
Materialized Views for Eventually Consistent
Record Stores

Changjiu Jin, Rui Liu, Kenneth Salem

Technical Report CS-2012-26
Cheriton School of Computer Science, University of Waterloo

Waterloo, Ontario, Canada
December 2012

A shorter version of this paper [1] will appear in the
Proceedings of the 2nd International Workshop on Data Management in the Cloud (DMC 2013),

Brisbane, Australia, April, 2013.

Abstract—Distributed, replicated keyed-record stores are often
used by applications that place a premium on high availability
and scalability. Such systems provide fast access to stored records
given a primary key value, but access without the primary key
may be very slow and expensive. This problem can be addressed
using materialized views. Materialized views redundantly store
records, or parts of records, and the redundant copies can be
organized and distributed differently than the originals, e.g,
according to the value of a secondary key. In this paper, we
consider the problem of supporting materialized views in multi-
master, eventually consistent keyed-record stores. Incremental
maintenance of materialized views is challenging in such systems
because there no single master server responsible for serializing
the updates to each record. We present a decentralized technique
for incrementally maintaining materialized views in multi-master
systems. We have implemented a prototype of our technique
using Cassandra, a widely used system of this type. Using the
prototype, we show that secondary-key-based access is much
faster using materialized views than using Cassandra’s native
secondary indexes, but maintaining the views in the face of
updates may be more expensive than maintaining indexes.

I. INTRODUCTION

Keyed-record stores are often used by applications that
place a premium on high availability and scalability. In these
systems, each stored record is associated with a primary key
value. Records are replicated and distributed across multiple
servers. Client applications can access a stored record quickly
by providing its primary key value. Examples of such systems
include BigTable [2], Cassandra [3], and Amazon’s SimpleDB.

One of the principal limitations of these systems is that the
only way to access stored data efficiently is with the primary
key. For example, if the stored data consist of customer
records keyed by a customer identifier, it may be difficult or
impossible to access records by, for example, customer name.
Some systems, such as Cassandra, provide secondary indexes
to address this problem. However, to help ensure consistency
between the secondary index and and the records, such indexes
are themselves typically partitioned and distributed according
to the primary key. To access a record using such an index, the
system must broadcast the request to multiple servers, each

of which can then check for the requested record using its
fragment of the index. As a result, accessing records through
such an index is typically slower and much more expensive
than accessing the data by primary key.

Applications that use keyed-record stores often address
this problem by storing the same data multiple times, with
different keys. For example, an application might store two
customer tables, one keyed by customer ID, and the other by
customer name. When customer records are updated, inserted
and deleted, the burden of ensuring that these tables remain
synchronized must be borne by the application.

Materialized views are a mechanism that allows this burden
to be shifted from the client applications to the record storage
system. Materialized views are tables that redundantly store
records, or parts of records, from another table, called the
base table. The records in the view can be organized and
distributed differently than the originals in the base table. In
particular, they can be distributed according to the value of a
secondary key. Since the system is aware of the relationship
between a materialized view and its base table, it can assume
responsibility for maintaining (updating) the view when the
base table changes.

Materialized views are widely implemented in relational
database systems. In relational systems, incremental mainte-
nance of (simple) materialized views is conceptually simple.
Base table updates are typically propagated to the views in
transaction serialization order, which is obtained from the
database system’s transaction log. A similar approach can be
use to implement incremental view maintenance in distributed
keyed-record stores, provided that there is some mechanism
analogous to the transaction log for determining the order in
which to propagate changes. For example, PNUTS [4] uses
this approach to implement view maintenance. Each record
stored in PNUTS has a single master copy which serializes
all updates to that record. Thus, the master server for a record
can be responsible for propagating the record’s changes to the
view(s).

In this paper, we focus on the problem of supporting ma-



terialized views in multi-master, eventually consistent keyed-
record stores, such as Cassandra, SimpleDB, Project Volde-
mort, and Riak. In these systems, there is no master server
that serializes updates to a given record. Furthermore, these
systems may provide only an eventual consistency guaran-
tee to applications. This means that, depending on how an
application reads a record, it may not be guaranteed to see
that record’s most-recent version. As we will show, this
complicates the problem of maintaining materialized views.
In particular, the view maintenance approach used by PNUTS
is not directly applicable to such systems.

This paper makes two primary research contributions. First,
we present a technique for incrementally maintaining mate-
rialized views in multi-master, eventually consistent keyed-
record stores. Our technique is decentralized, like multi-
master systems. It is also asynchronous, which means that an
application’s updates to a base table are not guaranteed to be
reflected in the view immediately. In Section III we present our
rationale for this design choice. It is possible to complement
our technique with an additional mechanism that will provide
a session consistency guarantee for each application client.
Although view update is still fundamentally asynchronous,
session guarantees ensure that if a client updates a base table
and then reads a view defined on that table, it can be sure that
the view will reflect the effects of that client’s own preceding
updates.

Our second contribution is an empirical analysis of the
performance of materialized views. We prototyped our in-
cremental view maintenance technique within Cassandra, a
widely used open-source multi-master system. In our analysis,
we consider both the cost of accessing the view and the
overhead of maintaining the view in response to base table
updates. Since materialized views provide an alternative to
native secondary indexes, we provide a comparison of the
performance of Cassandra’s native secondary indexes to that
of materialized views.

II. SYSTEM MODEL

We begin by presenting generic model of a multi-master,
keyed-record system. We will use the model to present our
view maintenance algorithm. Our generic system is similar
to Cassandra, although we have eliminated many Cassandra-
specific details that are not relevant to view maintenance.

The system allows applications to define sets of records,
which we will refer to as tables. Each record has a key and
one or more named attributes, or columns. Different records in
the same table may have different attributes. The combination
of key and a column name identifies a cell in the table. Each
cell may have an associated value, and each cell with a value
also has an associated timestamp. We will use the notation
T [k, c] to refer to the cell corresponding to key k and column
c in table T .

Applications can use two operations on tables: Put and
Get. A Put operation takes as parameters a table name (T ), a
key value (k), a set of column names ([c1, c2, . . . , cn]), a set of

values ([d1, d2, . . . , dn]), a set of timestamps ([t1, t2, . . . , tn]),
and a write quorum (W ), which we will describe shortly.

For each column ci, the Put operation sets the value and
timestamp of T [k, ci] to di and ti, respectively, unless the cell’s
timestamp is already larger than ti, in which case the Put has
no effect on that cell. A Get operation takes a table name (T ),
a key value (k), a set of column names ([c1, c2, . . . , cn]), and
a read quorum (R) as parameters. It returns the current value
and timestamp for each cell T [k, ci]. The value in each cell
will be the value written by the preceding Put operation with
the largest timestamp. If no value has ever been Put into a
cell, we assume that a read of the cell will obtain a NULL
value and timestamp. (A NULL timestamp is assumed to be
smaller than all non-NULL timestamps.)

To delete the value in a cell, an application can Put a NULL
value into the cell. Internally, the system places a tombstone
value in such a cell, along with the timestamp from the Put
operation, to record when the value was deleted. Subsequent
Get operations will read NULL from the cell until a non-
NULL value (with a larger timestamp than the tombstone’s) is
put there.

The system has multiple servers. Each record is stored N
times, on N different servers. (N is a configurable parameter.)
The placement of records onto servers is typically determined
by hashing the record key [5], [3], but the placement policy
is orthogonal to our work. We assume only that placement of
a record’s copies is determined by its key value. To perform
a Get or Put, an application client connects to any server
in the system. That system acts as the coordinator for the
request. The coordinator first uses the supplied table name
and record key to determine which servers hold copies of the
target record. In the case of a Put request, the coordinator
sends the request to all N replicas of the record, and waits
for responses from at least W (1 ≤ W ≤ N) of the replicas
before acknowledging the Put request to the application. Each
replica performs the Put operation on its local copy before
sending an acknowledgment to the coordinator. In the case of
a Get operation, the coordinator again forwards the request
to all N replicas, and waits for the first R (1 ≤ R ≤ N)
responses. Each replica server performs the Get operation on
its local copy of the record and returns a list of cell values and
timestamps to the coordinator. For each cell identified in the
Get request, the coordinator chooses the value with the largest
timestamp from among the first R responses, and returns
that value, along with its associated timestamp, to the client
application. The local Put and Get operations performed by
each individual server are atomic.

Applications can control a consistency/performance trade-
off by varying W and R in Put and Get operations. In
particular, if W + R > N , the system implements classical
quorum consensus [6] and each Get operation is guaranteed
to return cell values written by the preceding Put with the
largest timestamp. If W + R < N , Get operations may
return stale values but Gets or Puts (or both) may finish
more quickly because the coordinator need not wait for as
many acknowledgments from replicas. The system includes



TICKET (base table)
Id Status AssignedTo Description

1 open rliu . . .
2 open kmsalem . . .
3 open kmsalem . . .
4 resolved rliu . . .
5 open cjin . . .
6 new . . .
7 resolved cjin . . .

ASSIGNEDTO (view)
AssignedTo Ticket Status

rliu 1 open
rliu 4 resolved

kmsalem 2 open
kmsalem 3 open

cjin 5 open
cjin 7 resolved

Fig. 1. Example of a Base Table and a View

mechanisms (not described here) that ensure that all updates
to a cell eventually reach every replica of that cell’s record,
despite failures. All updates are totally ordered according
to the application-specified timestamps supplied with Put
operations, so all servers will agree on the ordering of updates
to each cell.

III. VIEWS

A view is a table whose contents are determined by another
table, called the base table. In our system, all views are
materialized, replicated and stored like regular base tables.
Thus, we will use the terms “view” and “materialized view”
interchangeably.

Definition 1 (View)
A view V is defined by a base table name (B), a view-key
column name (cV ), and zero or more view-materialized column
names (c1, c2, . . .). For each base key kB such that B[kB , cV ] is
not NULL, there is a row in the view, with key kV equal to the
value of B[kB , cV ]. In that row, the following cells are defined:
• V [kV , B] has value kB and timestamp equal to that of

B[kB , cV ]
• for each view-materialized column ci, V [kV , ci] has the

same value and timestamp as B[kB , ci].

Figure 1 shows a simple example of base table and view.
The TICKET base table tracks requests for a help desk applica-
tion. Column Id is the key. ASSIGNEDTO is a view defined on
TICKETS. The AssignedTo column is the view key and the
Tickets column indicates the primary key of the base table
row that corresponds to each view row. Status is a view-
materialized column. The ticket Description field from the
base table is not materialized in the view.

In relational database terms, the views we consider in
this paper are single-table views that involve only relational

projection. That is, each view includes a subset of the columns
of a single base table. It would be easy to incorporate relational
selection, so that a view would include only those rows that
satisfy a selection condition. Furthermore, our approach could
be extended to support equi-join views in much the same
way as is done in PNUTS [4]. However, in this paper we
will restrict ourselves to the single-table projection views of
Definition 1.

Views are similar to base tables, and once a view has been
defined, it can be used by applications in much the same way
as a table. However, there are two differences between views
and base tables. First, views are not updateable: applications
are permitted to perform Get operations on views, but not
Put operations. Second, according to our definition, it is
possible for a view to have multiple rows with the same
view key. For example, in Figure 1, each view key occurs
twice in the view. Such rows will always be distinguishable
by the value of the base key column, e.g., the Ticket column
in the ASSIGNEDTO view. Since views can have multiple
records with the same view key, a Get on a view returns
a set of results, one per view record that matches the specified
view key. For example, a Get of the Ticket and Status
columns for key rliu in the view shown in Figure 1 will
return {[1,open],[4,resolved]}. In contrast, a Get
operation on a base table returns a single value for each
requested column.

IV. VIEW MAINTENANCE AND CONSISTENCY

Since each view depends on a base table, each update to
a base table may require corresponding changes in any views
that depend on it. Since our views are materialized, we require
a means of updating, or maintaining, views in response to
base table updates. View maintenance can be synchronous or
asynchronous. With synchronous maintenance, a base table
update and the corresponding view update(s) occur as a single,
atomic operation, so that each view and its base table remain
mutually consistent at all times. In the case of asynchronous
update, the base table is updated first, and dependent views are
updated sometime later. In general, asynchronously updated
views will be stale with respect to their base tables.

Unfortunately, even if we were to provide synchronous
view maintenance, applications in our system cannot take
advantage of mutual consistency between a base table and
view. For example, consider an application that wants to
retrieve the descriptions of open tickets assigned to rliu
using the example database from Figure 1. The application
must first Get from the ASSIGNEDTO view, using key rliu,
to learn that the Id of rliu’s only open ticket is 1. The
application can then Get from the TICKET table, using key
1, to get the task’s Description. The problem is that
the application must perform two Get operations to do this.
Even if every TICKET update propagates synchronously to
the ASSIGNEDTO view, the application cannot rule out the
possibility that TICKET will be updated in between its two
Get operations. Such an update could, for example, delete
ticket 1, or change its assignment. Thus, the application cannot



be assured of mutual consistency between views and base
tables.

Synchronous view maintenance adds latency to Put op-
erations on base tables, since view maintenance must be
completed before the Put completes. Since clients cannot
take advantage of the mutual consistency that this extra la-
tency buys, our system instead implements asynchronous view
maintenance. Base table updates are propagated eventually to
views, and thus views are normally slightly stale. Applications
must be prepared for the possibility that a view will be
inconsistent with its base table. However, applications can
choose to reduce the impact of this problem by including
view-materialized columns in their view definitions. View-
materialized columns (such as the Status column in the
TICKET view) cause additional information from the base
table to be mirrored in the view, thus potentially allowing an
application to access only the view and avoid accessing the
base table. In our previous example, if the Description
column had been included in as a view-materialized column
in the TICKETS view, the application could have avoided its
second Get operation, and thus could have avoided being
exposed to potential inconsistencies between the view and the
base table. Of course, the price of view-materialized columns
is additional space overhead for the views, and additional view
maintenance overhead when the value of the view-materialized
column is updated in the base table.

A. Incremental View Maintenance

To illustrate the challenges associated with incremental view
maintenance in our system, we will use two examples.

Example 1 (Propogating a Single Update)
Suppose that the base table and view from Figure 1 are as
shown, and a client application uses a Put operation to change
the assignment of ticket 2 in the TICKETS table to rliu. This
ticket corresponds to a single row, with view key kmsalem,
in the ASSIGNEDTO view. To maintain the view in response to
this update, the key of this row in the view must be changed
from kmsalem to rliu. This can be done by deleting the
existing kmsalem row from the view and creating a new
row with key rliu and the same attributes and values as the
original row.

Now, consider a second example involving concurrent up-
dates to the base table:

Example 2 (Propagating Concurrent Updates)
Suppose that the base table and view are as shown in Figure 1
and that two clients attempt to update TICKETS concurrently.
The first client performs the update described in Example 1,
setting the assignment of ticket 2 to rliu. The second client
concurrently attempts to set the assignment of ticket 2 to cjin.
Furthermore, suppose that the second client’s update has a
larger timestamp. Thus, it is clear that both the base table and
the view should eventually agree that ticket 2 is assigned to
cjin. However, the correct actions to take when propagating
these two updates to the view depends on the order in which

they propagate. If the second client’s update propagates second,
the correct view maintenance action will be to delete the rliu
record from the view and insert a cjin record. If the second
client’s update propagates first, the correct view maintenance
action will be to delete the kmsalem record from the view
and insert a cjin record. The situation for propagating the first
client’s update is similar.

This second example illustrates the fundamental challenge
of view maintenance in our system: to maintain the view in
response to some change to a record in the base table, it is
necessary to know the view key of the corresponding record
in the view. However, it is difficult to determine the correct
view key, since that depends on which updates have already
been propagated.

One way to solve this problem is to ensure that updates
propagate to the view sequentially and in timestamp order.
Sequential, in-order propagation simplifies the task of deciding
how to propagate each update, since it is known exactly
which updates have already propagated and which have not.
Asynchronous incremental view maintenance in PNUTS [7]
follows this approach. Each record has a designated master
copy, which serializes updates to that record and propagates
updates to views in serialization order. We could implement
this approach in our system by, for example, designating one
copy of each base row as master, and making it responsible
for propagating all updates to that row. The designated master
would propagate updates sequentially in the order in which
they are applied at that master copy. Although such an
approach would work, we have chosen to avoid it as it runs
contrary to the decentralized, multi-master behavior of the rest
of the system. Having a master copy for each row means that
we must also have some mechanism for choosing new master
in the event of master failure. While this is certainly possible,
such a mechanism is not needed anywhere else in our multi-
master system.

Instead, we propose an approach in which each update
coordinator is responsible for propagating the updates that
it coordinates. Since any server can coordinate updates, any
server can also propagate updates to views, and all such servers
propagate their updates independently and concurrently. With
this approach, there is no need for a designated master for
each row.

To illustrate the general idea behind our approach, we
consider Example 2 again. Suppose that the first client’s update
propagates first. To determine the view key of the record for
ticket 2, the first client’s coordinator will read the value of the
view key in the base table row before updating it, finding the
value kmsalem. It will then look for the corresponding row
in the ASSIGNEDTO using the key kmsalem and find the
corresponding record. The coordinator will change the view
key for this record to rliu as required to reflect its base
table update. However, in addition to this, the coordinator will
also insert a new record into the view with view key kmsalem
and one field which contains the new view key (rliu) which
replaced kmsalem. This extra row is called a stale row.



When the second client updates ticket 2’s assignment to
cjin in the base table, it will first read value of the view
key from the base table record, just as the first client did. It
will read either kmsalem (the original value of the view key)
or rliu, depending on whether its base table update occurs
before or after the first client’s. It will then use the view key
that it reads to look for the corresponding row to be updated in
the view. If it reads rliu, it will immediately find the correct
record in the view. If it reads kmsalem, it will instead find
the stale row that was inserted by the first client. The stale
row, which contains the new view key (cjin), will allow the
second coordinator to locate the correct view record.

Before giving a full description of incremental view main-
tenance technique, we should define what it means to perform
incremental view maintenance correctly in system in which
updates propagate asynchronously, and not necessarily in the
(timestamp) order in which they will be serialized at the
base table. We define this as follows. Suppose that V is a
view defined on base table B. Let B0 be the initial state of
the base table and V0 the corresponding initial state of the
view, according to Definition 1. Let Un represent the first n
base table updates to be propagated to the view, and let Vn

represent the state of the view after the updates in Un have
been propagated.

Definition 2 (Incremental View Maintenance)
The correct view state (Vn) after the first n update propagations
is the view state that would be obtained by applying the updates
in Un to the base table in timestamp order, starting from base
table state B0 and resulting in state Bn, and then determining
the view state corresponding to Bn using Definition 1.

Note that when the view is in state Vn, the base table may
not be state Bn (in fact, it may never enter state Bn at all)
since the base table will likely have experienced updates in
addition to the ones that have propagated to the view. Instead,
Definition 2 says that an incrementally and asynchronously
maintained view is correct if it is the view that would be
obtained by applying only the propagated updates to the base
table and then calculating the view.

B. Versioned Views

In order to support incremental view maintenance, our
system stores versioned views. Versioned views contain stale
rows in addition to the current records of the view. Stale rows
are used during view maintenance to ensure that the proper
view records can be located and updated, as was illustrated in
Example 2.

A versioned view contains all of the records defined for a
plain non-versioned views (Definition 1) - we refer to these
as the versioned view’s live rows. In addition, for each live
row, the versioned view contains zero or more stale rows. The
live rows represent the current state of the view. If the view
key of a row has been updated, there will be stale rows for
each of the old view keys. Each stale row contains a pointer
(a view key value) referring to a more recent view key for the

ASSIGNEDTO (view)
AssignedTo Id Status Next

rliu 1 open -
rliu 4 resolved -
rliu 2 - cjin

kmsalem 2 - rliu
kmsalem 3 open -

cjin 2 open -
cjin 5 open -
cjin 7 resolved -

Fig. 2. Example of a Versioned View. Stale rows are shown in italics.

row. Each stale row’s pointer leads, directly or indirectly, to
its corresponding live row.

Figure 2 shows an example of a versioned view that could
result if the two updates described in Example 2 were applied
to the sample database shown in Figure 1. In versioned views,
the additional Next column is used in stale rows to hold the
pointer. In Figure 2, there are three rows that correspond to
the record for ticket 2 in the TICKETS base table. Two of
these rows are stale, and the third is the live row representing
the current state of the view after the propagation of the
two updates. In the example, the two Next pointers form
a path that links the stale rows to the live rows. Stale rows in
versioned views are used only to support view maintenance.
They are not visible to applications, which see views as defined
in Definition 1.

Definition 2 defines the correct state of a view after each
incremental view update. Here, we extend this definition to
specify the correct state of a versioned view after each update
is propagated. Consider a base table B and view V with initial
states B0 and V0, and let Un = {u1, u2, . . . , un} represent the
first n updates to have been propagated to the view, listed in
the order in which they finish propagating. Let V1, V2, . . . , Vn

represent the non-versioned view states that result from these
propagations - these are the states defined by Definition 2.
Consider a specific base table key, kB . The view key associated
with base row kB may change over time because of updates to
the view key column in the base table. Let kv1, kv2, . . . , kvm
represent the set of distinct view keys associated with base
key kB in view states V1, V2, . . . , Vn. Finally, let tvi represent
the timestamp associated with view key kvi. tvi is the largest
timestamp among all updates in U that set the value of the
view key column in row kB to kvi. Assume that the view
keys and timestamps are numbered in increasing timestamp
order, so that tvi < tvj if i < j.

Let V̂1, V̂2, . . . , V̂n represent the versioned view states cor-
responding to the non-versioned states V1, V2, . . . , Vn. These
versioned states are defined in Definition 3.

Definition 3 (Versioned View)
For such base key kB , the versioned view state V̂n after the
updates U have propagated will include the following rows:
• A live row with view key kvm (i.e., the most recent view

key for kB) containing the view-materialized cells defined



in Definition 2. This row will be identical to kB’s row in
the non-versioned view (Vn) except for the presence of one
additional cell, which we will refer to as Next. The value
of the Next cell is kvm, i.e., it is a self-pointer, and its
timestamp is tvm. The self-pointer identifies this as a live
row.

• For each other key kvj(1 ≤ j < m), the versioned view
will contain a stale row with key kvj and two columns, B
and Next. The value of column B is kB . The value of
column Next will be kvj′ , for some j′ such that j < j′ ≤
m. That is, Next will point to a more recent view key for
base row kB . Furthermore, the Next pointer in each stale
row will lead, either directly or indirectly, through a chain
of kB’s stale rows to the live row for kB .

C. Update Propagation

Algorithm 1 shows how a coordinator performs an update
on a base table on which a view is defined. Before performing
the update, the coordinator reads the current value of the
view key for the row being updated (line 2 in Algorithm 1).
This Get operation differs from the normal Get (described
in Section II) in that it returns all of the distinct versions
of the view key that it finds in the base rows replicas, not
just the latest version. Although the Get and Put at lines 2
and 3 are shown as separate operations in Algorithm 1, in
practice they can be combined into a single combined Get-
then-Put request that the coordinator sends to all replicas of
row kB . The base table update operation returns to the client
(line 4) as soon as the coordinator has received responses
from the client-specified quorum (W ) of base row replicas.
After returning to the client, the coordinator continues to
collect view keys from the remaining replicas (if any) and
then initiates update propagation to the view. To propagate
the update, the coordinator chooses one of the returned view
keys (line 6) as its guess of the corresponding row’s view
key and passes that view key to PropagateUpdate. The
coordinator is free to try the keys in any order, and if necessary
may even try the same key more than once. In general, multiple
attempts to propagate the update may be necessary because
PropagateUpdate may fail. Such failures occur if the view
key chosen by the coordinator at line 6 was written by another
base table update that has not yet been propagated to the view.
Unless there is a high rate of updates to the view key of a
single row, we expect that failures of PropagateUpdate
will be rare, so that the coordinator need not make multiple
propagation attempts.

Note that the coordinator need not wait for view keys from
all of the view replicas before invoking PropagateUpdate
(line 5). It may do so at any time after acknowledging
the base table Put operation to the client, choosing from
among the view keys that it has collected so far. Once
PropagateUpdate has succeeded, there is no need for the
coordinator to wait for view keys from any base row replicas
that have not yet responded to the original Get-then-Put
request.

Algorithm 2 shows the implementation of the

Algorithm 1: Base Table Put with Update Propagation
Input: B: the base table name
Input: kB : the base key value
Input: c: base column to be updated
Input: vc: value to be written
Input: tc: update timestamp
Input: W : write quorum
Output: R: return status (success/failure)
// V is a view defined on B

1 if c is the view key or a view-materialized column of V
then

// Get current view key(s) for row
// kB and then perform the update.
// This Get returns all view key
// versions it finds, not just the
// latest one.

2 oldkeys← Get(B, kB , cV ,W );
// Perform base table update.
// Can be combined with Get at
// line 2.

3 R← Put(B, kB , c, vc, tc,W );
4 return R to the client;

// update propagation happens
// asynchronously, after Put has
// returned to the client, and
// after Get has received view keys
// from all copies of base row

5 repeat
// try keys from oldkeys until
// propagation succeeds

6 choose kv from oldkeys;
7 until PropagateUpdate(V, c, kB , kv, vc, tc) succeeds;

8 else
9 R← Put(B, kB , c, vc, tc,W );

10 return R to the client

PropagateUpdate function that is invoked by Algorithm 1.
PropagateUpdate is responsible for performing
incremental view maintenance in response to a base
table update. In our presentation of PropagateUpdate,
we have made several simplifying assumptions. First, we
have assumed that the base table Put operation that triggers
incremental view maintenance updates a single base table
column, which may be the view key or a view-materialized
column. If a base table Put operation modifies more than
one column in a base table row, it is easy to modify
PropagateUpdate to propagate those changes together,
within a single invocation of PropagateUpdate. Second,
we have ignored the handling of deletions (Puts of NULL
values) in the base table. NULL Puts to view materialized
cells can be propagated in exactly the same way as non-NULL
Puts, with tombstones being used to represent deletions in
the view in the same way they are used to represent deletions



in the base table. However, deletion of the view key value in
the base table is more complicated, since it should cause the
corresponding row to be eliminated from the view. We can
handle view key deletions by leaving the corresponding row
in the view but marking it as deleted, however, this special
case is not handled by Algorithm 2 as shown.

Algorithm 2: PropagateUpdate
Input: V : the name of the view on base table B
Input: c: base table column that was updated
Input: kB : the key of the updated row in the base table
Input: kv: the view key guess
Input: knew: the new value in column c
Input: tnew: the new value’s timestamp

// Note: write quorum for all Puts
// is a majority of the view replicas.

// get the current live key
1 if [klive, tlive]← GetLiveKey(kv) fails then
2 return failure

3 if c is the view key column of V then
// write the new row

4 Put(V, knew, [B,Next], [kB , knew], [tnew, tnew]);
5 if knew 6= klive then
6 if tnew > tlive then

// copy view-materialized cells
// to the new row

7 CopyData(klive, knew);
// make the old live row stale

8 Put(V, klive, [Next], [knew], [tnew]);

9 else
// make the new row stale

10 Put(V, knew, [Next], [klive], [tnew]);

11 else // c is a view-materialized column
12 Put(V, klive, [c], [vc], [tc]);

Finally, and most importantly, Algorithm 2 assumes that
update propagations to a given view happen sequentially,
although they may occur in any order. In practice, this may
not be true: even if individual base table update coordinators
propagate changes sequentially, different coordinators might
attempt to propagate changes to the same view concurrently.
Assuming sequential propagation simplifies the presentation of
Algorithm 2, allowing us to focus on correct maintenance of
versioning in the views. We defer a discussion of concurrent
update propagation to Section IV-F, which describes the issues
that can arise when updates propagate concurrently, and how
they can be resolved.

The first task for PropagateUpdate is to find the
view row that corresponds to the updated base row.
PropagateUpdate starts with a guess (kv) as to the corre-
sponding row’s current key, but this guess may be inaccurate,
either because the guess is stale or the view is stale. To find the

row, PropagateUpdate starts with its guess (kv) and fol-
lows pointers in stale rows in the versioned view until it finds
the current live row, its target. This is accomplished by the
call to GetLiveKey (Algorithm 3) at line 1 in Algorithm 2.
GetLiveKey starts with PropagateUpdate’s guess. If
the guessed view key identifies the live view row correspond-
ing to the base table row that was updated, GetLiveKey is
done. If, instead, the guessed view key identifies a stale row,
GetLiveKey iteratively follows pointers in the versioned
view’s stale rows until it has identified the live row. It is also
possible that GetLiveKey will not find the specified key
in the view at all. This can happen if the update that wrote
that view key in the base table has not yet propagated. In this
case, both GetLiveKey and PropagateUpdate will fail,
requiring the coordinator to attempt the propagation again with
a different view key guess.

Once PropagateUpdate has identified the live row,
its behavior depends on whether the view key or a view-
materialized cell is being updated. In the latter case,
PropagateUpdate simply Puts the new value into the
appropriate cell in the live row (line 12). In the former
case, PropagateUpdate needs to create a new row in the
versioned view. If the newly-propagated view key is older
than the key in the current live row, then the new row will
be a stale row pointing to the current live row (line 10).
Otherwise, the new row becomes the live row. In this case,
PropagateUpdate needs to copy the values of all view-
materialized cells from the old live row to the new one (line 7),
and mark the old live row as stale (line 8).

Algorithm 3: GetLiveKey
Input: V : the name of the view
Input: kv: the initial view key
Output: The live row key for the given view key kv , and

its timestamp
1 done ← false;
2 repeat

// Get’s quorum is majority
// of view replicas.

3 [nextkey,nextTS]← Get(V, kv, [Next]);
4 if (nextkey 6= NULL) then // key kv exists
5 if nextkey = kv then // found live row
6 done ← true

7 else
8 kv ← nextkey

9 else // key kv does not exist
10 return failure

11 until done;
12 return nextkey,nextTS

D. Correctness of Update Propagation

Theorem 1 states that algorithms 1, 2, and 3 together
correctly propagate updates to versioned views.



Theorem 1
At the successful completion of each update propagation, the
versioned view state will be as described in Definition 3.

Proof: By induction on the number of propagated up-
dates. View assumed to be initialized correctly, so that view
state V̂0, which contains no stale rows, is correct. Assume view
is correct after i − 1 updates have propagated, and consider
view state V̂i that results from the propagation of the ith
update.

Since V̂i−1 is correct and ui has finished propagating,
GetLiveKey (line 1 in Figure 2) must have returned, and
must have reported the current view key (the live row’s key)
for the base table row updated by ui. There are two cases to
consider:

Case 1: ui is an update to a view-materialized column.
According to Definition 3, V̂i should be identical to V̂i−i
except possibly for the value of the view-materialized column
in the view row corresponding to the base row that was
updated by ui. That cell’s value should change only if ui has
a larger timestamp than the cell has in V̂i−1.

Since V̂i−1 is correct, the live row contains the latest value
of each view-materialized cell as of update ui−1. The Put
operation at line 12 (Figure 2) will update the view cell iff
the update’s timestamp is larger than the current timestamp
in the cell, as required. PropagateUpdate makes no other
changes to the view in this case, thus V̂i is correct.

Case 2: ui is an update to the view key column.
Here there are several sub-cases to be considered:

Case 2a: knew does not exist as a view key for this row
in V̂i−1. In this case, the view key for this row is being set to
knew for the first time. Definition 3 requires that V̂i contain
a new row with key knew. If ui’s timestamp is larger than
the timestamp of the current live row in V̂i−1, then this new
row must be the live row, must contain the current values of
all view-materialized cells for this row, and must be reachable
from all stale rows via their Next pointers. If ui’s timestamp
is smaller than the current live row, then the new row must be
stale, and its Next pointer must lead (directly or indirectly) to
the existing live row.

Since V̂i−1 is correct, GetLiveKey (line 1 in Figure 2)
correctly identifies the key of the current live row. Suppose
first that ui’s timestamp is larger than that of the current live
row. The Put operation (line 4) creates the new live row with
key knew. CopyData (line 7 ensures that the new live row
contains the latest values of all view-materialized cells. Finally,
the Put operation at line 8 marks the old live row as stale
and sets its Next pointer to refer to the newly-created live row.
Since the old live row in V̂i−1 was reachable by all stale rows,
the new live row in V̂i is reachable by all stale rows by way
of the old live (and now stale) row. Thus, V̂i is correct. If,
instead, ui’s timestamp is smaller than that of the current live
row, the Put operation at line 10 changes the newly-inserted
row from live to stale, and makes its Next pointer refer directly
to the current live row, which remains unchanged. All other
stale rows reach the live row in V̂i the same way they did in

V̂i−1. Thus, V̂i is correct.
Case 2b: knew exists as a stale view key for this row in

V̂i−1.
As in Case 2a, ui’s timestamp may be smaller than or larger
than the timestamp of the view’s current live row. If the update
has the smaller timestamp, Definition 3 requires that knew
remain as a stale view key, with a timestamp equal to the larger
of its existing timestamp and that of ui. This is accomplished
by the Put operation at line 4. If ui has the smaller timestamp,
this Put operation will have no effect, as required. If ui has
a larger timestamp than the existing row, the Put will write
the larger timestamp, and will make the existing row’s Next
pointer point directly to the live row. Any stale rows that
reached the live row through knew in V̂i−1 will continue to
do so in V̂i, using the new pointer to go directly to the live
row from knew. Stale rows that were not ancestors of knew in
V̂i−1 will reach the live row in V̂i exactly as they did in V̂i−1.
Thus, V̂i is correct.

If the ui’s timestamp is larger than the live row’s, then
Definition 3 requires that knew’s row becomes the live row.
Line 4 makes it live (overwriting the old Next pointer value in
knew’s row), line 7 copies the materialized cells from the old
live row, and line 8 marks the old live row stale by pointing
it to knew. After these updates, any stale ancestors of knew in
V̂i−1 still reach knew in V̂i. All other stale nodes reached the
old live row in V̂i−1 without going through knew. They now
reach the new live row (knew) on a path through the old live
row. Thus, V̂i is correct.

Case 2c: knew is the live view key for this row in V̂i−1.
In this case, Definition 3 requires that V̂i should be identical
to V̂i−1, except that the timestamp in the live row should be
equal to the larger of its existing timestamp and that of ui.
This is accomplished by the Put operation at line 4, which
will change the live row’s timestamp only if ui’s timestamp is
larger. PropagateUpdate makes no other changes to the
view in this case, thus V̂i is correct.

Theorem 1 shows that PropagateUpdate leaves the
versioned view in the correct state, assuming that it terminates
successfully. However, we have not shown that every relevant
base table update will eventually propagate successfully to the
view. Since the number of stale rows in a versioned view is
finite, and since the stale rows form a tree leading to the
live row (there are no loops), any call to GetLiveKey,
and hence any call to PropagateUpdate, must eventu-
ally terminate, either in success or in failure. However, one
potential concerns is that PropagateUpdate could fail
repeatedly as it is invoked by the coordinator of a base
table update (line 5 of Algorithm 1). Since a versioned view
includes rows (stale or live) for all view keys that have already
propagated, PropagateUpdate will eventually succeed as
long as at least one of the view key “guesses” used by the
update coordinator was written by an update that has already
propagated. However, it is conceivable that none of the view
key guesses obtained by the coordinator have propagated.
Fortunately, if there are several unpropagated view key updates
for a given base table row, we can show that at for at least



one of those updates, the coordinator must have a view key
“guess” that is not from the set up unpropagated changes, i.e.,
a view key for which PropagateUpdate will succeed. This
is true because at each replica of the base row, one of those
unpropagated view key updates must have been applied first,
and therefore must have seen an existing view key that was not
written by one of the other unpropagated updates. Since each
coordinator retains all of the existing view keys that it sees,
the coordinator for at update must have a view key “guess”
that will allow its update propagation to succeed. Once it has
succeeded, some other unpropagated update must be able to
succeed, by a similar argument. Thus, although a base table
update coordinator may have to make multiple attempts to
propagate an update, it should eventually succeed.

E. Reading from Versioned Views

Stale rows in versioned views are used only during view
propagation, to ensure that the correct live row can be found.
View reads involve only the live rows, and thus always show
the current state of the view. Algorithm 4 shows the algorithm
used to Get from a view. To simplify the presentation, the
algorithm in Figure 4 assumes that only a single view column
is being read. However, it is easy to extend Algorithm 4
to allow multiple columns to be read with a single Get.
For simplicity, Algorithm 4 also assumes that there are no
view key updates propagating to the view concurrently with
the Get operation. We discuss concurrency issues further in
Section IV-F.

Algorithm 4: View Get

Input: V : the view name
Input: kV : the view key value
Input: c: view column to be read
Output: R: set of values of column c

1 R← ∅;
// Get columns c and Next from V .
// Result is a set of pairs of values,
// one pair for each view row with
// view key kv.
// Get also returns a timestamp (not
// shown) for each value.

2 D← Get(V, kV , [c,Next]);
3 foreach [cvalue,next] ∈ D do

// Return only live rows
4 if next = kV then
5 R← R ∪ {cvalue}

Reading from a versioned materialized view differs from
reading from a base table in two ways. First, the view may
contain stale rows with the given view key. The view reading
algorithm simply ignores such rows, since view versioning is
supposed to be transparent to the client applications. Second,
as was noted in Section III, a view may contain multiple live
rows with the same view key. This occurs when there are

multiple rows in the base table with the same view key. Thus,
the view reading algorithm returns a set of results, one per
view record that matches the specified view key.

F. Concurrency

Our presentations of view update propagation and view
reading assumed that these operations occurred sequentially.
In practice, this may not be true. In this section, we discuss
that additional challenges imposed by concurrency.

Our first observation is that propagation of updates to
different rows in a base table can proceed concurrently,
without restriction and without the need for any changes to
the propagation algorithms. Each base table row is associated
with a set of rows in the view, and the sets of rows associated
with different base table rows are completely disjoint from one
another in the view. Since propagation of an update to a base
table row only reads from and changes view rows associated
with that base row, propagations of updates to different rows
can proceed concurrently without interference.

Similarly, propagations of updates to view-materialized
columns can proceed concurrently, even if there are several
such updates to the same base table row. Such updates do
not change the structure of the versioned view, i.e., they do
not add rows, change pointers, or change the live row. When
propagated, each such update changes at most the value of a
single cell in a live row in the view, after finding the live row.
In the event that two updates to the same view-materialized
cell propagate concurrently, those propagations will attempt
to update the same cell in the view, and may conflict when
they do so. However, such conflicts are already handled by
the Put operation with which they perform the update. i.e.,
the updates are serialized in the same way that concurrent
updates to a base table cell are serialized. For similar reasons,
view Get operations can also proceed concurrently with the
propagation of updates to view-materialized cells.

This leaves updates to view key cells in the base table.
These are more challenging to execute concurrently. Since
view Get operations to not depend on the versioned view
structure, we can allow Get operations and view key update
propagations to happen concurrently by making a small change
to our algorithms. When PropagateUpdate creates a new
live row there is a period of time during which the new row
has been created but not initialized, e.g., the values of the
view-materialized cells have not been copied from the old
live row. To allow concurrent Get operations on the view,
we must ensure that they do not see such incomplete rows,
and that at all times there is at most one accessible live row
in the view for each base table row. This can be achieved
by making PropagateUpdate mark newly-created live
rows as inaccessible until they have been fully initialized,
unmarking them only after the old live row has been marked as
stale. In addition, the view Get operation must be modified to
wait (spin) in the event that it encounters such an inaccessible
row. With those changes, view Get operations can proceed
concurrently with any update propagation.



Unfortunately, such changes are not enough to allow mul-
tiple view key updates (on the same base table row) to
proceed concurrently, nor are they sufficient to allow view
key updates to propagate concurrently with view-materialized
cell updates (on the same base table row). As one illustration
of the problems that can arise, consider what happens if there
are two updates to the view key in a base row, and those
updates propagate concurrently to the view. Assuming that
both updates have larger timestamp than that of the current live
row, both updates will create new rows in the view and will
make them live. Both will attempt to make the former live row
stale by pointing it to a newly created live row, but only the
propagation with the larger timestamp will succeed. The result
will be two live rows, only one of which is reachable from
the stale rows. This is clearly inconsistent with the definition
of a versioned view.

One way to handle this problem is to introduce a locking
mechanism to block unsupported concurrency. Since each base
row corresponds to a distinct set of view rows, it is sufficient
for propagation operations to lock the key of the base row for
which they are propagating an updates. Propagations of view
key updates must obtain an exclusive lock, while propagations
of view-materialized cell updates can proceed with a shared
lock. Locks could be implemented by a separate lock service.
Note that these locks only affect update propagation. They do
not affect Get or Put operations on the base table, nor do
they affect Get operations on views.

An alternative to locking is to take responsibility for update
propagation from the base table update coordinators and
transfer it to a set of dedicated update propagators, such that
a single propagator would be responsible for propagating all
of the view updates associated with any given base table row.
(This is not the case when update propagation is driven by the
update coordinators, since any update coordinator can handle
updates for any base table row.) For example, the update
coordinators can use consistent hashing of the base row key to
assign responsibility for that row’s update propagations to one
of a set of propagators. The propagator for each row can then
easily prevent view key updates from propagating concurrently
with other updates to the row.

V. SESSION GUARANTEES

Because view maintenance is asynchronous, updates made
to a base table are not reflected in the view immediately. If
a client updates a base table and then reads from that base
table, it can be sure (by choosing appropriate read and write
quorums) that its read operation is “seeing” the base table
after its update has been applied. However, if there is a view
defined on that table and the client wishes to read from the
view, it has no way to ensure that its view read sees the view
after its update has been propagated.

It is possible to add a mechanism to our system to provide
clients with such an assurance by enforcing a session consis-
tency guarantee. To do this, we must extend our system with
some notion of sessions, which can be created and ended by
clients. Specifically, a client can establish a session, issue a set

of Put and Get requests within the context of that session,
and then terminate the session when it is finished. Abstractly,
a session consists of a sequence of Put and Get requests
issued by a single client.

Suppose that B is a base table and V is a view defined
on B. Let oi be a Put operation on B that affects either the
view key of V or a view-materialized column of V , and let
oj be a a Get operation on V . In this paper we consider the
following simple session guarantee:

Definition 4 (Session Guarantee)
For any oi and oj (as described above) such that both oi and oj
are in the same session and oi precedes oj in the session, oj will
see a view state at least as late as the view state created by the
propagation of oi.

This guarantee ensures that when a client reads a view, its
own updates will be reflected in the view. However, the client
still has no way of ensuring that base table updates from other
sessions have been reflected in the view.

Our system enforces session guarantees with a very simple
mechanism, which assumes that all requests in a session
are directed by the client to the same coordinator server.
The coordinator associates each pending or incomplete view
update propagation with the session of the base table update
that triggered the propagation. When the coordinator receives
a Get operation on a view, it checks whether there any
pending or incomplete propagations for that view that are
associated with the Get’s session. If there are, it blocks the
Get operation until all such propagations are complete.

VI. EVALUATION

The techniques proposed in this paper were prototyped
in Cassandra, an open-source multi-master replicated keyed-
record storage system originally contributed by Facebook.
Using the prototype, we conducted some simple experiments
intended to answer several questions:

1) Materialized views provide a means for applications to
access data using a secondary key. How does the perfor-
mance of secondary-key data access using a materialized
view compare to that of secondary-key access using
Cassandra’s native secondary indexing mechanism?

2) View maintenance introduces overhead when base ta-
bles are updated. How does the cost of maintaining
materialized views compare to the cost of maintaining
Cassandra’s native secondary indexes?

To address these questions, we ran experiments using a
small, 4 node instance of our Cassandra-based prototype. Each
node ran on a dedicated physical server with a 2.4GHz dual-
core AMD Opteron Processor, 8GB memory and a single
60GB disk, attached through a private 1 Gb network. An
additional, separate server was used for clients.

A. Read Performance

To measure read performance, we created a single column
family (table) in Cassandra and populated it with 1 million
rows, with a total size of about 1 GB - small enough to



 0

 0.5

 1

 1.5

 2

SI BT MV

R
e
s
p
o
n
s
e
 T

im
e
(m

s
)

Fig. 3. Read Latency

fit entirely in memory in our servers. We also defined a
materialized view on a secondary key attribute in this table.
Secondary key values were unique across the million rows of
the table. Both the table and the view were replicated 3 times
in our 4-server cluster, i.e., N = 3.

We wrote a simple client application that sequentially ac-
cesses randomly chosen records from the table, as quickly as
possible. The client can be configured to access data in one
of three ways

BT: The client accesses data from the base table, speci-
fying a primary key value for each record accessed.

SI: The client accesses data from the base table using
Cassandra’s native secondary indexing mechanism,
specifying a secondary key value for each record
accessed.

MV: The client accesses data from the materialized view,
specifying a secondary key value (a view key) for
each record accessed.

To measure read throughput, we varied the number of con-
current clients. The clients were run for a fixed amount of
time (5 minutes), and we measured the aggregate read request
rate across all of the clients during the run. To measure read
latency, we ran a single client until it had completed 100,000
requests and measuring the total time required.

Figure 3 shows the average latency for Get (read) requests
under each of the three scenarios. Latencies for base table
(BT) and materialized view (MV) access were similar, and
about 3.5 times less than the latency of accessing the base table
through a secondary index (SI). Figure 4 presents the aggregate
read throughput we measured for each of the three types of
clients, as a function of the number of concurrent clients
of that type. Read throughput for materialized view access
(MV) is slightly lower than our baseline, which is base table
read throughput (BT). This is because view reading involves
reading and filtering out stale rows, in addition to retrieving
the desired live row. However, both BT and MV are much
less costly than secondary access using Cassandra’s native
secondary indexing mechanism. This is because Cassandra’s
secondary indexes are replicated and distributed by primary

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5 6 7 8 9 10

T
h
o
u
g
h
p
u
t(

re
q
/s

e
c
)

Number of clients

BT
SI

MV

Fig. 4. Read Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

SI BT MV

R
e
s
p
o
n
s
e
 T

im
e
(m

s
)

Fig. 5. Write Latency

key, rather than secondary key. This makes it possible for
Cassandra to update the index synchronously when the base
table is updated. However, reads are relatively slow because
the target secondary key must be broadcast to all servers,
each of which must check for the record using its part of the
index. In summary, materialized views provide a lower latency,
higher throughput alternative to native secondary indexes for
secondary-key-based read access, although the data may be
stale.

B. Write Performance

To measure write performance, we ran similar experiments
except that the clients performed base table updates using the
record’s primary keys. We compared the performance of these
updates under three conditions:

BT: The base table has no materialized views or native
secondary indexes.

SI: The base table has a native secondary index defined
on the column updated by the client.

MV: The base table has a materialized view whose key is
the column updated by the client

In the SI and MV cases, each base table update requires view
or index maintenance.



 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5 6 7 8 9 10

T
h
o
u
g
h
p
u
t(

re
q
/s

e
c
)

Number of clients

BT
SI

MV

Fig. 6. Write Throughput

Figure 5 shows the average latency of Put requests in
each of our three scenarios. Write latencies in the BT and
SI scenarios were similar. Native secondary indexes can be
updated quickly because they are partitioned and distributed
by primary key. Thus, each server that updates a copy of the
base table can also update its copy of index. Write latency in
the MV case was about 2.5 times higher. Although most view
maintenance activity is asynchronous and does not increase
write latency, our update propagation algorithm requires that
the updating server read the old value of the view key when a
base table record is updated. This accounts for the additional
write latency. As noted in Section IV-C, it may be possible to
eliminate some or all of this additional latency by combining
the Put and Get operations of Algorithm 2, but our prototype
does not do so.

Figure 6 shows the aggregate write throughput we measured
in each of the three scenarios, as a function of the number of
concurrent clients of that type. Both SI and MV have lower
throughput than BT because of the additional costs imposed
by view or index maintenance. This experiment represents a
best case for the update throughput of MV, because updates
were randomly and uniformly distributed over the base table
records. As a result, the stale record chains that need to be
traversed to find a live view record to update are usually
short. However, update chains can grow longer, and update
performance can grow corresponding worse for MV, if the
update pattern is highly skewed, so that some records are
updated very frequently. The extended version of this paper [8]
includes and experiment that illustrates the effect of highly
skewed updates on write performance.

C. Session Guarantees

In this experiment, we measure the cost of session guaran-
tees on materialized views. We use one single-threaded client
to issue 100,000 pairs of Put and Get requests. There are
two versions of the experiment, which we refer to as SI and
MV:

SI In this version, there is a secondary index defined on
the base table, and each Put is followed by a Get

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 20 40 80 160 320 640 1000

R
e
q
u
e
s
t 
P

a
ir
 L

a
te

n
c
y
(m

s
)

Interval time(ms)

SI
MV

Fig. 7. Average Total Latency of Put/Get Pairs with Session Guarantees

of the updated row through the secondary index.
MV In this version, there is a view defined on the base

table, and the column updated by the Put operation
is a view-materialized column in the view. The view
key is the column on which the secondary index is
built in the SI version of the experiment. Each Put is
followed by a Get of the view cell that corresponds
to the one updated by the preceding Put. In this
experiment, we configure the system to enforce a
session guarantee - all Put and Get operations are
part of a single session.

These two scenarios represent two alternatives for accessing
the table using a secondary key. With the session guarantee,
the client can be assured that its Get operation will see the
effect of the preceding Put in the MV experiment, as it is in
the SI experiment. Our goal is to compare the costs of these
alternatives.

We expect that the cost (in terms of additional blocking la-
tency) imposed by session guarantee enforcement will depend
how quickly a client issues a view read after updating the base
table. Thus, in our experiment, we introduce a configurable
amount of client-introduced delay between the Put and Get
operations in each pair. For each pair, we measure the total
time from the start of the Put operation to the completion
of the Get operation and subtract the client-introduced inter-
request latency to obtain the total latency of the pair of
operations. We report the average total latency over all such
pairs.

Figure 7 shows the average total latency of Get/Put pairs
as a function of the amount of client-introduced latency. In
the MV experiments, the total latency drops as the amount of
client-introduced latency increases. As gap between the Put
and Get increases, it becomes more likely the propagation
of the base table update will be complete before the Get
operation occurs. When this occurs, the coordinator does not
need to block the Get request when it arrives. The total latency
levels off after 640 ms, which indicates that almost all update
propagations completed in less time than that.



 0

 1000

 2000

 3000

 4000

 5000

1 10 100 1k 10k 100k

T
h
ro

u
g
h
p
u
ts

(r
e
q
/s

e
c
)

Request Range

Fig. 8. Effect of Write Skew on Write Throughput

D. Update Skew

One potential concern with our approach to incremental
view maintenance is that the cost of maintenance will depend
on the intensity of updates to a given base table row. The more
updates to a row, the larger then number of corresponding stale
rows in the view, and potentially the longer it will take to find
the live row when propagating updates.

To measure this effect, we ran experiments in which a
materialized view was defined on the base table, and 10 clients
concurrently updated the base table for 5 minutes. For each
run of the experiment, we chose a specific range of base table
keys that would be updated - all clients updated base rows
in the same key range. Each client randomly selected keys
from the specified range and updated the view key column
in the selected base row. In each experiment, we varied the
width of the key range from which the clients randomly
selected base keys. The range width varied from 100,000 keys
down to a single key (meaning all updates from all clients
would be directed to a single row it the base table). For
each run of the experiment, we report the average base table
update throughput (of all clients) over the 5 minute update
period. Figure 8 shows the write throughput as a function of
the update key range width. As the range narrows, the total
write throughput decreased significantly, which suggests that
the cost of propagation increases significantly as the updates
become more skewed.

VII. RELATED WORK

Materialized views for relational database systems have
received considerable attention in the database research com-
munity [9], [10], [11], [12], [13] and they are widely imple-
mented [14], [15], [16]. In relational systems, views can be
defined using relational queries - a much richer class of views
than the simple single-table views we consider in this paper.
This gives rise to a variety of view maintenance issues that
do not arise in our work, or arise in a very simple form. In
relational systems, views may be maintained synchronously
or asynchronously [12], [17], [13]. However, in either case

updates are normally applied to the views in transaction
serialization order. In contrast, we consider a scenario in which
updates may be propagated concurrently and out of order, but
for a much simpler class of views.

Materialized views also play a role in data warehousing,
where a view may be materialized in a different database
system than its the base relations. Several algorithms have
been proposed to reduce the cost of updating such views
in situations in which the base relations must be queried in
order to update the view [18], [19], [20]. Such situations do
not arise in our work because of the simplicity of our self-
maintainable [21] single-table views.

Materialized views are also widely used, in an ad hoc,
application-managed manner, by applications running on
keyed-record stores. However, most keyed-record stores do
not yet support materialized views. One exception is PNUTS,
a replicated key-value record store. PNUTS implements a
more general class of materialized views than that used in
this work, and it can perform asynchronous incremental view
maintenance [7]. The views that we consider in this paper
correspond to what PNUTS calls Remote View Tables (RVTs),
since view records may be located on different servers than
the base records on which they depend. However, there is a
single master copy of each record in PNUTS, and PNUTS
relies on this to serialize updates and to ensure that updates
are propagated sequentially and in the correct order when it
maintains RVTs.

VIII. CONCLUSION

In this paper we have considered the problem of provid-
ing simple, single-table materialized views in a multi-master
keyed-record storage system. Such views are useful because
they provide applications with a means of accessing stored
records, or parts of stored records, using a secondary key rather
than the primary key.

We have presented a technique for asynchronous, incre-
mental maintenance of such single-table views. Our technique
is decentralized, meaning that many servers can propagate
updates concurrently, and they need not be propagated in
serialization order. We prototyped this technique in Cassandra
and used the prototype to evaluate its performance. Our experi-
ments show that materialized views can be used to provide fast
access to data by secondary key - almost as fast as access using
a primary key, and significantly faster than secondary key
access using Cassandra’s native secondary indexing. However,
views may be stale because they are updated asynchronously,
and view maintenance introduces a significant overhead when
the base table is updated. Thus, our technique is probably best-
suited to views for which the underlying base data (especially
the view keys) are updated infrequently.

ACKNOWLEDGMENT

The authors wish to thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) for its support
of this work.



REFERENCES

[1] C. Jin, R. Liu, and K. Salem, “Materialized views for eventually
consistent record stores,” in Proc. Int’l Conf. on Data Engineering 2013
Workshop Proceedings - Data Management in the Cloud (DMC’13),
Apr. 2013.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” in Proc. USENIX Symposium on
OSDI, 2006.

[3] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” Proc. ACM SIGOPS Int’l Workshop on Large Scale
Distributed Systems and Middleware (LADIS’09), Oct. 2009.

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein et al.,
“Pnuts: Yahoo!’s hosted data serving platform,” The Proceedings of the
VLDB Endowment, vol. 1, no. 2, pp. 1277–1288, 2008.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, and A. Laksh-
man, “Dynamo: Amazon’s highly available key-value store,” in Proc.
ACM SOSP, 2007, pp. 205–220.

[6] D. K. Gifford, “Weighted voting for replicated data,” in SOSP, 1979.
[7] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ra-

makrishnan, “Asynchronous view maintenance for vlsd databases,” Proc.
ACM SIGMOD, pp. 179–192, 2009.

[8] C. Jin, R. Liu, and K. Salem, “Materialized views for eventually con-
sistent record stores,” Cheriton School of Computer Science, University
of Waterloo, Tech. Rep. Technical Report CS-2012-26, Dec. 2012.

[9] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa, “Efficiently updating
materialized views,” in Proc. ACM SIGMOD, 1986, pp. 61–71.

[10] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views
incrementally,” in Proc. ACM SIGMOD, 1993, pp. 157–167.

[11] A. Gupta and I. S. Mumick, “Maintenance of materialized views:
Problems, techniques, and applications,” Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, vol. 18, no. 2, pp.
3–19, 1995.

[12] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey,
“Algorithms for deferred view maintenance,” Proc. ACM SIGMOD, pp.
469–480, 1996.

[13] J. Zhou, P.-Å. Larson, and H. G. Elmongui, “Lazy maintenance of
materialized views,” Proc. VLDB, pp. 231–242, 2007.

[14] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L. Finnerty, W. D.
Norcott, H. Sun, A. Witkowski, and M. Ziauddin, “Materialized views
in oracle,” Proc. VLDB, pp. 659–664, 1998.

[15] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection
of materialized views and indexes in SQL databases,” in Proc. VLDB,
2000, pp. 496–505.

[16] D. C. Zilio, C. Zuzarte, S. Lightstone et al., “Recommending material-
ized views and indexes with IBM DB2 design advisor,” in Proc. IEEE
ICAC, 2004, pp. 180–188.

[17] K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay, “How to
roll a join: Asynchronous incremental view maintenance,” Proc. ACM
SIGMOD, pp. 129–140, 2000.

[18] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom, “View mainte-
nance in a warehousing environment,” Proc. ACM SIGMOD, pp. 316–
327, 1995.

[19] Y. Zhuge, H. Garcia-Molina, and J. Wiener, “The strobe algorithms
for multi-source warehouse consistency,” in Conference on Parallel and
Distributed Information Systems (PDIS), 1996.

[20] D. Agrawal, A. E. Abbadi, A. K. Singh, and T. Yurek, “Efficient view
maintenance at data warehouses,” Proc. ACM SIGMOD, pp. 417–427,
1997.

[21] D. Quass, A. Gupta, I. S. Mumick, and J. Widom, “Making views
self-maintainable for data warehousing,” in Conference on Parallel and
Distributed Information Systems (PDIS), 1996, pp. 158–169.


