated operations on a common state can easily lead to divergent
local copies.

Operation transforms provide a potential means of mitigating this difficulty. Rather than apply operation
g to f(x), site A transforms g to take into account the fact that f has already been applied to z. Using CCU
notation, site A computes the operation g/ f, which represents a transformation of g, taking f into account.
Site B computes a dual operation f\g, which takes into account the fact that g has already been applied at
B. Site A thus computes (g/f)(f(x)), while site B computes (f\g)(g(x)). It is a defining property of / and
\ that for all £, g, @, (9/F)(f(2)) = (f\9)(9(x))-

Every pair of sites (S;,5;) has the property that S; always uses / when transforming operations from
S;, while S; always transforms operations from S; using \ — or vice versa. Put otherwise, when any two
sites exchange updates, one site uses /, while the other uses \. This requirement is easily satisfied if we
impose some arbitrary global total order <g on sites, and then declare that a site uses / when transforming
updates from higher (according to <g) sites, and \ when transforming updates from lower (according to <g)
sites. To streamline the notation somewhat, we use the notation "~ to mean either / or \, as appropriate.
Using “-notation, we say that site A computes (¢"f)(f(x)), while B computes (f"g)(g(x)). The consistency
property stated above, known as TP1, then becomes (¢"f)(f(z)) = (f"¢)(g(x)).

Unfortunately, when more than two participants are involved, TP1 alone is not sufficient to guarantee
eventual convergence of state. A second condition from Ressel, known as TP2, has been shown to be sufficient
to guarantee convergence, and is believed to be a necessary condition as well. Using "-notation, TP2 requires
that, for all updates f, g, and h, (f"g)"(h"g) = (f"h)"(¢"h).

The problem with TP2 is that it is a condition on triples of updates; verifying TP2 by hand therefore
requires O(d®) effort, where d is the descriptional complexity (number of conditional cases) of the updates.
Verification by hand is error-prone and takes considerable time. Nevertheless, it is essential to verify TP2
for a candidate set of updates, in order to ensure provable correctness of the groupware system.



In this paper, we explore the Coq proof assistant as a means of automatically verifying TP2 for a
groupware system. The goal is twofold—to use Coq to verify or refute TP2 for two well-known sets of
transformations for shared text buffer operations; and to explore the Coq tool itself, as an aid for future
work. A short term goal is to have a tool for which we can quickly verify (or refute) TP2 for candidate sets of
operation transforms. A longer term goal is to build this kind of verification into a programming environment
or compiler. With this vision in mind, our goal is to make our verifications as general as possible, at the
possible expense of efficiency. We will discuss efficiency concerns as they arise.

2 Text Buffer Transformations

The groupware system which forms the basis for our discussion is a shared text buffer—essentially a string,
upon which users concurrently issue editing commands. The text buffer operations we consider are insertions
and deletions. We must then define the semantics of transforming one operation against another. We consider
two such formulations: the one presented as part of Ressel’s adOPTed algorithm [8], and the one presented
as part of Cormack’s Calculus for Concurrent Update (CCU) [3].

2.1 adOPTed

Under Ressel’s formulation, which is mostly based on that of Ellis and Gibbs [4], operations take the following
forms:

e insert(p, c) — insert character ¢ at position p;
e delete(p) — delete the character at position p;
e noop — do nothing.

The noop must be included as an operation because some combinations of operations, when transformed
against one another, will produce noop; hence, noop is required in order that the set of operations be closed
under transformation. The transformation rules for adOPTed apper in Figure 1.

2.2 CCU
Under CCU, operations take the following forms:
e insert(p, s) — insert string s at position p;
e delete(p, ) — delete I characters, starting at position p;

CCU deals with insertions and deletions of entire strings into the shared buffer, rather than individual
characters. For this reason, a noop operation is unnecessary, as it may be modelled by either insert(p, “”)
(for any p), or delete(p,0) (for any p). The transformation rules for CCU appear in Figure 2.

We can simplify the CCU operations somewhat by taking advantage of a result proved in [6] — if a set of
operations can be modelled as compositions of a simpler set of operations, such that the simpler set is closed
under transformation, then it suffices to check TP2 for the simpler set. Accordingly, we may restrict the CCU
operations to single character insertions (as any multi-character insertion is simply a composition of single-
character insertions); however, we may not restrict ourselves to single-character deletions, as the resulting
operations would not then be closed under transformation (see transformation rules). The operations then
become the following:

e insert(p,c) — insert character ¢ at position p;
e delete(p,l) — delete [ characters, starting at position p;

The transformations for these operations are the same as in Figure 2, except that all occurrences of |s;| or
|s2| are replaced by 1.



{ insert(p1,c1) (p1 < p2)

insert(p1, ¢1)/insert(pa, c2) insert(p1 + L, c1)  (p2 < p1)
) <

. . insert(p1, &1 p1 < p2
insert(p1, ¢1)\insert(pa, c2) { insertépl _‘_i ¢) Ep2 <p1§

insert(p1, ¢1)/delete(ps)

insert(py, 1) (p1 < p2)
insert(py — 1,¢1)  (p2 <p1)
2) =

insert(p1, c1)\delete(p insert(p1, ¢1)/delete(pa)

delete(py) (p1 < p2)

delete(py) /insert(ps, c2) = { delete(p1 +1) (p2 < p1)

delete(py)\insert(pa, ca) = delete(py)/insert(pz, c2)

delete(py) (p1 < p2)
delete(py)/delete(p2) = ¢ noop (p1 = p2)
delete(py —1) (p2 <p1)

delete(py)\delete(ps) = delete(py)/delete(pz)
noop/op = noop\op = noop (for any op)

op/noop = op\noop = op (for any op)

Figure 1: Transformation rules for adOPTed (as presented in [7], using CCU notation)

. . insert(p1, s1 p1 < P2

insert(p1, $1)/insert(pa, s2) = { insertgpl " |)81| s1) Ep2 P p1;
) =

insert(p1, 1) (p1 < p2)

insert(p1, s1)\insert(pz, s2) = { insert(py + [s1],81)  (p2 < p1)

delete(py, 11) (p1+11 <p2)

(

delete(p1, p2 — p1) P1<p2<pi+lL <pa+lis)
B delete(pl, 11 — 1) (pr<p2<pa+la<pi+h)
delete(py, l1)/delete(pz, l2) = delete(0, (pz <p1<pr+l <p2+1i)
delete(pg,pl +l—pat+lz) (p2<pi<p1+l<p+lis)

delete(py — l2,11) (P2 +12 < p1)

delete(py, 11)\delete(ps, Is) = delete(py, 1) /delete(ps, l2)
delete(py, 1) (p1+ 11 < po2)
delete(py, 1) /insert(p, so) = §  delete(pi, 1 + [s2])  (p1 < p2 <p1+1h)

delete(pr + |s2], 1)  (p2 < p1)
delete(py, I1)\insert(p2, s2) = delete(pi, l1)/insert(pz, s2)

insert(p1, $1) (p1 < p2)

insert(p1, s1)/delete(ps, l2) = { insert(py,””) (p2 <p1 <p2+12)

insert(p1 —la,s1) (P2 + 12 < p1)
insert(p1, s1)\delete(pe, l2) = insert(ps, s1)/delete(pa, l2)

Figure 2: Transformation rules for CCU



3 Modelling in Coq

To verify or refute TP2 for these transformation systems, we employ the Coq proof assistant'. Coq is a
well-known tool among researchers in programming languages, typically used for formalizing and verifying
programming language semantics. As our longer-term goals include incorporating support for operation
transforms into a programming language, this tool seemed particularly appropriate. Coq is essentially an
implementation of the Curry-Howard isomorphism [5]—logical statements are actually types, and proofs of
logical statements are actually programs in an ML-like language that inhabit those types. Thus the Coq
type system is remarkably similar to those of ML and Haskell, and we can therefore take advantage of the
type system to provide convenient representations for updates.
Our proofs were developed using Coq 8.4, combined with Arthur Charguéraud’s LibTactics package?.

3.1 Representing Operations

An operation is either an insertion or a deletion (or a noop, in the case of adOPTed), packaged with parameter
values (position, character, length) as needed. We can model these easily in ML with a datatype declaration.
The declarations for adOPTed in Standard ML are as follows:

datatype op = Ins of int * char | Del of int | Id
For CCU, the definition would be as follows:
datatype op = Ins of int * char | Del of int * int

A similar construction, with minor differences in syntax, is available in Coq. For adOPTed:

Inductive op : Type := Ins : nat -> ascii -> op | Del : nat -> op | Id : op.

For CCU:

Inductive op : Type := Ins : nat -> ascii -> op | Del : nat -> nat -> op.

Note that these declarations specify only the structure of updates; no particular semantics are implied, nor
indeed is the nature (i.e. type) of the shared state even mentioned. Semantics would be provided via a
separate apply function of type op -> state -> state.

However, it is interesting to note that, in order to verify TP2, only the structure of the operations and
the transformations themselves are needed. Indeed, TP2 is a property of operations that does not depend
on their semantics, but only on their transformations. On the other hand, the property TP1 (which we do
not verify in this work) does depend on the semantics of the operations.

3.2 Modelling / and \

The transformations / and \ are functions in Coq that take two op values and return a new op value. For
adOPTed:

Definition slash(f : op) (g : op) : op :=
match f, g with
Ins a b, Ins ¢ d => if leb a c then Ins a b else Ins (a + 1) b
| Ins a b, Del ¢ => if leb a ¢ then Ins a b else Ins (a - 1) b
| Ins a b, Id => Ins a b
| Del a, Ins ¢ d => if leb c a then Del (a + 1) else Del a
| Del a, Del ¢ => if beq_nat a c then Id else if leb a c¢ then Del a else Del (a - 1)
| Del a, Id => Del a
| Id, _ => Id
end.

Lhttp://coq.inria.fr
2http:/ /www.chargueraud.org/softs/tlc/



Definition backslash(f : op) (g : op) : op :=
match f, g with
Ins a b, Ins ¢ d => if leb c a then Ins (a + 1) b else Ins a b
| Ins a b, Del ¢ => if leb a c then Ins a b else Ins (a - 1) b
| Ins a b, Id => Ins a b
| Del a, Ins ¢ d => if leb c a then Del (a + 1) else Del a
| Del a, Del ¢ => if beq_nat a c then Id else if leb a ¢ then Del a else Del (a - 1)
| Del a, Id => Del a
| Id, _ => Id
end.

The functions leb and beq_nat above denote, respectively, the < and equality predicates on natural numbers.
The more familiar <= and = are used at the level of propositions, and therefore their types are incompatible
with program code (they return type Prop, rather than type bool). Also note that Coq does not have a
full suite of natural number comparison predicates for use in functions; only leb and beq_nat are provided.
Other comparisons must be phrased in terms of these, and any deviation of our forumulation of slash
and backslash from the originally stated formulation has been done for this reason. Note, however, that
it is straightforward to automatically translate terms from a language with a complete set of comparison
primitives to this core language.
For CCU, the transformations are defined as follows:

Definition slash (f : op) (g : op) : op :=
match f, g with
Ins a b, Ins ¢ d => if 1tb a ¢ then Ins a b else Ins (a + 1) b

| Ins a b, Del cd =>
if leb a ¢ then Ins a b
else if 1tb a (¢ + d) then Del 0 O else Ins (a - d) b

| Del a b, Ins c d =>
if leb (a + b) ¢ then Del a b
else if leb a ¢ then Del a (b + 1) else Del (a + 1) b

| Del a b, Del ¢ d =>
if leb (a + b) ¢ then Del a b
else if andb (leb a c) (leb (a + b) (c
else if andb (leb a c) (leb (c + d) (a
else if andb (leb c a) (leb (a + b) (c
else if andb (leb c a) (andb (leb a (c

then Del ¢ (a + b - c + 4d)

else Del (a - d) b

d)) then Del a (c - a)

b)) then Del a (d - c)

d)) then Del 0 O

d)) (leb (c + d) (a + b))

+ 4+ + +

end.

Definition backslash (f : op) (g : op) : op :=
match f, g with

Ins a b, Ins ¢ d => if leb a c then Ins a b else Ins (a + 1) b
| Ins a b, Del ¢ d => slash (Ins a b) (Del c d)
| Del a b, Ins ¢ d => slash (Del a b) (Ins c d)
| Del a b, Del ¢ d => slash (Del a b) (Del c d4)

end.

The function andb implements a boolean “and” operation (see previous comments about leb and
beq_nat). We took a somewhat different approach to modelling / and \ for CCU—rather than rephrase the
conditions to work exclusively with leb and beq_nat, we created a boolean < operator:

Definition 1tb (a : nat) (b : nat) := if leb b a then false else true.

We then stated and proved the necessary properties of 1tb that would allow us to translate it into < when
constructing proofs:



Theorem 1tb_iff: forall m n: nat, 1tb m n = true <-> m < n.
Qec‘l. .
Theorem 1tb_iff_conv: forall m n: nat, 1ltb m n = false <-> n <= m.
Qec;l. '
The proofs essentially appeal to the built-in analogous results for leb.
Because of the 1tb operator, our implementation of slash and backslash closely mirrors the original

formulation. The only significant difference between our formulation and the original is that we eliminated
some of the redundant conditions in the rule for slash over two Del operations.

3.3 Modelling TP2

The succinct formulation of TP2 (using “-notation) is as follows:
(f'9)(h°g) = (f"h)(g°h) -

Recall that “ is simply shorthand for whichever of / and \ is appropriate, given the total ordering of the
sites from which the updates originated. Hence, this notation is actually shorthand for siz conditions, one
for each possible total ordering of the sites from which f, g, and h originated. These conditions differ from
one another in terms of how each occurrence of ~ is replaced with either / or \. We observe, however, that
the TP2 condition (as stated above) is symmetric in g and h; in other words, our choice of which update
occurs first (i.e., plays the role of f above) completely determines the rest of the condition. Therefore, there
are actually only three combinations of / and \ that together make up TP2:

(f/9)/(h\g) = (f/n)/(g/h)

(F\G\(P\g) = (F\R)\(g/h)
(F\g)/(h\g) = (F/)\(g/h) -

In the first case, the first update (the one playing the role of f) applies / over all other updates. In the
second case, it applies \ over all other updates. In the last case, it applies / over one and \ over the other.

In Coq, we model TP2 as a function that transforms operations into the relevant conditions, and then
as a theorem that quantifies over inputs to the function:

Definition tp2 (f : op) (g : op) (h : op) : Prop :=

slash (slash f g) (backslash h g) = slash (slash f h) (slash g h)

/\ backslash (backslash f g) (backslash h g) = backslash (backslash f h) (slash g h)
/\ slash (backslash f g) (backslash h g) = backslash (slash f h) (slash g h).

Theorem tp: forall £ g h: op, tp2 £ g h.

The various formulations of TP2 with respect to / and \ are only necessary if / and \ behave differently.
In the case of the text buffer operations, the only time these transformations behave differently is when
applied to two insertions. Hence, the fully general TP2 condition need only be checked when at least two of
f, g, and h are insertions.

For this reason, and for the sake of efficiency, we also define a shortened TP2 condition, suitable when
checking combinations of updates that feature at most one insertion:

Definition tp2short (f : op) (g : op) (h : op) : Prop :=
slash (slash f g) (backslash h g) = slash (slash f h) (slash g h).



4 Proof in Coq

The theorem to be proved for both adOPTed and CCU is the theoerm tp given above. However, rather than
prove theorem tp directly, we shall do it via six lemmas, one for each possible combination of Ins and Del,
for the following reasons:

e Automated theorem-proving can be a slow process, and these lemmas serve as natural breaking points,
with individual running times approximately one sixth the running time of the full theorem.

e If the theorem turns out to be false, it will produce a counterexample that fits one of the six com-
binations of operations. We may, however, be interested in whether the other five combinations also
contain counterexamples (or indeed are provable), and splitting the six cases facilitates answering this
question.

The lemmas are as follows (as formulated for adOPTed)3:

Lemma insinsins: forall (A B C: nat) (a b c: ascii), tp2 (Ins A a) (Ins B b) (Ins C c).
Lemma insdeldel: forall (A B C: nat) (a: ascii), tp2 (Ins A a) (Del B) (Del C).

Lemma insinsdel: forall (A B C: nat) (a b: ascii), tp2 (Ins A a) (Ins B b) (Del C).
Lemma deldeldel: forall A B C: nat, tp2 (Del A) (Del B) (Del C).

Lemma deldelins: forall A B C: nat (c: ascii), tp2 (Del A) (Del B) (Ins C c).

Lemma delinsins: forall (A B C: nat) (b c: ascii), tp2 (Del A) (Ins B b) (Ins C c).

The remaining combinations (i.e., delinsdel and insdelins) are not needed, due to symmetry in the second
and third arguments of tp2.

Coq is not, at its heart, an automated theorem prover; it is a proof assistant, whose major function
is to prevent the user from making errors in proofs. Nevertheless, it does include a few automated proof
tactics—most notably intuition, which can decide intuitionistic propositional formulas. However, there is
no single proof tactic that one can provide to Coq that will prove all six lemmas unaided.

Our approach was therefore to fully prove one of the lemmas by hand, executing at each step of the way
the tactic that would seem most useful given the form of the subgoal at hand. We would then step back,
try to perceive patterns, and see whether a more general tactic selection policy might apply to several of
the lemmas, thereby reducing the amount of human intervention to a minimum, in keeping with our longer
term goal of attaching this verification engine to a compiler.

4.1 adOPTed

We outline in this section the development that led to our general proof strategy for adOPTed, beginning
with a proof of insinsins.
When lemma insinsins is first entered into Coq, Coq responds as follows (we use tp2short for brevity):

1 subgoal

forall (A B C : nat) (a b ¢ : ascii),
tp2short (Ins A a) (Ins B b) (Ins C c)

The tactic intros turns quantified variables and preconditions into premises:

3Strictly speaking, we should be including lemmas that involve Id; but as these cases are trivial to prove, we omit them.
Proof of the full tp theorem includes cases involving the Id operation.



insinsins < intros.
1 subgoal

: nat
: nat
: nat
¢ ascii
: ascii
: ascii

0O o QW=

tp2short (Ins A a) (Ins B b) (Ins C c)
The tactic hnf (“head normal form”) substitutes the three operations into the definition of tp2:

insinsins < hnf.
1 subgoal

: nat
: nat
: nat
¢ ascii
¢ ascii
: ascii

0O o p QW

slash (slash (Ins A a) (Ins B b)) (backslash (Ins C c¢c) (Ins B b)) =
slash (slash (Ins A a) (Ins C c)) (slash (Ins B b) (Ins C c))

The tactic simpl (“simplify”) substitutes the fully-defined operations into the bodies of slash and backslash

insinsins < simpl.
1 subgoal

: nat
: nat
: nat
: ascii
¢ ascii
: ascii

0O o p QW

slash (if leb A B then Ins A a else Ins (A + 1) a)
(if 1leb B C then Ins (C + 1) c else Ins C c) =
slash (if leb A C then Ins A a else Ins (A + 1) a)

(if 1leb B C then Ins B b else Ins (B + 1) b)

From here, the values of the equated expressions depend on the outcomes of the if statements. Thus, the
proof must branch, based on each possible outcome of every if statement. Coq has a case tactic that
accomplishes this task:

insinsins < case (leb A B).
2 subgoals

: nat
: nat
: nat
: ascii

T MM QW=

: ascii



c : ascii

slash (Ins A a) (if 1leb B C then Ins (C + 1) c else Ins C c) =
slash (if leb A C then Ins A a else Ins (A + 1) a)
(if leb B C then Ins B b else Ins (B + 1) b)

subgoal 2 is:
slash (Ins (A + 1) a) (if leb B C then Ins (C + 1) c else Ins C c) =
slash (if leb A C then Ins A a else Ins (A + 1) a)
(if 1leb B C then Ins B b else Ins (B + 1) b)
insinsins < Focus 2.
1 focused subgoal (unfocused: 1)

: nat
. nat
. nat
¢ ascii
¢ ascii
: ascii

0O o p QW

slash (Ins (A + 1) a) (if leb B C then Ins (C + 1) c else Ins C ¢c) =
slash (if leb A C then Ins A a else Ins (A + 1) a)
(if 1leb B C then Ins B b else Ins (B + 1) b)

The case tactic has two serious drawbacks:

e The user must explicitly specify the condition upon which the case is split. Although not a serious
burden, this requirement does make automation somewhat more difficult.

e When the if statement is split on a condition, the condition itself is not maintained as a premise of
the subgoal (and its negation as a premise of the sibling subgoal). This deficiency makes it impossible
to detect mutually contradictory if-statements (i.e., unreachable branch combinations), which leads
to false counterexamples.

For both of these reasons, we prefer the cases_if tactic, which is part of the LibTactics package (since
issuing the previous case tactic, we have executed an Undo command):

insinsins < cases_if.
2 subgoals

: nat

: nat

: nat

¢ ascii

: ascii

: ascii

: leb A B = true

m o0 T QW

slash (Ins A a) (if 1leb B C then Ins (C + 1) c else Ins C c) =
slash (if leb A C then Ins A a else Ins (A + 1) a)
(if leb B C then Ins B b else Ins (B + 1) b)

subgoal 2 is:
slash (Ins (A + 1) a) (if leb B C then Ins (C + 1) c else Ins C c) =
slash (if leb A C then Ins A a else Ins (A + 1) a)

(if 1leb B C then Ins B b else Ins (B + 1) b)



insinsins < Focus 2.
1 focused subgoal (unfocused: 1)

: nat

: nat

: nat

¢ ascii

: ascii

: ascii

: leb A B = false

- o T QWe

slash (Ins (A + 1) a) (if leb B C then Ins (C + 1) c else Ins C c) =
slash (if leb A C then Ins A a else Ins (A + 1) a)
(if leb B C then Ins B b else Ins (B + 1) b)

Notice how, in these two subgoals, the condition of the cases_if tactic was not specified (the first candidate
occurrence of an if-condition was used), and the condition and its negation now occur respectively as
premises of the two subgoals.

We continue splitting if statements until none remain (below again begins right after the simpl tactic:

insinsins < cases_if; cases_if; cases_if.
8 subgoals

A : nat

B : nat

C : nat

a : ascii

b : ascii

c : ascii

H : leb A B = true
HO : 1leb B C = true
H1 : leb A C = true

slash (Ins A a) (Ins (C + 1) c) = slash (Ins A a) (Ins B b)

subgoal 2 is:

slash (Ins A a) (Ins (C + 1) ¢) = slash (Ins (A + 1) a) (Ins B b)
subgoal 3 is:

slash (Ins A a) (Ins C c)
subgoal 4 is:

slash (Ins A a) (Ins C c) = slash (Ins (A + 1) a) (Ins (B + 1) b)
subgoal 5 is:

slash (Ins (A + 1) a) (Ins (C + 1) c)
subgoal 6 is:

slash (Ins (A + 1) a) (Ins (C + 1) ©)
subgoal 7 is:

slash (Ins (A + 1) a) (Ins C ¢)
subgoal 8 is:

slash (Ins (A + 1) a) (Ins C ¢c) = slash (Ins (A + 1) a) (Ins (B + 1) b)

slash (Ins A a) (Ins (B + 1) b)

slash (Ins A a) (Ins B b)

slash (Ins (A + 1) a) (Ins B b)

slash (Ins A a) (Ins (B + 1) b)

The semantics of a sequence of tactics tacl; tac2 is that tac2 is applied to each subgoal generated by tac1l.
We now substitute the simplified arguments into the definition of slash (once again starting from after the
initial simpl):

insinsins < cases_if; cases_if; cases_if; simpl.
8 subgoals

10



ascii
ascii
: leb A B = true
HO : leb B C = true
H1 leb A C = true

(if leb A (C + 1) then Ins A a else Ins (A + 1) a) =
(if leb A B then Ins A a else Ins (A + 1) a)

subgoal 2 is:
(if 1leb A (C + 1) then Ins A a else Ins (A + 1) a) =
(if leb (A + 1) B then Ins (A + 1) a else Ins (A + 1 + 1) a)
subgoal 3 is:
(if leb A C then Ins A a else Ins (A + 1) a) =
(if leb A (B + 1) then Ins A a else Ins (A + 1) a)
subgoal 4 is:
(if 1leb A C then Ins A a else Ins (A + 1) a) =
(if 1leb (A + 1) (B + 1) then Ins (A + 1) a else Ins (A + 1 + 1) a)
subgoal 5 is:
(if leb (A + 1) (C + 1) then Ins (A + 1) a else Ins (A + 1 + 1) a)
(if leb A B then Ins A a else Ins (A + 1) a)
subgoal 6 is:
(if 1leb (A + 1) (C + 1) then Ins (A + 1) a else Ins (A + 1 + 1) a)
(if leb (A + 1) B then Ins (A + 1) a else Ins (A + 1 + 1) a)
subgoal 7 is:
(if leb (A + 1) C then Ins (A + 1) a else Ins (A + 1 + 1) a)
(if leb A (B + 1) then Ins A a else Ins (A + 1) a)
subgoal 8 is:
(if leb (A + 1) C then Ins (A + 1) a else Ins (A + 1 + 1) a) =
(if leb (A + 1) (B + 1) then Ins (A + 1) a else Ins (A + 1 + 1) a)

All occurrences of slash have now been eliminated, but additional if statements have appeared, which must
now be split (again, starting after the initial simpl):

24 subgoals

A : nat
B : nat
C : nat
a : ascii
b
c
H

: ascii
: ascii
. true = true
HO : leb B C = true
H1 : leb A C = true
H2 : leb A (C + 1) = true
H3 : leb A B = true
Ins A a=1Ins A a
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subgoal 2 is:

Ins (A +1) a=1Ins A a
subgoal 3 is:

Ins A a=1Ins (A+1) a
subgoal 4 is:

Ins Aa=Ins (A+1+1)a
subgoal 5 is:
Ins (A + 1) a
subgoal 6 is:
Ins (A + 1) a
subgoal 7 is:
Ins A a=1Ins A a
subgoal 8 is:

Ins A a=1Ins (A+1) a
subgoal 9 is:

Ins (A+1) a=1Ins (A+ 1) a
subgoal 10 is:
Ins (A + 1) a
subgoal 11 is:
Ins (A + 1) a
subgoal 12 is:
Ins (A+1+1) a=1Ins (A+1) a

Ins (A +1) a

Ins (A +1+ 1) a

Ins (A+1+ 1) a

Ins (A +1) a

We obtain 24 subgoals, all of which equate two operations. For those subgoals in which the two equated
operations are, in fact, identical, the reflexivity tactic applies directly:

insinsins < cases_if; cases_if; cases_if; simpl; cases_if; cases_if; try reflexivity.
14 subgoals

: nat

ascii
ascii
true = true
HO : leb B C = true
H1 : leb A C = true
H2 : leb A (C + 1) = false
H3 : leb A B = true

Ins (A + 1) a=1Ins A a

subgoal 2 is:

Ins Aa=1Ins (A+ 1) a

subgoal 3 is:

Ins Aa=Ins (A+1+1) a
subgoal 4 is:

Ins (A+1) a=Ins A +1+ 1) a
subgoal 5 is:

Ins Aa=1Ins (A +1)a
subgoal 6 is:

Ins (A+1) a=1Ins (A+1+ 1) a
subgoal 7 is:
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Ins (A+1+ 1) a=1Ins (A+ 1) a
subgoal 8 is:
Ins (A+1) a=1Ins (A+1+ 1) a
subgoal 9 is:
Ins (A+1+1) a=1Ins (A+ 1) a

subgoal 10 is:

Ins (A +1) a=1Ins A a

subgoal 11 is:

Ins (A+1+ 1) a=1Ins A a
subgoal 12 is:

Ins (A+1+1) a=1Ins (A+1) a
subgoal 13 is:

Ins (A+1) a=1Ins (A+1+ 1) a
subgoal 14 is:

Ins (A+1+1) a=1Ins (A+ 1) a

The metatactic try attempts to apply a tactic (in this case, reflexivity) but suppresses errors if the tactic
is not applicable. Had we used reflexivity alone, the proof process would have halted at the first pair of
non-identical updates, and any remaining subsequent subgoals containing equated identical updates would
not have been resolved.

The reflexivity tactic was able to resolve ten of the 24 subgoals. The remaining 14 are equations
between non-identical updates. These could represent counterexamples that refute the lemma, if the corre-
sponding premises are satisfiable (i.e., non-contradictory), or simply impossible cases, if the corresponding
premises are unsatisfiable.

Consider the current first goal: Ins (A + 1) a = Ins A a. The relevant premises are as follows:

HO : leb B C true
H1 : leb A C = true
H2 : leb A (C + 1) = false
H3 : leb A B = true

From H1, we get A < C, and from H2, we get A > C + 1. As these statements are contradictory, any
conclusion follows, and we can, in principle, resolve this subgoal.

Unfortunately, Coq cannot see the contradiction because it does not natively understand the semantics
of 1eb. We need to first use a rewrite rule to translate the leb statements into statements involving <=:

insinsins < rewrite leb_iff in *.
14 subgoals

A : nat

B : nat

C : nat

a : ascii

b : ascii

c : ascii

H : true = true
HO : B<=C

Hl : A<= C

H2 : 1leb A (C + 1) = false
H3 : A<=B

Ins (A + 1) a=1Ins A a

subgoal 2 is:
Ins Aa=1Ins (A+1) a
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To translate the false occurrence of 1leb, an additional rewrite is needed:

insinsins < rewrite leb_iff_conv in *.
14 subgoals

A : nat

B : nat

C : nat

a : ascii

b : ascii

c : ascii

H : true = true
HO : B<=C

Hi1 : A<=C

H2 : C+ 1< A
H3 : A<=B

Ins (A + 1) a=1Ins A a

subgoal 2 is:
Ins Aa=1Ins (A+1) a

We are now well-equipped to search for a contradiction. The tactic exfalso replaces the current goal with
False, thereby translating the goal into a search for a contradiction (from which anything follows, including
the current goal).

insinsins < exfalso.
14 subgoals

A : nat

B : nat

C : nat

a : ascii

b : ascii

c : ascii

H : true = true

HO : B<=C

H1 : A<=C

H2 : C+ 1< A
H3 : A <=B
False

subgoal 2 is:

Ins Aa=1Ins (A+1) a
insinsins < intuition.
13 subgoals

A : nat
B : nat
C : nat
a : ascii
b : ascii
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c : ascii

H : 1eb A B = true

HO : b B C = true

H1 : b A C = false

H2 : leb A (C+ 1) = true
H3 : leb (A + 1) B = true

Ins Aa=1Ins (A+1) a

subgoal 2 is:
Ins Aa=1Ins (A+1+ 1) a

The final call to intuition finds the contradiction, and Coq moves on to the next subgoal.
Once all of the subgoals have been reduced to equations between two operations, three outcomes are
possible for each subgoal:

e The items are identical—then reflexivity should resolve the subgoal in one step.

e The items are different, with contradictory premises—then
rewrite leb_iff, leb_iff_conv in *; exfalso; intuition should resolve the subgoal in one step.

e The items are different, with consistent premises—then both of the above approaches should fail, and
we have found a counterexample.

Thus, we can filter out the identities and contradictions by applying both tactics to each subgoal. What
remains will be the counterexamples. To keep the command succinct, we define a solution-finding tactic:

Ltac tpsolve :=
rewrite 7leb_iff, 7leb_iff_conv, 7beq_nat_true_iff, 7beq_nat_false_iff in *;
try (solve [reflexivity | exfalso; intuition]).

The ? operator in the rewrite tactic prevents the tactic from failing if the corresponding rewrite rule is not
applicable. The metatactic solve only succeeds if one of the following tactics completely solves the goal;
otherwise it fails, the failure is caught by the try metatactic, and the subgoal is reverted to its previous
form. We then filter out the identities and contradictions as follows (starting after the first simpl):

insinsins < cases_if; cases_if; cases_if; simpl; cases_if; cases_if; tpsolve.
No more subgoals.

As all of the subgoals have been resolved, we have completed the proof of the lemma. We complete the proof
with Qed:

insinsins < Qed.

intros.

hnf.

simpl.

cases_if; cases_if; cases_if; simpl; cases_if; cases_if; tpsolve.

insinsins is defined

Having established the lemma, we consider next how to make the proof more generally applicable. We
must keep in mind that not all updates will have exactly the same number of if statements, with the same
number of conditions. Hence the various branches of the tree of subgoals will be of different heights. In some
branches, cases_if will be the correct next tactic to use; in other branches, we should use simpl. In still
others, the equation may be fully reduced and it may be time to attempt to solve.

Coq provides an operator ||, whose semantics are “the first among these tactics that does not fail”. We
can combine this with the repeat tactic (whose semantics are “keep applying this tactic while it is still
applicable”) to obtain the following strategy:

15



intros; hnf; simpl; repeat cases_if || simpl || tpsolve.

Essentially, after the first simplification, we keep applying cases_if while we can, and if not, then we apply
simpl. If neither of these applies, we attempt to solve.

This single line of proof suffices to prove insinsins. Moreover, since it reflects none of the actual
structure of the transformation rules on insertions, it should be applicable unchanged to other lemmas as
well . Indeed, this proof approach should apply to any transformation made up of a sequence of conditions,
each of whose outcomes is another update (in particular, recursively defined transformations would not
necessarily be covered by this strategy, as the proof would then likely require induction; however, we know of
no such transformations). In order to completely decide TP2 for a particular transformation, we must also
be guaranteed that the intuition tactic will be able to find contradictions. The conditions in the text buffer
transformations are all inequalities on linear expressions in natural numbers (in particular, no multiplication).
Hence the conditions all lie within Presburger arithmetic, which is known to be decidable. We know of no
proposed set of transformations for which the conditions do not lie within Presburger arithmetic. Hence,
intuition should be able to find contradictions in most, if not all, cases in which they exist.

Thus, we have some confidence that our proof strategy will work for most, if not all, known transforma-
tions. We executed this proof strategy on all of the remaining lemmas for adOPTed, and were able to prove
all of them without additional assistance, except for one. The following is the result of attempting to prove
the lemma insinsdel

Coq < Lemma insinsdel: forall (A B C: nat) (a b: ascii), tp2 (Ins A a) (Ins B b) (Del C).
1 subgoal

forall (A B C : nat) (a b : ascii), tp2 (Ins A a) (Ins B b) (Del C)

insinsdel < intros; hnf; splits; simpl; repeat cases_if || simpl || tpsolve.
9 subgoals

: nat

H1 : leb A C = false
H2 : 1leb (A + 1) (C + 1) = false
H3 : 1leb (A - 1) B = true

Ins (A+1-1) a=1Ins (A-1) a

subgoal 2 is:

Ins (A+1-1)a=Ins (A-1+1) a
subgoal 3 is:

Ins A+1-1)a=Ins (A-1+1) a
subgoal 4 is:

Ins (A+1-1) a=Ins (A-1+1) a
subgoal 5 is:

Ins (A+1-1) a=1Ins (A-1+1) a
subgoal 6 is:

Ins A a=1Ins (A+1) a
subgoal 7 is:

4For the full (i.e., not the short) version of tp2, we include a call to the splits tactic (from the LibTactics package) before
the first simpl tactic, to split the conjunction into separate subgoals. The remainder of the proof is as stated.
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Ins (A+1-1) a
subgoal 8 is:
Ins (A+1-1) a
subgoal 9 is:
Ins Aa=1Ins (A +1)a

Ins (A -1+ 1) a

Ins (A -1+ 1) a

To make the premises more readable, we execute the rewrite tactic:

insinsdel < rewrite leb_iff, leb_iff_conv in *.

9 subgoals
A : nat
B : nat
C : nat
a : ascii
b : ascii
H: B<A
HO : B<=2C
HL : C< A
H2 : C+1 <A+ 1
H3 : A-1<=1B

Ins (A+1-1) a=1Ins (A -1) a

subgoal 2 is:
Ins (A+1-1) a=1Ins (A-1+1) a
subgoal 3 is:
Ins A+1-1)a=Ins (A-1+1) a
subgoal 4 is:
Ins (A+1-1)a=Ins (A-1+1) a
subgoal 5 is:
Ins (A+1-1)a=Ins (A-1+1) a
subgoal 6 is:

Ins A a=1Ins (A+1) a
subgoal 7 is:
Ins (A+1-1) a
subgoal 8 is:
Ins (A+1-1) a
subgoal 9 is:
Ins A a=1Ins (A+ 1) a

Ins (A -1+ 1) a

Ins (A-1+1) a

This set of premises is satisfied whenever A = B+1 and B = C. For example, (Ins 2 "a") (Ins 1 "b") (Del 1)
satisfies the premises, and a quick check shows that indeed, TP2 is not satisifed for these updates (the left
side is Ins 2 "a", while the right side is Ins 1 "a"). This counterexample to adOPTed agrees with a known
counterexample [7]. The set of premises associated with this counterexample actually give a complete char-
acterization of an entire set of counterexamples. Examining the remaining goals may reveal further classes
of counterexamples, or may simply indicate contradictory premises.

If we examine several of the remaining goals, we see conclusions of the form

Ins (A+1-1) a=1Ins (A-1+1) a

which, although not syntactically identical, are nonetheless equivalent. We can use the f_equal tactic to
replace this goal with one that equates the individual arguments; intuition will then be able to solve the
goal. This additional tactic is easily added to tpsolve:

Ltac tpsolve :=
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rewrite 7leb_iff, 7leb_iff_conv, 7beq_nat_true_iff, 7beq_nat_false_iff in *;
solve [reflexivity | f_equal; intuition | exfalso; intuition].

We can then eliminate more legitimately provable goals:

Coqg < Lemma insinsdel: forall (A B C: nat) (a b: ascii), tp2 (Ins A a) (Ins B b) (Del C).
1 subgoal

forall (A B C : nat) (a b : ascii), tp2 (Ins A a) (Ins B b) (Del C)

insinsdel < intros; hnf; splits; simpl; repeat cases_if || simpl || tpsolve.
3 subgoals

A : nat

B : nat

C : nat

a : ascii

b : ascii

H : leb A B = false

H1 : leb A C = false
H2 : 1leb (A + 1) (C + 1) = false
H3 : 1leb (A - 1) B = true

Ins (A+1-1) a=1Ins (A-1) a

subgoal 2 is:
Ins A a=1Ins (A+ 1) a
subgoal 3 is:
Ins Aa=1Ins (A +1)a

We are left with the same counterexample, and only two unexplored goals, which may be further counterexam-
ples, or may simply have contradictory premises, which were not discovered by the time the counterexample
surfaced.

To conclude this section, we remark that we have a fully general proof strategy that works unaided on
all of the lemmas related to TP2 for adOPTed. Our proof strategy was able to find a counterexample for
adOPTed that agrees with known results.

4.2 CCU

In this subsection we attempt to carry out the same automated verification process on the text buffer
operation transforms that were defined as part of CCU. Although these transforms were once hand-verified
[6], hand-verification is error-prone, and we know of no previous attempt to automatically verify TP2 for
the CCU operations.

The biggest difference between the CCU operations and the adOPTed operations is that CCU considers
multi-character insertions and deletions. Therefore it makes sense, in the context of CCU, to speak of Alice
inserting a string into chapter 4 of a book, while Bob concurrently deletes chapter 4. The end result is
that Alice’s sentence should disappear, since the context in which it should appear has also disappeared.
Without multi-character delete, we cannot sensibly speak of the surrounding context of an insertion, and so
the adOPTed transforms cannot capture these semantics.

The CCU transformations themselves, however, follow much the same format as the adOPTed transfor-
mations: each transformation is specified by a sequence of conditions, each accompanied with an associated
transformed operation. The only difference is in the exact nature (and number) of the conditions, and the
associated outputs. Therefore, in principle, the framework we developed for adOPTed should work for CCU

18



as well, without modification. Indeed, our framework for adOPTed does, in fact, verify TP2 for the CCU
version of lemma insinsins.

The reality, however, is that we have a problem of performance. The insertion rules for both calculi, and
indeed all of the transformation rules for adOPTed, include no more than three clauses each (sometimes
only two). In contrast, the transformation rule for two deletions under CCU contains six clauses, which
dramatically increases the number of branches in the proof search tree, when checking combinations of
updates that feature at least two deletions. Indeed, Coq runs out of memory when trying to verify lemma
insdeldel. Because of this difficulty, some discussion on making our Coq verification more efficient would
be worthwhile.

4.2.1 Improving efficiency

Our current approach to verifying TP2 is to break every if statement into subgoals, and then either verify
or refute each one. For insinsins the number of generated subgoals is relatively small, and the verification
process is quite manageable.

When checking insdeldel, the total number of generated subgoals is approximately 1500. For each of
these, our proof strategy is to carry out our rewrite tactics, and then either use reflexivity to check for
identities, or attempt to find contradictions using intuition. As a result of this strategy, all processing
of premises takes place at the leaves of the search tree. By this time, we will have encountered several if
statements, whose conditions have been split and new subgoals generated. As more and more subgoals are
split, these original conditions are duplicated over and over again. Thus, the leaves all contain true or false
instances of almost the same set of premises throughout.

We can therefore eliminate some effort by being more proactive in our rewriting. By rewriting premises
as they occur, rather than at the leaves of the tree, we can duplicate the rewritten premises, rather than the
original ones, and thereby save duplicated rewriting effort.

Moreover, we can save additional effort by recognizing the way in which the rewrite tactic carries out its
purpose. When we issue a tactic like rewrite t1, t2, t3, our observations indicate that rewrite attempts
to rewrite by all of t1, t2, t3; and then, if these rewrites generate further instances of t1, t2, or t3, then the
whole process resumes until no further opportunities to use these tactics arises. For example, our rewrite
tactic for CCU is as follows:

rewrite 7Bool.andb_true_iff, 7Bool.andb_false_iff, ?7leb_iff, ?7leb_iff_conv,
?1tb_iff, 71tb_iff_conv, 7beq_nat_true_iff, 7beq_nat_false_iff in *.

The additional rewrites come from our use of the operators 1tb and andb in our CCU verification. This
simultaneous normalization with respect to several rewrite rules comes at some expense. However, if we know
that certain rewrites will not create instances of other rewrites, or at least the order in which some rewrites
will create instances of others, then we can order the rewrites appropriately and execute them serially:

rewrite 7Bool.andb_true_iff, 7Bool.andb_false_iff in *;

rewrite 7leb_iff in *; rewrite 7leb_iff_conv in x*;

rewrite 71tb_iff in *; rewrite 71ltb_iff_conv in *;

rewrite ?beq_nat_true_iff in *; rewrite 7beq_nat_false_iff in *.

In our experience, the performance gain from serializing rewrites has been dramatic.

Our strategy of aggressively rewriting premises as they appear applies equally well to attempting to
solve subgoals. If we can identify contradictory premises as soon as they appear, we can eliminate a subgoal
immediately, rather than allow it to be further split on other if statements, only to have all of its children be
rejected later due to contradictory premises. Aggressively searching for contradictions allows us to elminate
entire subtrees of the proof search tree in one fell swoop. The potential cost savings is considerable.

Our proof strategy then becomes roughly the following: at each level of the search tree, we alternate trying
tactic simpl; with tactic cases-if. Since the latter creates additional subgoals with additional premises,
every time we try cases_if, we also try to solve the subgoals by reflexivity or f_equal; failing that, we
try to refute the subgoals using exfalso; intuition. Our current (rough) strategy follows:

Ltac rw := rewrite 7Bool.andb_true_iff, 7Bool.andb_false_iff in x*;
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rewrite 7leb_iff in *; rewrite 7leb_iff_conv in x*;
rewrite 71tb_iff in *; rewrite 71ltb_iff_conv in *;
rewrite ?beq_nat_true_iff in *; rewrite 7beq_nat_false_iff in *.

Ltac crw := cases_if; rw.

Lemma insdeldel: forall (A B C: nat) (a: ascii) (b c: nat), tp2short (Ins A a) (Del B b) (Del C c).
Proof.
intros.
hnf.
simpl; crw; crw; crw; crw; try (solve [exfalso; intuition]);
simpl; crw; try (solve [exfalso; intuition]);
try simpl; try crw; try reflexivity; try (solve [exfalso; intuition]);
try simpl; try crw; try reflexivity; try (solve [exfalso; intuition]);
try simpl; try crw; try reflexivity; try (solve [exfalso; intuition]);
try crw; try reflexivity; try (solve [exfalso; intuition]);
try simpl; try crw; try (solve [reflexivity | f_equal; intuition | exfalso; intuition]);
try simpl; try crw; try (solve [reflexivity| exfalso; intuition]);
try simpl; try crw; try (solve [reflexivity | f_equal; intuition | exfalso; intuition]);
try crw; try (solve [reflexivity | exfalso; intuition]).
Qed.

In general, the further down the tree we go, the more tactics we try, as goals to which they apply are less
likely to occur at the very top of the tree. Also, there are likely more calls to tactic simpl than necessary,
as these are needed simply for substituting into the definitions of slash and backslash—and the number
of occurences of such calls is only three on either side of the equality.

Using this strategy, we have been able to consistently keep the number of active subgoals under 120 at
each stage. Nevertheless, we have not yet succeeded at completing the verification of this lemma. Research
into this problem is ongoing.

4.2.2 Results for CCU

Although we have not completed the full TP2 verification for lemma insdeldel (and have not yet attempted
lemma deldeldel, which promises to be much worse), we have been able to comlete the verification for lemma
insinsins (as stated above), and lemma insinsdel. The former has been verified; the output from Coq
for the latter is presented below (other subgoals suppressed):

A : nat

B : nat

C : nat

a : ascii

b : ascii

c : nat

H: A<B

HO : C+ c <=B
H1 : true = true

H2 : C < B
H3 : C+ ¢c <= B
H4 : A<=C

H5 : B - c<=A

Ins A a=1Ins (A+1) a

If we add hypotheses H3 and H5, we obtain C' + B < B + A, which reduces to C' < A. This, combined with
hypothesis H4, gives us A = C. Thus, Coq reports a counterexample when A = C; A < B. For example,
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(Ins 2 "a"), (Ins 5 "b"), and (Del 2 3) fit these criteria, and a quick hand-verification confirms that
TP2 fails for these updates.

We had previously thought that CCU succeeded where adOPTed failed, and had even hand-verified that
the CCU was not vulnerable to the reported adOPTed counterexample. Thanks to our Coq verifier, we now
know that we were wrong, and in fact, the CCU transformations (which for 10 years we thought satisfied
TP2) do not satisfy TP2.

5 Related Work

This report is not the first work to apply automated techniques to TP2 verification. Boucheneb et al [1, 2]
use a model checking approach for TP2. A notable theorem-proving approach is the work of Oster et al [7],
who use a different tool (the SPIKE theorem prover) instead of Coq, and who attempt to verify TP1 as well
as TP2.. Verifying TP1 carries with it its own challenges, which Oster et al expose very well. We have not
attempted to verify TP1, as it tends to be easier to hand-verify. Oster et al do not provide many details
on their TP2 verifier, but based on what they say about their TP1 verifier, it appears that their verifier is
based primarily on pure automated reasoning, whereas our approach is at least partially guided by syntactic
considerations of the transformations themselves.

We know of no work, aside from the present one, that attempts to verify TP2 for the CCU transforms
via theorem-proving. We believe the counterexample to CCU presented herein to be novel.

6 Conclusions and Future Work

This work serves numerous purposes. It is an attempt to reproduce a previous theorem-proving result
for TP2, and independently generate the same or another counterexample for the adOPTed algorithm. It
represents the beginnings of an effort to produce a useable tool to facilitate further research on operation
transforms. It provides the first known automated refutation of the CCU transformations. Finally, it serves
as a domain-specific Coq tutorial for future researchers on this project.

Opportunities for future and ongoing work abound. It remains to find the exact combination of tactics
to allow Coq to fully check the rest of CCU within the resources available. Once we have the tool running
efficiently, we can proceed along at least two lines. We can work on integrating it into a compiler framework,
so as to provide language-level support for operation transforms; as part of this work, we may also explore
whether a compiler might be able to optimize the proof strategy based on the form of the input. In addition,
the tool will be useful as we discover more kinds of shared objects, and need to verify TP2 for new sets of
operations.
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