
A Decision Making Model for Collaborative
Malware Detection Networks

Carol J. Fung, Disney Y. Lam, and Raouf Boutaba

School of Computer Science, University of Waterloo, Canada
{j22fung, y7lam, rboutaba}@uwaterloo.ca

Technical Report CS-2013-01

Abstract. The increased sophistication and evasiveness of malware has
brought tremendous challenges to vendors of antivirus systems. Various
malware detection approaches have been proposed and deployed to de-
tect and remove malware. However, it is challenging for a single security
vendor to analyze all malware and to provide up-to-date protection, e.g.,
a signature database. In this paper, we investigate the effectiveness of col-
laboration amongst various antivirus systems and propose a distributed
collaborative malware detection network (CMDN). We design a novel
collaborative malware detection decision model, RevMatch, where col-
laborative malware detection decisions are made based on the scanning
history with multiple antivirus systems. We evaluate our system on real-
world malware data sets and show that collaborative malware detection
techniques can improve detection accuracy significantly. Furthermore,
RevMatch outperforms existing decision models in terms of detection
quality, runtime efficiency, and robustness against insider attacks.

1 Introduction

Cyber Intrusions have become more sophisticated and evasive. Each year, billions
of cyber attacks are reported [24] and they cost hundreds of billions in losses [1].
Cyber attacks are typically accomplished with the assistance of malware (a.k.a.
malicious code). Malware is a piece of software which is used to gather confiden-
tial information, exploit computing resources, or cause damage without users’
consent. Typical examples of malware include worms, viruses, Trojan horses,
spyware, and rootkits. Malware can spread through various routes, e.g., email
attachments, Internet downloads, worms, or removable media.

Millions of new malware instances appear every year [12], and it has been
growing at an exponential rate. Malware is used to not only harvest private
information from compromised hosts, but also to organize such compromised
hosts to form Botnets [3]. Many million-node Botnets have been discovered in
the past few years, such as BredoLab [4] and Conficker [7]. Bots can be used
to attack other hosts, such as Distributed-Denial-of-Services (DDoS) attacks. A
recent DDoS attack in March 2013 targeting the largest spam filtering system,
Spamhaus, is considered the largest DDoS attack in history [5]. The massive



attacks generated traffic of 300Gbps and slowed the Internet down all around
the world for one week.

To protect computers against malware, antivirus systems (AVs) are used to
detect, block, and remove malware from hosts. Two typical metrics are used to
measure the quality of an AV: the true positive rate (TP) and the false positive
rate (FP). The former means an AV raises an alarm when there is a real threat;
while the latter means an AV raises a false alarm for benign software. The goal of
an AV is to maximize the TP rate while minimizing the FP rate. The most com-
mon technique to detect malware is signature-based detection, which involves
searching for known malicious patterns within suspicious files. Signature-based
detection performs fast and usually has a low FP rate. However, it may not be
able to detect new threats, e.g., zero-day attacks. To mitigate such limitation,
heuristics-based detection [17, 18] or reputation-based detection [2] is employed to
improve malware detection efficiency. The heuristic approach analyzes malware
and seeks similar patterns with known malicious code. The reputation-based ap-
proach evaluates the reputation of each file based on several attributes, such as
file publisher, popularity, age, and reputation of host machines [10]. Both ap-
proaches are considered as a promising direction to detect new threats; however,
heuristic matching without enough evidences of maliciousness can cause a high
false positive rate.

Although the primary goal of an AV is to detect and remove malware, it is also
important that malware detection system is able to correctly classify benign files.
AVs with low TP rates may not effectively protect hosts from malware, while the
consequences of false positives can be disastrous. For example, a security vendor
released a flawed signature database update in 2010 which caused to remove a
critical system file from Windows XP machines. The affected machines were no
longer able to boot up [6]. TrendMicro spent $8 million reimbursing customers
for reparation expenses [8].

Security vendors may not exchange information, e.g., malware samples re-
ported from their customers, with other vendors because of privacy issues and
competition. Providing prompt signature update against the latest threats is
important to dominate a market. Isolated AVs cannot obtain malware samples
of zero-day threats to be analyzed and may fail to protect their customers. How-
ever, from the customers’ perspectives, if diverse security vendors collaborate
with each other, by means of providing feedback regarding the legacy of suspi-
cious files, they may achieve even better malware detection accuracy.

In this work, we investigate the effectiveness of AV collaboration and pro-
pose a fully-distributed collaborative malware detection network (CMDN) for
AVs to exchange expertise, e.g., AVs send suspicious files or their hash values
to other AVs for scanning and decide whether to raise an alarm or not based on
feedback from other AVs. This paper focuses on the collaborative decision com-
ponent design, with which our goal is to make accurate collaborative malware
detection with acceptable runtime efficiency. We propose a new collaborative de-
tection model named RevMatch, where the final malware decision is made based
on looking up history with the same feedback combination. Our evaluation re-



sults, based on real-world malware, demonstrate that our algorithm effectively
improves the detection accuracy compared to other decision algorithms in the
literature, while it also performs well in runtime efficiency and other desired fea-
tures. Although our framework is designed for AV collaborations, it can be also
used for collaboration between intrusion detection systems.

The contribution of this paper can be summarized as follow: i) we propose a
framework design for CMDN, where AVs help each other to improve malware de-
tection efficiency, ii) we propose a novel collaborative decision algorithm named
RevMatch and compare it with other existing approaches based on real-world
malware samples. The results reveal the limitation of the current method of
using AVs and the importance of AV collaboration, and iii) our collected evalu-
ation data can be used as a benchmark by other researchers in the collaborative
malware detection domain.

This paper is organized as follows: Section 2 discusses some existing collabo-
rative malware detection systems and collaborative malware/intrusion detection
decision methods. Section 3 discusses CMDN architecture design. The detailed
design of collaborative decision model is described in Section 4. We present the
evaluation results in Section 5 and further discuss the results in Section 6. Fi-
nally, we conclude this paper in Section 7.

2 Related Work

2.1 Collaborative malware detection

Using a collaborative approach for malware detection was previously discussed
in the literature. Oberheide et.al. proposed CloudAV, a system [22] where end
hosts send suspicious files to a central cloud-based anti-virus service for scanning
malware with a number of different AVs. A threshold approach is used to aggre-
gate feedback from multiple AVs. An implementation of CloudAV is described
in [20]. RAVE [23] is another centralized collaborative malware scanning sys-
tem where emails are sent to several “replicas” for malware scanning. A replica
consists of a payload, which is running on one version of an AV for malware
scanning, and a wormhole, which is used for collecting scanning results from a
payload and commuting between different replicas for decision making. A simple
voting based mechanism is employed to make final decisions.

Peer-to-peer communication overlay is also used for collaborative malware
detection or general intrusion detection [19, 9, 14]. Decentralized network archi-
tectures allow participating nodes to share workload with others and thus avoid
bottlenecks and single points of failure which are common weaknesses of central-
ized systems.

2.2 Decision models for collaborative malware detection

Several different models of collaborative decision for malware/intrusion detection
have been proposed in the literature. We list a few that can be easily adapted
to CMDN.



Static Threshold The static threshold (ST) model[22] raises an alarm if the
total number of malware diagnosis in the result set is higher than a defined
threshold. This model is straight forward and easy to implement. The tunable
threshold can be used to decide the sensitivity in intrusion detection. However,
the ST model considers the quality of all AVs equally, making the system vul-
nerable to attacks by colluded malicious insiders.

Weighted Average The weighted average (WA) model [21, 15] takes the weighted
average of all feedback from AVs. If the weighted average is larger than the
threshold, then the system raises an alarm. The weight of each AV can be the
trust value or quality score of the AV. The impact from high-quality AVs is
larger than from low-quality AVs. The Weighted Average model also provides a
tunable threshold for the sensitivity of detection.

Decision Tree The decision tree (DT) model [11] uses a machine-learning
approach to produce a decision tree, in order to maximize decision accuracy.
The decision tree approach can provide a fast, accurate, and easy-to-implement
solution to the collaborative malware detection problem. The training data with
labeled samples is used to generate a binary tree and decisions are made based
upon the tree. However, the decision tree approach does not work well with
partial feedback, i.e., when not all participants give feedback. It is also not
flexible (no easy way to tune the sensitivity of detection) since decision trees are
usually precomputed.

Bayesian Decision The Bayesian decision (BD) model [16] is another ap-
proach for feedback aggregation in intrusion detection (or malware detection).
In this approach, the conditional probability of malware/goodware given a set of
feedback is computed using Bayes’ theorem and the decision with the least risk
cost is always chosen. The BD model is based on the assumption that feedbacks
from collaborators are independent, which is usually not the case.

3 Collaboration Framework

In this section, we propose CMDN, a framework for AVs to perform collabora-
tive malware detection. We then present the architecture design of CMDN and
describe its components.

The topology of CMDN is shown in Fig. 1, where computers with malware
detection capabilities are logically connected forming a peer-to-peer network.
Each node maintains a list of collaborators to communicate with. We call the
list of collaborators the acquaintance list. There are two different types of par-
ticipating nodes in CMDNs: pure service nodes and trader nodes. Pure service
nodes (e.g., cloud 1 in Fig. 1) only provide malware scanning services for others
and do not request service from others. A pure service node may be an online
malware scanning service provided by some security vendor or a system simi-
lar to CloudAV [22]. Trader nodes (e.g., AV5 in Figure 1), on the other hand,



request services from other nodes and can also provide services in exchange if
needed. Trading nodes allow participants to help each other by exchanging mal-
ware scanning services with each other.

The CMDN described above requires participating nodes to have malware
scanning capabilities. When a node in the CMDN has a suspicious file detected
by a heuristic or anomaly detector, but cannot make a confident decision about
whether the file is malware (e.g., no matching malware signature is found), it may
send the file or its digest to its acquaintances for scanning. When an acquain-
tance receives a malware scanning request, it either searches the past records
for scanning results with the same digest, or analyzes the file and replies with
a searching results or analysis result to the requester. Upon receiving feedback
from its acquaintances, the requester decides whether to raise a malware alarm
or not based on the aggregated feedbacks from its acquaintances (Section 4).
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Fig. 1. Topology Design of Collaborative Malware Detection Network

3.1 Communication Protocol and Privacy Issue

To reduce the communication overhead in CMDNs, nodes may send the digest
(fingerprint) of suspicious files first. If collaborator AVs find the digest in their
blacklist/whitelist, then they return the corresponding result. Otherwise, they
can request the sender to forward the original file.

When a host sends a file to its collaborators for scanning, the file receiver may
hold the record and turn it against the sender. To reduce this privacy concern,
original files are only sent to trusted peers for scanning in our CMDN design.
To avoid man-in-the-middle attacks, all communication among connected nodes
in a CMDN are encrypted to prevent eavesdropping.

The system also uses “test files” to evaluate the quality of collaborators
and manage trust in the CMDN. The real scanning files and test files are sent
randomly and it should be difficult for recipients to distinguish test files from
real files.



3.2 Adversaries and Free-riders

Malicious insiders can be another issue in a CMDN since adversaries may dis-
guise as an active CMDN participant and attack the CMDN. For example, adver-
saries may be sending false scanning results to other nodes or sending excessive
scanning requests to others to overload the system. CMDNs can handle these
problems by means of admission control and trust management. Trust manage-
ment evaluates the expertise level and the honesty of nodes. Admission control
restricts the amount of requests from participating nodes.

Free-riding is another potential problem in CMDN since it discourages nodes
from contributing to the network. An incentive-compatible resource management
encourages active contributors and discourages free-riding. Nodes who do not
contribute to a CMDN shall be refrained from receiving assistance of other nodes
in the network.

3.3 Architecture Design
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Fig. 2. Architecture Desgin of a Trader Node in CMDN

The architecture design of CMDN is illustrated in Fig. 2. Each node is com-
posed of six components used for collaboration activities, namely, AV scanner,
collaborative decision, communication overlay, resource control, trust evaluation,
and acquaintance management.

The Communication Overlay is the component which handles all the commu-
nications between the host node and other peers in the network. The messages
passing through the communication overlay include: test files from the host node



to its acquaintances; malware consultation requests from the host node to its ac-
quaintances; feedback from acquaintances; malware consultation requests from
acquaintances; and feedback to acquaintances.

The Collaborators Trust Evaluation component allows AVs in the CMDN to
evaluate the quality and trustworthiness of others. The host node can use test
files to gain experience quickly. Indeed, the verified consultation results can also
be used as experience.

The Acquaintance Management component decides who to collaborate with
and manages different privileges for nodes with different trust levels. For exam-
ple, nodes can send original files to trusted collaborators for scanning.

The Resource Control component is used to decide how much a host allocates
resources to respond to the consultation requests from each of its acquaintances.
An incentive-compatible resource management model can assist a node with an
AV service to allocate resources to acquaintances in a fair manner. A node which
abusively uses the resource of others will be penalized by being removed from
the acquaintance lists of other nodes.

The Collaborative Decision component has a direct impact on the accuracy of
the collaborative malware detection. After the host node sends out consultation
requests to its acquaintances, the collected scanning results are used to decide
whether the host should raise an alarm or not. Both false positive and false
negative decisions bring costs to the host node. In the next section, we propose
a decision model which can effectively improve collaborative detection accuracy.

4 Collaborative Decision Model

In this section, we present a collaborative decision algorithm named RevMatch,
which can efficiently make collaborative malware detection decisions based on
the feedback from acquaintances. In this model, each node in the CMDN keeps
labeled records of its past experience with its acquaintances. Each labeled record
contains the ground truth of a file (malware or goodware), a feedback set which
contains the scanning results from the acquaintances, and the digest of the file
(see Fig. 3). Labeled records can be obtained by sending test files to acquain-
tances for scanning. Past results from real file scanning requests can also be
labeled once the ground truth of the file is revealed. In this section, we first
formulate the collaborative decision problem an then propose our solution.

4.1 Problem Statement and RevMatch Model

We formulate the decision problem we are solving in this paper as follows:
Given labeled records consisting of the feedback of n AVs on m files whose

ground truth are known (malware or goodware), we decide whether a suspicious
file is malware based on the feedback set y from a subset of n AVs.

We propose a decision model, RevMatch, which looks into past records for
decisions. We formulate the decision problem as follows: suppose a scenario where
AVi sends a suspicious file to the AVs in its acquaintance list Ni for scanning. Let



variable Yi := [Yj ]j∈Ni be the feedback vector that contains the scanning results
from its acquaintances. Note that Yj = 1 indicates the scanned file is a malware,
and Yj = 0 suggests a goodware1. Suppose AVi receives a feedback set y =
{y1, ...,y|Ni|} from its acquaintances, where yj ∈ {0, 1}, j = 1, 2, · · · , |Ni|. The
observation yj = 1 indicates that the j-th acquaintance flags the file as malware,
whereas yj = 0 as goodware. The problem is to decide whether AVi should decide
whether the suspicious file is malware or not, based on the feedback y. Table 1
summarizes the notations we use in this section for readers’ convenience.

Table 1. Summary of Notations

Symbol Meaning

n Total number of AVs in the network.
AVi Antivirus i.
Ni Set of acquaintances of AVi.
M,G Total number of malware and goodware in the labeled records database.
PM ,PG Prior probability of malware and goodware in the real world.
m Total number of samples used for evaluation. m = M+G.
Qi Quality score of AVi.
yk Scanning results (feedback) from acquaintance AVk.
Cfp, Cfn Cost of false positive and false negative decisions.
τs The threshold for the static threshold method.
τw The threshold for the weighted average method.
τc Observation threshold for the RevMatch method.
M(y), G(y) The number of malware and goodware in records with matching feedback set y

We model the above decision problem as a utility optimization problem. Let
random variable X ∈ {0, 1} denote the outcomes of “goodware” and “malware”.
Let PM (y) denote the probability of being “malware” given the feedbacks from
all acquaintance AVs. PM (y) can be written as PM (y) = P[X = 1|Y = y].
Let Cfp and Cfn denote the average cost of a FP decision and a FN decision.
We assume that there is no cost when a correct decision is made. We define a
decision function δ(y) ∈ {0, 1}, where δ = 1 means raising a malware alarm and
δ = 0 means no alarm. The risk of decision R(δ) can be written as:

R(δ) = CfnPM (y)(1−δ)+Cfp(1−PM (y))δ = (Cfp−(Cfp+Cfn)PM (y))δ+CfnPM (y)

To minimize the risk R(δ), we need to minimize (Cfp − (Cfp + Cfn)PM (y))δ.
Therefore, the AV raises malware alarm (i.e., δ = 1) if

PM (y) ≥ Cfp

Cfp + Cfn
. (1)

To make the optimal decision, the key step is estimating PM (y). Our proposed
solution is to search in the labeled records for records which have the same feed-
back set as y. Let M(y) and G(y) denote the number of malware and goodware

1 For the convenience of presentation, we drop the subscript i in the notations appear-
ing later in this paper.



in the labeled records with matching feedback set y. If M(y) +G(y) ≥ τc > 0,
then PM (y) can be estimated using

PM (y) = P[X = 1|Y = y] =
P[Y = y|X = 1]P[X = 1]

P[Y = y]

=
P[Y = y|X = 1]P[X = 1]

P[Y = y|X = 1]P[X = 1] + P[Y = y|X = 0]P[X = 0]

=
P[Y = y|X = 1]PM

P[Y = y|X = 1]PM + P[Y = y|X = 0]PG

=
1

1 + P[Y=y|X=0]PG

P[Y=y|X=1]PM

≃ 1

1 + G(y)MPG

M(y)GPM

(2)

where P [Y = y|X = 1] is the probability that a feedback set y is received
when the file is malware; P [Y = y|X = 0] is the probability that diagnosis y
is received when the file is goodware. M is the prior probability of malware; G
is the prior probability of goodware. PM ,PG are the numbers of malware and
goodware samples in the labeled records database.

AV1       AV2        AV3 Ground Truth

df73           1            1            1           malware

48c2           1            1            0           malware

3a4c           1            0            0           goodware

cc0e           0            0            0           goodware

3473           0            0            1           goodware

9faf           1            1            0           malware
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Fig. 3. An Example of the RevMatch Decision Algorithm for CMDNs

An example of this decision algorithm is illustrated in Figure 3. When AV0

receives a suspicious file s and cannot make a confident decision, it sends the file
to its acquaintances AV1, AV2, AV3 for scanning. The feedback set returned is
{1, 1, 0}. AV0 searches its labeled records database and finds two matches. Both
matches are malware. Using the decision formula described in 2, AV0 decides
that file s is a malware.



4.2 Feedback Relaxation

The previous results are based on the condition that M(y) +G(y) ≥ τc, where
τc > 0 is a system parameter to specify the minimum number of matches in order
to reach some “confidence” in decision making using Eq. (2). In this subsection,
we discuss how to deal with the case of M(y) +G(y) < τc.

M(y) +G(y) < τc indicates there are not enough matches and thus no con-
fident decision can be made. The RevMatch model handles this problem using
feedback relaxation. That is, it ignores partial feedbacks from some acquain-
tances, intending to increase the number of matches by partial matching. The
RevMatch model chooses to ignore the feedback from the least competent AV,
since removing incompetent nodes can effectively increase the matching cases
number while keeping valuable feedback from high quality AVs. The competence
level of an AV can be its trust value or quality score.

Alg. 1 describes the process of removing incompetent AVs from the feedback
set one by one until the number of matching samples exceeds the threshold τc.
Then, a decision is made based on the remaining feedback set. Upon receiving
a diagnosis set y, it first checks if the number of matching cases in the records
exceeds the threshold τc. If it does, it makes a decision based on the collected
matches. Otherwise, the least competent AV is removed from the feedback set in
each round until the number of matching samples exceeds the threshold. After
that, it returns the corresponding decision and the remaining feedback set.

Algorithm 1 Relaxation(y, la)

1: //This algorithm removes feedback from the least competent AVs from the ac-
quaintances list until the number of matches reaches the threshold τc. It has two
parameters, the feedback vector y and an ordered list of AVs la, which is sorted
by the competence levels of AVs in ascending order.

2: (M(y),G(y)) ⇐ find matches for y
3: if M(y) +G(y) ≥ τc then
4: δ ⇐ max

δ∈{0,1}
R(δ)

5: return (y, δ)
6: end if
7: //Feedback relaxation
8: for each a in la do
9: y ⇐ y removes feedback of AV a

10: (M(y),G(y)) ⇐ find matches for y
11: if M(y) +G(y) ≥ τc then
12: δ ⇐ max

δ∈{0,1}
R(δ)

13: return (y, δ)
14: end if

15: end for



5 Evaluation

In this section, we use real data to evaluate the performance of the RevMatch
model and compare it with four other decision models, namely, ST, WA, DT, and
BD (described in Section 2). The metrics we use for the evaluation include de-
tection accuracy, running time efficiency, and robustness against insider attacks.
We use quality score, which is the combination of FP and FN, to measure detec-
tion accuracy; Running time efficiency is the average running time for making
a decision; Robustness is the level of resistance to malicious insider attacks. We
evaluate the performance of RevMatch and draw comparisons amongst different
collaborative decision algorithms.

5.1 Data sets

In order to evaluate the accuracies of the decision algorithms, we collected real-
world malware and goodware samples. Our malware data sets were collected from
Malware Analysis System (formerly CW-Sandbox)2, Offensive Computing3, and
other anti-virus vendors. In terms of the collection time, our malware datasets
are divided into two groups: old malware data set (S1) collected in 2008–2009
and new malware data set (S2) collected in 2011–2012. We also mixed the two
datasets and selected 50,000 of them to form a hybrid malware dataset (S3).

In our evaluation, we also included goodware to measure false positive rates
of the decision algorithms. We crawled the top 10,000 projects in SourceForge4

and extracted PE (Portable Executable) binary files as goodware samples (S4).
We also collected binary files (S5) manually as false positive samples, such as
some driver files and computer games from reputable producers from various
sources. We also selected a mixed combination of goodware samples to form a
hybrid goodware data set (S6). Table 2 shows the size of each data set.

Table 2. Data sets

Data set ID Data set Samples Date collected Malware alarm rate

S1 Old malware 58,730 2008–2009 84.8%
S2 New malware 29,413 2011–2012 59.5%
S3 Hybrid malware 50,000 2009–2012 69.7%
S4 Goodware (SourceForge) 56,023 2012 0.3%
S5 Goodware (Manual) 944 2012 7.9%
S6 Hybrid Goodware 5,000 2012 1.6%

We used VirusTotal5 to obtain scanning results from a variety of anti-virus
tools. Using the VirusTotal API, we uploaded our entire malware and goodware

2 https://mwanalysis.org/
3 http://www.offensivecomputing.net/
4 http://sourceforge.net/
5 https://www.virustotal.com



data sets and acquired scanning logs of 40 different anti-virus tools. Figure 4
shows both the TP and FP of each anti-virus engine based on hybrid datasets
S3 and S6. One caveat is that we do not intend to compare different AV en-
gines’ detection rates because VirusTotal is not designed for performance com-
parisons. VirusTotal’s scanning results are based upon command line versions of
AV engines which may not be armed with more sophisticated techniques, e.g.,
behavioural analysis. We replace the names of AVs with indexed labels (e.g.,
AVi) and the full list of AVs used in our experiments can be found in alphabetic
order in Table 5.

We collected the average percentage of AVs raising malware alarms to each
dataset based on VirusTotal’s scanning results. We notice a higher percentage
of AVs raise malware alarms on older malware samples than newer ones (see
Table 2). The cause of the difference might be that antivirus vendors have more
time to analyze and create more accurate anti-virus signatures for old malware
samples.

In our setting, we used VirusTotal’s scanning results as domain knowledge
or previous observation on binary files. Given the same amount of information
about binary files, our goal is to determine which decision algorithm i) yields
the best detection rate and ii) provides more resilience against manipulated
information.
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5.2 Ranking of AVs

Both the WA model and RevMatch model require the ranking of AVs. In this
section, we evaluate the TP, FP, and quality scores of AVs based on hybrid
datasets S3 and S6. Moreover, the false negative rate (FN) is the probability
that a malware is not detected and the true negative (TN) is the probability
that goodware is correctly classified as goodware. High TP and low FP reflects
high quality on malware detection. We define quality score of AVi, denoted by



Qi, using Qi = 1 − (CfnFNi + CfpFPi), ∀i ∈ {1, 2, ..., n}, where Cfn and Cfp

are the penalization factors on the false negative and false positive rates.
The FP, TP, and quality scores for all AVs are plotted in Fig. 4, where

AVs are sorted by their quality scores. Complete data results can be found
in [13](Appendix A). We can see that TP and FP from different AVs may vary
greatly, and High quality AVs have both high TP and low FP. Results also show
that all AVs are more effective in detecting old malware (S1) than new malware
(S2).

5.3 Static Threshold

The static threshold (ST) model takes the total number of AVs which raises
malware alerts. If the number is larger than a given threshold τs, then it raises
a malware alarm. i.e., if

∑
j∈Ni

Vj ≥ τs, where Vj ∈ {0, 1} is the diagnosis result
from AVj , then rises a malware alarm.

We implemented the ST model and plot the evaluation results in Figure 5.
We can see that FP decreases and FN increases when threshold τs raises. When
τs is 0, ST reports all files to be malware; when τs is 40 (the total number of
AVs), ST reports all files to be goodware. The quality score of ST reaches the
highest when τs is 5. In the rest of this section, we set τs = 5 unless we specify
otherwise.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

R
at

e/
S

co
re

Threshold

(5, 0.881)

False Negative
False Positive
Quality Score

Fig. 5. TP, FP, and Quality Scores of Threshold-based Model with Different
Thresholds (based on dataset S3, S6)

5.4 Weighted Average

The weighted average (WA) model takes the weighted average of the decisions
from all AVs and asserts the suspicious file to be malware when the weighted
average is higher than a threshold τw. In our implementation, we use the quality
scores computed in Section 5.2 as the weight of all AVs. i.e., WA only raises a



malware alarm if
∑

j∈Ni
QjVj

|Ni| ≥ τw, where Vj ∈ {0, 1}. As shown in Figure 6,

WA yields optimal results when the threshold τw = 4/40. Compared to ST,
WA performs slightly better in malware detection quality. In the rest of the
evaluation, we fix τw to 4/40 unless we specify otherwise.
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Fig. 6. TP, FP, and Quality Scores of Weighted Average Model with Different
Thresholds (based on dataset S3, S6)

5.5 Decision Tree
The decision tree (DT) model uses machine learning to produce a tree-structured
predictive tool to map feedback from different AVs to conclude that a suspicious
file is a malware or not. We used Weka6, a datamining software, as the machine
learning tool to produce decision trees for evaluation. We chose algorithm J48
for decision tree generation based on dataset S3 and S6. We used 10-fold cross-
validation to avoid overfitting. Figure 7 shows the partial outcome of the final
decision tree. The entire decision tree includes 26 out of 40 AVs in the decision
loop. Our results show that the DT model achieves a high TP 0.956. However, it
also has a higher FP of 0.077, which leads to a moderate quality score of 0.879
(see Table 3). We speculate the reason behind this is that DT model focuses on
reducing the overall number of false decisions, which does not necessary produce
optimal quality score when there is large discrepancy in training data set sizes
of malware and goodware.

5.6 Bayesian Decision

The Bayesian decision (BD) model uses Bayes’ theorem to calculate the con-

ditional probability PM (y). A malware alarm is raised if PM (y) >
Cfp

Cfp+Cfn
.

However, the BD model is based on the assumption that all AVs are indepen-
dent, which is not the case in reality. We also implemented the BD model and
the detection accuracy is shown in Table 3.

6 http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 7. The Optimal Decision Tree Generated by Weka J48 Algorithm (Top 5
levels)

5.7 RevMatch

The RevMatch model (Section 4) takes the feedback and does a history records
look up for decision. We implemented RevMatch and evaluated it using 10-fold
cross-validation based on datasets S3 and S6. In the first experiment, we fix
parameters Cfp = Cfn = 1 and increase threshold τc from 1 to 5. As shown in
Fig. 8, a higher τc leads to a slightly higher FN and lower quality score.

In the next experiment, we fix τc = 1 and set different penalization weights
on false negative rates Cfn. Figure 9 shows that a higher Cfn leads to a higher
FP and a lower FN. We speculate the reason is that RevMatch automatically
trades FP for a lower FN, since the penalization of FN is higher.
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5.8 The Comparison between Different Decision Models

In this experiment, we compare the quality scores of five different decision mod-
els: ST, WA, DT, BD, and RevMatch. The results are based on dataset S3 and



S6. We used fixed thresholds 5 for ST and 4/40 for WA. We used 10-fold cross-
validation for both DT and RevMatch models. We set parameter τc = 1 and
Cfp = Cfn = 1. The results are shown in Table 3. We can see that RevMatch
outperforms all other models in terms of overall quality score. Also, all collabo-
rative detection models have higher quality scores than any single AV.

Next, we increase Cfn from 1 to 13 and plot the quality score of all decision
models. We can see that RevMatch is superior to all others under all cases. BD
performs the worst on higer Cfn. An interesting observation is that ST starts to
perform better than WA when Cfn is sufficiently large. We speculate the reason
is that when it is costly to miss malware, then the system considers the opinion
from all AVs rather than focusing on some high quality AVs. Note that in this
experiment, ST and WA both re-select their optimal decision thresholds for each
Cfn.

Table 3. Quality Scores Among Different Decision Models

Method True Positive False Negative False Positive Quality Score
TP FN FP 1− CfpFP − CfnFN

Static Threshold 0.903 0.097 0.022 0.881
Weighted Threshold 0.908 0.092 0.025 0.883

Decision Tree 0.956 0.044 0.077 0.879
Bayesian Decision 0.871 0.129 0.013 0.858

RevMatch 0.927 0.073 0.007 0.920
Best Single AV 0.859 0.141 0.008 0.851
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5.9 Robustness against Insider Attacks

In an open CMDN, adversaries may join the network and serve as normal CMDN
members in the beginning, and then suddenly turn around and send incorrect
feedback. The tasks of quickly identifying and removing malfunctioning or ma-
licious insiders are the responsibilities of trust management and acquaintance



management components of the CMDN (Fig 2). In this subsection, we evaluate
the impact of malicious insiders on the four decision models by intentionally
injecting attacks into the data records.

In the first experiment, we start from the lowest ranking AV and replace its
feedback by a malicious one, and gradually increase the number of malicious
attackers by replacing feedback of other low quality AVs. We emulate three
types of attacks, namely, the alarmer attack, the dormant attack, and the random
attack. Attackers launching an alarmer attack always report malware whenever a
scanning request is received; attackers launching a dormant attack always report
goodware for all scanning requests; whereas in a random attack, nodes report
random decisions (either malware or goodware). Figure 11 shows the impact of
all these three different attacks on RevMatch model with different numbers of
attackers. The alarmer attack has the highest impact and the dormant attack
is the least effective. With the alarmer attack, the quality score drops down
significantly when the number of attackers is higher than 5.
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In another experiment, we investigate the impact of alarmer attacks on dif-
ferent decision methods. Figure 12 shows that the decision tree was least durable
to colluded alarmer attacks. Its quality score had no change with the first two
attackers, but dropped quickly after the third attacker joined in. We investigated
the reason and found that the first two AVs were not included in the decision tree
while the third attacker AV was. The results also show that ST can endure at
most 4 attackers since the decision threshold is 5. The RevMatch, BD, and WA
models are relatively more robust to colluded alarmer attacks. We also notice
that using a higher decision threshold τc on RevMatch increases the resistance
against attackers while decreasing the detection quality when there is no insider
attack.



6 Discussion

In the last section, we evaluated the performance of our proposed RevMatch
model and compared it with four other collaborative decision models, namely,
ST, WA, DT, and BD. The criteria we have used for evaluation are quality score
and resistance to insider attacks. Quality score is a combination of FP and FN
of the decisions, and the resistance to insider attacks is the maximum number
of alarmer attackers it can endure before the quality score of the decision model
drops significantly. In this section, we discuss other criteria that may be also
important for choosing the right decision model for CMDN. They are: runtime
efficiency, partial feedback adaption, and tuning flexibility.

6.1 Runtime Efficiency

Runtime Efficiency is an important criterion since it may not be acceptable for
the system to take too long to make a decision. We evaluate the running time
of all four decision models on a Ubuntu machine equipped with 2.13 GHz Intel
Xeon and 3X4GB RAM. The ST, WA, BD, and DT models all take less than 1
milliseconds in processing the decision algorithm. RevMatch takes less than 15
milliseconds in average to make a decision.

6.2 Partial Feedback

In a CMDN, collaborators may not respond to scanning requests, especially
when they are overloaded. Therefore, it is important for AVs to be able to make
effective decisions based on the feedback from a subset of collaborators. ST may
not work effectively with partial feedback since the fixed thresholds may be too
high when the number of feedback participants is small. DT also does not work
well with partial feedback, since it requires the inputs that can form a decision
path in the tree. WA, BD, and RevMatch can work well with partial feedback.

6.3 Tuning Flexibility

Tunning flexibility allows the system administrator to tune the sensitivity of
malware detection. For example, the system can become more or less sensitive
to malware by changing a parameter. Both ST and WA can be tuned for the
sensitivity of the system by setting their thresholds. DT, however, does not
have a parameter that can be tuned for detection sensitivity. BD has tunning
parameters Cfp, Cfn. RevMatch can be tuned using the penalization factors (i.e.,
Cfp, Cfn) for sensitivity, and τc for the robustness of the system.

6.4 Comparison

Table 4 provides a qualitative performance summary of the five collaborative
decision models based on the metrics we selected. We can see that RevMatch
is superior in terms of detection accuracy, flexibility, and adaptability to par-
tial feedback. It also performs well in terms of runtime efficiency and resistance
against insider attacks. Our results provide a reference for decision makers re-
garding which collaborative decision method to employ in their CMDNs.



Table 4. Performance Summary of Collaborative Decision Models

Decision Model Decision Quality Runtime Attacker Tolerance Partial Feedback Flexibility

Static Threshold medium very fast 4 attackers no yes
Weighted Average medium very fast 5+ attackers yes yes
Decision Tree medium very fast 3 attackers no no
Bayesian Decision low very fast 5+ attackers yes yes
RevMatch high fast 5+ attackers yes yes

7 Conclusion

In this paper, we presented a collaborative malware detection framework (CMDN)
and focused on the design of its collaborative decision component. We proposed a
decision model named RevMatch, which makes collaborative malware detection
decision based on looking up the historical records with the same feedback set.
We proposed several evaluation metrics and compared the RevMatch model with
other decision models in the literature based on real data sets. Our evaluation
results showed that RevMatch outperforms all others in terms of detection accu-
racy, flexibility, and tolerance of partial feedbacks, while achieving satisfactory
running time efficiency and robustness to insider attacks. In general, collabora-
tive malware detection techniques improve detection quality in comparison to
single AVs. In our future work, we plan to further improve the robustness of the
decision system by introducing more sophisticated insider attacks and devise
corresponding defense mechanisms. We also intend to develop the trust manage-
ment and acquaintance management components of the CMDN architecture.
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A Appendix A

Table 5. Antiviruses Used for Evaluation (presented in alphabetical order)

AhnLab-V3 Comodo Jiangmin Rising
AntiVir DrWeb K7AntiVirus Sophos
Antiy-AVL Emsisoft Kaspersky SUPERAntiSpyware
Avast eSafe McAfee Symantec
AVG eTrust-Vet Microsoft TheHacker
BitDefender Fortinet NOD32Norman TrendMicro
ByteHero F-Prot nProtect VBA32
CAT-QuickHeal F-Secure Panda VIPRE
ClamAV GData PCTools ViRobot
Commtouch Ikarus Prevx VirusBuster



Table 6. Quality Ranking for Antiviruses (AV1-AV40 correspond to the AVs
listed in Table 5 with assigned nick names)

Antivirus Name Detection Rate Detection Rate True Positive False Positive Quality Score
(old malware S1) (new malware S2) (malware S3) (goodware S6) Cfn = Cfp = 1

1 AV1 0.951 0.800 0.859 0.008 0.851
2 AV2 0.944 0.797 0.855 0.006 0.849
3 AV3 0.925 0.787 0.840 0.007 0.833
4 AV4 0.961 0.783 0.855 0.024 0.831
5 AV5 0.939 0.759 0.831 0.005 0.826
6 AV6 0.939 0.757 0.830 0.007 0.823
7 AV7 0.940 0.747 0.824 0.011 0.813
8 AV8 0.946 0.752 0.830 0.017 0.813
9 AV9 0.952 0.742 0.827 0.014 0.813
10 AV10 0.932 0.755 0.827 0.016 0.812
11 AV11 0.936 0.752 0.825 0.013 0.812
12 AV12 0.914 0.733 0.802 0.002 0.800
13 AV13 0.931 0.726 0.809 0.009 0.799
14 AV14 0.947 0.813 0.866 0.070 0.796
15 AV15 0.863 0.753 0.795 0.010 0.785
16 AV16 0.935 0.726 0.812 0.027 0.784
17 AV17 0.931 0.654 0.770 0.006 0.764
18 AV18 0.908 0.779 0.826 0.062 0.764
19 AV19 0.911 0.648 0.758 0.005 0.753
20 AV20 0.891 0.653 0.750 0.002 0.748
21 AV21 0.890 0.679 0.761 0.024 0.737
22 AV22 0.927 0.594 0.734 0.008 0.725
23 AV23 0.938 0.607 0.737 0.017 0.720
24 AV24 0.929 0.592 0.731 0.013 0.718
25 AV25 0.903 0.562 0.702 0.007 0.695
26 AV26 0.907 0.556 0.697 0.005 0.692
27 AV27 0.897 0.544 0.686 0.009 0.677
28 AV28 0.849 0.546 0.667 0.005 0.663
29 AV29 0.882 0.513 0.657 0.007 0.651
30 AV30 0.861 0.461 0.626 0.016 0.610
31 AV31 0.755 0.494 0.603 0.000 0.603
32 AV32 0.771 0.421 0.560 0.014 0.545
33 AV33 0.814 0.377 0.553 0.072 0.481
34 AV34 0.746 0.416 0.534 0.069 0.465
35 AV35 0.525 0.330 0.395 0.008 0.387
36 AV36 0.754 0.141 0.385 0.005 0.380
37 AV37 0.474 0.283 0.360 0.007 0.353
38 AV38 0.473 0.221 0.320 0.025 0.295
39 AV39 0.204 0.062 0.124 0.009 0.116
40 AV40 0.022 0.001 0.003 0.002 0.001


