Improved Visualization of Relational Logic Models
University of Waterloo Technical Report CS-2013-04

Atulan Zaman, Iman Kazerani, Medha Patki, Bhargava Guntoori, Derek Rayside
Electrical and Computer Engineering
University of Waterloo
drayside @uwaterloo.ca

Abstract—The Alloy Analyzer includes a visualizer tool for
presenting counter-examples to the user. This visualizer tool
contains a wide array of settings and a ‘Magic Layout’ feature
to automatically infer values for these settings based on a static
analysis of the specification being visualized. We improve both
the visualizer itself and the Magic Layout feature. For example,
expert users often use colour to distinguish changes of state
when visualizing specifications of dynamic systems, but previously
Magic Layout was not sophisticated enough to infer where state
changes might be represented in the specification. We have also
improved the way in which the visualizer distinguishes different
but related types of atoms, as well improved the visual consistency
between different frames of a projection. Finally, a quantitative
evaluation is done to compare how much better the new inferred
theme compares to the default theme, and a qualitative evaluation
of how the inferred theme compares to the expert made themes.

I. INTRODUCTION

One of the main features of the Alloy Analyzer is its
ability to produce examples and counter-examples to illustrate
the user’s specifications. The Analyzer includes a visualization
facility that is commonly used to inspect these instances. The
visualizer has a number of settings that can be customized by
the user for a particular specification and saved in a theme file
for later use.

The visualizer settings include basics such as node and
edge labels, visibility, colour, and shape. The user can also
choose whether to display a relation as edges between nodes
or node labels. Perhaps the most sophisticated feature of the
visualizer is projection. Projection’s most common use is for
dynamic models — models of systems that change state over
time. When an instance of such a model is projected over time
the visualizer shows a separate frame (image) for each tick of
the clock. By viewing these frames in sequence the user can
see how the state of the system evolved.

This main use case for projection is sometimes confounded
by the layout engine, however. The layout engine treats each
frame separately, and so nodes often change positions frame
to frame as the edges (and nodes) visible on each frame
changes. To address this concern we have developed a new
meta-layout scheme to find node positions that can remain
stable throughout all frames of a projection while still giving
a reasonable layout on each individual frame.

The visualizer has many settings. Each signature in the
model has eight different settings that can be adjusted, whereas
each relation has nine. The graph as a whole has twenty one
settings (including options for setting defaults). A simple toy
example such as the Farmer/Fox/Chicken/Grain puzzle has

six user signatures and three user relations, for a total of 96
adjustable settings.

The Magic Layout [1] feature was developed to help the
user customize these settings. When the user presses the Magic
Layout button a static analysis is performed on the model and
the results of that analysis are used to adjust the visualizer
settings. Magic Layout, as originally reported, was able to meet
or exceed the default settings in almost all cases.

In this paper we improve Magic Layout so that it can meet
or exceed the human expert settings in almost all cases — for
22 of the 24 models that come bundled with Alloy 4.2. The
remaining two models have visualizer settings that require a
deep semantic understanding of the concepts in the model,
which is beyond the aspirations of Magic Layout.

This paper is told in three acts. First, new visualizer fea-
tures are introduced. These include stability through projection
(mentioned above) and a new visual dimension on nodes called
accents. Second, improvements to the Magic Layout inference
are described, with a focus on projection over multiple types
and using colour to express changes of state (as expert users do,
but which the original Magic Layout did not do). Finally, these
new features and inferences are evaluated both quantitatively
and qualitatively on the set of standard models that come
bundled with Alloy 4.2. The conclusion is that the new Magic
Layout, coupled with the new visualizer features, represents a
significant improvement to Alloy’s already powerful visualizer.

II. NEW VISUALIZER FEATURES

The new features that are implemented for this version of
alloy are Projection Over Subtypes, Colouring to Express State
Change, Shapes to Define Supertypes, Hierararchy Expression
Using Modified Edges (Haircuts), Static Node Positioning
through Projection Frames. The features can be broadly cat-
egorized into two categories: features that are implemented
using model inference, and more general features that make
the model visualizations more intuitive.

Some features require static analysis to decide what scheme
to implement for certain models, because it has been noticed
that different visualization schemes for different features are
better for models with certain characteristics. Among the
features that are discussed in the paper, the following features
use intelligent static analysis for scheme selection: Projection,
Coloring, Static Node Positioning. The two other features com-
plement each other by together addressing a new dimension
of expression for the models. While they require some static
analysis in applying the feature to models, they differ from

the other features because they do not have to decide between
different schemes depending on the static analysis results.

A. Shapes to define supertypes

As briefly mentioned in the previous section on the coloring
scheme, the scheme for Shape assignment is used to represent
type distinction in the new magic layout. In distinguishing
types, there are two inferable dimensions in which they can be
expressed: Depth in Hierarchy & Breadth in top level types. In
the previous magic layout, both forms of distinction was dealt
with using shapes, which sometimes proved more confusing
than helpful. In the new magic layout, the shapes scheme is
only used to distinguish all visible top level types and not the
depth in hierarchy.

An illustration of this can be noticed in reference to the
farmer model example in figure 4. There the old magic layout
decides to illustrate the objects using four different shapes.
However in the in the new magic layout, all four types are
assigned the same shape, but with different “haircuts” since
they all belong to the same super type.

This resulted in the models becoming visually simpler and
more intuitive to understand because lesser number of shapes
were being used to the express the type families in each model.
The reduction in the usage space for different shapes in a
certain model allowed us to prevent some of the shapes from
being readily used in the graph visualization, because some
shapes are terrible for encapsulating labels inside them. Shapes
such as Triangles and Ellipses are examples of such shapes.
They still exist in the vocalbulary of the visualizer and are can
possibly be utilized for manual customization, however they
are prevented from being used during inference of models.

B. Subtyping Using Node Accents

Haircuts were required in order to help differentiate be-
tween different families of shapes. The previous Alloy segre-
gates hierarchies by shapes, and then uses double or triple
outlines, depending on the depth of the tree. This caused
problems as trees grew deeper because it was harder to see
the differences between subtypes of the same supertype.

In order to rectify this, we implemented haircuts and
reduced a number of shapes used by alloy to achieve optimal
clarity. Viewing hierarchies as families, we decided that each
supertype and its subtypes should maintain the same shape
throughout, and be differentiated through haircuts or hairstyles
in a systematic, dynamic manner. For examples, in the previous
version, if the supertype was a rectangle, its subtypes would
be of shapes from the rectangle family. Here, the user would
have to intuitively recognize the subtype hierarchy from shape
similarities, which got blurry as models increased in depth due
to the limited number of shapes and an unclear definition of
shape families. Instead, we decided that a supertype and all
its subtypes should be of the same shape. This way, user does
not have to intuitively recognize shape similarities, and it is
more clear that all these nodes are under the same supertype.
The haircuts would be a far easier way for the user to easily
understand any variations that were present.

Haircuts are modifications to the top edge of a node
shape, mainly imitating various waveforms, including: Sin,

Triangular, Sawtooth, Absolute Sin, Straight, and Slanted.
These haircut methods took in as inputs the left and right
corners of the node shape, the distance between these points
and drew the haircuts with a predetermined frequency.

In order to accommodate for the nature of haircuts, several
shapes were removed. Shapes that did not have flat upper
edges (Ellipse, Circle, Egg, Triangle, Diamond, House, Double
Circle, MDiamond, MCircle) were eliminated as they could
not support haircuts using the methods we had outlined. As
well, the number of shapes became redundant once haircuts
were put into effect. An illustration of how haircuts improve
subtype visualization in the new alloy is visible in figure 4 for
the farmer model and figure 1 for the firewire model.

An empirical study was conducted on examples provided
with Alloy, which indicated that the maximum depth in the
hierarchies was usually within five levels. Although the haircut
system improves upon what Alloy currently does, it may not
be as effective for models of a larger depth. In those cases,
the new system faces a bottle neck where the same haircuts
are repeated for types with higher depth.

C. Static node positioning throughout projections

The Alloy visualizer currently optimizes the layout of
each frame of a projection individually. This results in the
best possible positioning of nodes on each frame, but makes
it difficult to compare frames with each other. Projection
is often used to visualize different states of a system as it
evolves over time, and having the nodes change position makes
it challenging to quickly identify the meaningful changes
between the frames. Consequently, some users have requested
that the node positions remain stable throughout all frames of
a projection even if that comes at the cost of making the node
placement sub-optimal on each individual frame.

We have developed three strategies for computing node
placement in projections. The best strategy for a given model
is selected dynamically when the user requests a projection.
The selection objective is to minimize the number of edge
crossings on each frame of the projection, while also trying to
minimize the maximal number of crossings on any individual
frame. The objective is realized using the following metric:
min(d oy ep c?), where P is the projection, f is a frame, and
cs is the number of crossings on frame f. The strategies are:

1) Arrange by Most Complex Frame. Apply the normal
(usually Sugiyama) layout algorithm to the frame
with the most nodes and edges, and then use those
node positions on every other frame.

2) Arrange by Composite Frame. Construct an artificial
composite frame in which every node and every edge
from every frame of the projection appears. Apply the
normal layout algorithm to this composite frame, and
then use those node positions on every frame.

3) Arrange by Node Type. Assign a rank (row) to each
type of node in the model. Within each rank sort
nodes lexicographically. Ranks with a high number
of edges between them are placed adjacent to each
other.

Figure 2 shows an example of a series of three frames from a
Towers of Hanoi simulation. We can understand the example

Fig. 1: Firewire

a) Firewire with Expert Theme. Projected over 1 Sig.

£ ||

b) Firewire with Magic Layout Theme. Projected over 2 Sigs.

AAAMAA vvvv
YYVYYy

AssignParent | |[Elect (|:r|>t) /(rootr?'%da?ting) \ |ReadRerrAck\ |ResolveContentio% Stutte

LI iiill
WriteReqOrAck

SS T

(scamu (oS(ake) Gamel fvomsrake)

takel
(SGamel fromszake) (SGamel _toStake)

(c)

Fig. 2: Three frames from a Towers of Hanoi puzzle simulation. The top row of small boxes represent the discs. The bottom
row of larger boxes represent the stakes that the discs are placed on. An edge from a disc to a stake indicates that the disc is on
that stake. From frame (a) to frame (b) we see that the last disc is moved from the second to the third stake. From frame (b) to
frame (c) we see that the penultimate disc is moved from the second to the first stake. We can have these insights about what
happens frame to frame without reading the labels on the nodes because the relative position of the nodes is the same in each

frame.

even though we cannot read the node labels because the
relative node positions remain stable across the frames.

III. IMPROVED INFERENCE
A. Projection Over Multiple Types

The projection feature is designed to simplify the model
instances in case of models with temporal expressions which
have state changes. In the work of [2] a formal notion of the
application of projection in relation graph models is illustrated
in much technical detail and much of the work on projection
in this context is inspired from that work.

In the previous version of alloy, only one dimensional
projection was allowed in which case the static analysis engine
takes each type declaration of the model and decides which is
a proper candidate for projection based on a ranking system.
The subsequent work, takes a more ambitious approach and
attempts to produce more intuitive models by using certain
model characteristic to infer situations where projecting of
multiple types produce better graphs.

The following example illustrates how the application of
multiple projections made the visualization for the Hotel
model more intuitive.

The difference between the two themes is that in the
previous version of magic layout, the model was only projected

over the temporal type, which expressed the notion of state
change. In the new version of magic layout it projects over
both the State type, as well as the type FrontDesk because
this is ternary type that is not changing throughout the frames.
Therefore projecting over that type made the visualization
simpler and more intuitive without compromising the general
semantics of the model. The two visualizations also differ
in the coloring scheme implemented. The previous magic
layout colored the nodes using type definitions, while the new
magic layout colored the instance using their relation to the
state change. This feature is discussed in more detail in the
following sections.

Now a closer look is taken at the static analysis algorithm
used in deciding chosing whether the projection scheme want
to apply multiple projection or one dimensional projection in
figure 1.

In this context, the following terms are defined as such:

a) LoneSingleton.: A LoneSingleton in Alloy is a
type in alloy that it quantified to be one. Therefore if there
exists such a type and it does not have any subtypes or belong
to any super types and is a ternary type, then it qualifies as a
LoneSingleton.

b) Temporal Type.: Examples of Temporal Types are
State, Time or Tick which represent the non static aspect of a
model.

Fig. 3: Hotel

Hotel Model drawn using previous magic layout

Guest0
(g. @)

currentKey: 1
keys: 1
keys: 3

Guest0
(g. g)

Hotel Model drawn using current magic layout

currentKey: 1
keys: 3

lastKey: 1

Guest0
(g. g9

Algorithm 1 Projection algorithm for multiple types

Get the list of all types in the model
for types in the model do
if Type is LoneSingleton then
Add Type to projectable types
else if Type is Temporal Type then
Add Type to projectable types
else
if Type is Ternary Type then
Add type to list of ternary types with a score
Ternary Wrapper Types get a higher score
end if
end if
end for
Project over all
Types
Project only over ternary type with highest score unless it
exists in the same relation as the Temporal Type.
In case of tie, use the first ternary type available

LoneSingleton and Temporal

c) Ternary Type: A ternary type is a type that is
involved in a relation of arity ; 2. This means that such types
influence the model strongly, and projecting of them usually
makes the model simpler. A ternary wrapper type is the most
dominant type in a ternary relation.

currentKey: 1
keys: 1
keys: 3
lastKey: 1
occupant: 1

Guest0 \
(9.9) lastKe

B. Coloring to Express State Change

In the previous magic layout version of alloy, both the
coloring scheme as well as the scheme for assigning shapes
was used to distinguish different types within a model. This
is a redundant use of available features, and therefore the new
inferred theme uses the coloring option to address a different
dimension of expression. Instead of redundantly coloring the
different types, which is alread distinguished using shapes
and modified edges in the new inferrence method, coloring is
instead used to highlight types that change through the frames
of a projected model. This makes it much intuitive to follow
the changes taking place in a model in the case of a projection.
In case of models without projection, the original scheme of
coloring over types is followed.

An illustration is provided with respect to the farmer model
in magic layout in figure 4. .

As can be seen in the visualization, the coloring scheme
used in the new magic layout decides to color the types
using the relations far and near because these are relations
that are changing through the projection on State which is
inferred by the fact that they are Ternary relations related to
the projected type.

IV. EVALUATION

To evaluate the property inference features, we applied our
techniques to a collection of Alloy models that come bundled

Fig. 4: Using colour to distinguish state changes in the Farmer puzzle

eats: 2

eats: 2

L dddddd
eats: 2 Fox
(near)

Chicken
(near)

Farmer
(near)

(a) Old magic layout

in the Alloy distribution. The distribution also contains a theme
file for each model, prepared by an expert user.

We used a quantitative analysis to compare our inferred
theme to the expert theme and to the standard default theme
(i.e., no model-specific customizations). The distance in this
analysis serves as basis for numerically justifying how much
better the magic-layout theme is compared to the default theme
without any customizations. We also performed a qualitative
comparison of the inferred and expert themes, to evaluate how
close the intelligence of the inference techniques is to human
intuition for customization.

A. Quantitative Evaluation

We measure the distance between two visualization themes
by assigning weights to each visualization property according
to Table 1. Many properties are set-valued. For example, a
theme may project over multiple signatures. In these cases we
assign a different weight depending on whether these sets are
disjoint, intersecting, or subsets. We consider that the empty
set is disjoint from all other sets, so by ‘subset’ we mean
‘non-empty subset’.

Projection and node visibility are the properties with the
greatest impact on how the diagram looks, so they are assigned
the highest weights. We are not concerned with the particular
values of node colour and shape but, rather, whether there
is an isomorphism between the colourings (shape choices,
respectively).

(b) New magic layout

(c) Expert theme

TABLE I: Weights assigned to property differences between
two themes

Property Weight

Disjoint [Intersection [Non-empty Subset

Projection 5
Node Visibility

Attributes

Edge Labels

Node Colour (non-isomorphic differences)
Node Shape (non-isomorphic differences)
Node Style

Spine

6
7 6
4 3
2 1

N W W O\ W L 0o oo

TABLE II: Distances of the Default and Inferred Themes from
the Ideal Theme

Quantitative Evaluation Qualitative Evaluation

Model magic | default magic vs expert
Vs vs A

expert expert
birthday 0 11 11 Better
ringElection 3 14 11 Better
stable_ringlead 0 11 11 Better
hanoi 0 11 11 Better
filesystem 3 12 9 Better
ringlead 11 20 9 Better
life 3 11 8 Better
firewire 13 20 7 Better
hotel 17 20 3 Better
p300_hotel 17 20 3 Better
geneology 0 0 0 Better
stable_orient_ring 0 20 20 Same
op_spantree 6 20 14 Same
dijkstra’s 3 14 11 Same
stable_mutex_ring 3 11 8 Same
ceiling_and_floors 0 3 3 Same
grandpa 0 0 0 Same
farmer 3 11 8 Worse Model
railway 14 17 3 Worse Model
messaging 17 20 3 Worse Model
handshake 3 3 0 ‘Worse Edge/Labels
lists 3 3 0 Worse Attribute

The first numeric column of Table II lists the distances
measured between the inferred (magic) theme and the expert
theme. For example, in the first row we see a zero in the first
numeric column, indicating that for the birthday model there
were no measurable differences between the inferred theme
and the expert theme. By contrast, for the hotel model we see
that there are large differences between the inferred and expert
themes (measuring 17).

The second numeric column of Table II lists the distances
measured between the default theme (no model-specific cus-
tomizations) and the expert theme. This could be considered
a complexity metric for the expert theme: how many changes
to the default did the expert have to make? For the geneology
model the expert made no measurable changes from the default
theme.

The third numeric column of Table II lists the difference of
the first two columns, to measure whether the inferred theme is
closer to the expert theme than the default is: positive indicates
inferred is closer to expert; negative indicates default is closer
to expert; zero indicates equidistant. There are no negative
values, indicating that performing the inference is never worse
than doing nothing (sticking with the default).

B. Qualitative Evaluation

In this section the second column of figure II is addressed.
Here we use human judgement by reviewers to categorize and
justify how the magic layout visualizations compare to the
original expert created visualizations. The different criteria in
which we categorize the models are Better, Same, & Worse.
Among these categories, Same does not deserve a lot of
attention because we modelled our inference by extracting the
intuition behind customization of experts, and in those cases
the inference feature was able to reproduce the expert theme.
Instead we take a closer look at some of the models in the
other categories.

In the following discussion we focus on models that had
interesting (usually large) measured differences between the
expert and the inferred themes.

d) Better.: First we look at the model Hot el where the
magic-layout inference did a subjectively better job at creating
an intuitive visualization than the expert. In this Alloy counter-
example, it tries to prove that according to the current model,
no intrusion can happen from key control of a hotel. The model
is illustrated in figure 5.

The first criteria in which the inferred theme does a better
job than the expert theme in this model, is in terms of
projection. The expert theme only projects over the tempo-
ral type Time, whereas the magic-layout inference projects
both over Time and FrontDesk types. According to the
projection inference discussed above, the model projects over
Time because it is a temporal type, and it also projects over
FrontDesk type because it qualifies as a LoneSingleton
which does not change over projection frames. This simplifies
the model by removing a type from being visible. Conversely,
the expert decided to simplify the model by viewing a lot of
the types and relations using node attributes. It is uncommon
for experts to design themes that project over multiple types
because in the general case it’s not clear what the intuitive

meaning of that would be. However, in the special case of
LoneSingleton types these extra projections can make the
visualization clearer. This discovery was an unexpected result
of our experiments with the magic layout inference algorithm.

The expert theme for hotel was designed to be printed in
black and white and hence did not use colour. The inferred
theme uses colour to show changes in state, which is helpful
if the user has a colour display.

Now we take closer look at a model where the inferred
outcome is better than the expert only due to the new features
that were not available to the original experts. One such model
is the the firewire model. In this model, firewire protocol
of connecting consumer electronics is simulated. In the model
declaration, a lot of consumer devices are instantiated in the
model to simulate the environment, however only a single
election procedure is simulated in the run clause of the model
to simulate the behavior, hence most of the device instances
are unused.

In this case since most of the devices are not affected by
the projection frames, the expert theme decided to hide the
device types and only view the types that are affected by the
temporal type. However, the magic-layout theme infers that the
devices are all subtypes of the same supertype and therefore
assign it the same shape with different haircuts, which help
in distinguishing them from the ternary types such as Node
and Stutter. Arguably this is a better representation than
the expert theme for the sake of completeness. Although the
expert theme is simpler to view than the magic-layout theme,
which is generally better, in this case since there is a feature
to differentiate type hierarchy it is arguably a better idea to
retain the completeness of the model while making it intuitive
to the user what the type distinction is.

Similarly haircuts are used in the farmer model as shown
in figure 4 to highlight the different subtypes of object which
is a dimension the expert ignores in expressing.

e) Worse.: In this section we describe why some of
the models faired worse than the expert in our subjective
judgement. In the farmer model, arguably the expert theme is
slightly more intuitive than the magic layout theme, because in
the expert theme farmer was identified as a seperate object than
the Possession elements such as fox, chicken and grain which
makes semantic sense. However this contextual knowledge was
unavailable in the model because farmer was not declared as
member of a seperate type family than the other objects. If
this information was available in the model declaration then
the inference tool would infact do a better job than the expert
model because it would both assign farmer a seperate shape
according to the new shape assignment scheme, as well as
distinguish the other objects using haircuts.

In the Messaging model the expert chose to project over
the Tick type. The model also contains types NodeState and
MsgState. ‘Tick’ and ‘State’ are special keywords for our
projection inference, and so magic layout projected over all
three of these types. If NodeState and MsgState were renamed
to something not containing the ‘State’ keyword then magic
layout would have inferred the same theme as the expert.

The railway model, which was of great interest in the
preceding paper, presents a similar challenge. The expert bases

Fig. 5: Hotel

a) Hotel with Expert Theme

FrontDesk
lastKey: Room->Key0

Guest0

($NoBadEntry_g, $NoBadEntry_g')

Room
($NoBadEntry_r, $NoBadEntry r')
currentKey: Key0
keys: Key0, Keyl, Key2

Guestl

b) Hotel with Magic Layout Theme

currentKey: 1
keys: 3
lastl :]

the visualization on the contains relation, which is defined to
be the inverse of the on relation. The on relation is suppressed
in the expert’s theme. All of the constraints in the model are
written in terms of the on relation. If the model had only
the contains relation, which would not be a difficult revision
of the model, then magic layout would produce the same
visualization as the expert.

In the Handshake model, the expert chose to suppress the
edge labels due to the high number of edges in a typical in-
stance. Magic layout performs only static analyses: it does not
look at individual instances, and so does not make decisions
on that basis.

In the Lists model the expert used deep semantic under-
standing of the model to choose to display the prefixes relation
as attributes rather than as edges. There is no simple syntactic
modification of this model that would allow magic layout to
infer this setting.

In conclusion, the Handshake and Lists models are the
only ones in this collection for which it is not, in principle,
possible for magic layout to do the right thing. Humans will
always have a better semantic understanding of Alloy models,
but in most cases such a deep understanding is not necessary
to produce a good visualization.

V. RELATED WORK

The area most closely related to our work is counter-
example visualization in model checking. Alloy is sometimes
considered as a model checker. The main difference is that

Guest0

(g, g Guestl

most model checking tools work with some temporal logic,
whereas Alloy works with a relational logic. Temporal logic
counter examples are sometimes visualized as state charts
(e.g., [3, 4]), or as message sequence charts [5], or in other
ways (e.g., [6]). The key difference here is that none of these
visualization techniques for temporal logic counter examples
involve settings that the end user must customize in order
to get a reasonable visualization. Because Alloy is used to
specify a wide variety of systems, each Alloy specification
requires its own visualization settings. The purpose of the
Magic Layout feature is to infer those settings from a static
analysis of the specification. In this paper we have made
significant improvements to the Magic Layout inference, as
well as making other improvements to the Alloy visualizer,
such as node stability through projection frames.

Our work is distinguished from imperative program visual-
ization in two ways. First, our work is not about visualizing the
syntax of the Alloy specification. Many program visualization
systems are concerned with the source code of the program
[7]. Second, our work is not concerned with visualizing the
execution (or analysis process) of the Alloy specification.
Our work is solely concerned with visualizing the output of
the analysis/execution, but not the analysis/execution process
itself. The output of an imperative program can be in many
forms, and to our knowledge there is not a generic visualization
technique for this.

Logic programs, such as those written in Prolog, are
more similar to Alloy specifications than are imperative pro-
grams. But the different emphasis in visualization remains:
systems such as The Transparent Prolog Machine [8, 9] or

Logicharts [10] are used to visualize the syntax and execution
of Prolog programs, and we are concerned only with the results
of the computation, neither the syntax of the input nor the
process of execution.

There has been work in visualizing temporal logic formulas
(e.g., [11]). Our work, by contrast, is not concerned with
visualizing the syntactic elements of Alloy specifications.

There is a rich literature on automatic layout algorithms for
graphs that is complementary to our work. Our work assumes
that the Alloy visualizer is using some graph layout algorithm
— at present, it uses the classic Sugiyama algorithm [12].

VI. CONCLUSION

One of the main features of the Alloy Analyzer is its
ability to produce examples and counter-examples to illustrate
the user’s specifications. The Alloy Visualizer, and its Magic
Layout feature, are popular ways for users to inspect these
examples and counter-examples. In this paper we have made
improvements to both the base visualizer and to the magic
layout inference algorithm.

We made three main enhancements to the base visualizer.
First, we developed a dynamic scheme to compute node posi-
tions that remain stable throughout all frames of a projection.
This was a feature strongly requested by Alloy users. Second,
we added a new visual dimension to the visualizer, node
accents or haircuts. This extra visual dimension is useful for
identifying sibling types in a type hierarchy. In the past colour
was sometimes used for this identification. Having this extra
dimension frees colour to be used for highlighting changes in
state, which is a way that experts often use colour in dynamic
models. Finally, we added a number of new quadrilateral
shapes to the visualizer’s vocabulary. Quadrilaterals are good at
displaying long labels and are compatible with the new haircut
accents.

We improved the Magic Layout inference algorithm to
more closely match what expert Alloy users do. In some
cases Magic Layout now exceeds the experts. One of the main
differences between the old Magic Layout and the expert was
the use of colour: old Magic Layout used colour to distinguish
types, whereas experts often use colour to distinguish changes
in state. Our improved Magic Layout uses colour like the
experts do, to distinguish changes in state. It was not obvious to
us at the outset of this project that this goal could be achieved.
We also improved the inference algorithms for determining
projection and when to display relations as attributes rather
than as edges.

The improvements to the projection inference taught us
something that we had not previously known about visualizing
Alloy models: projecting over multiple types can be useful. It
is not clear what such a projection means in the general case,
but projecting over singleton types can make the visualization
clearer and more obvious to the viewer. That was a surprising
result that we were not expecting.

In the original Magic Layout paper [1] the standard of
comparison was against the default theme (i.e., doing nothing).
That first version of Magic Layout was better than the default
in almost, but not all, cases. Our improved version of Magic
Layout now meets or exceeds the default in all cases.

Through this work Magic Layout has matured to the point
that it, in principle, meets or exceeds the expert themes on
all but two of the models that come bundled with the Alloy
Analyzer. (There are three models for which Magic Layout
requires some simple syntactic changes to the models for it to
be able to match the experts.) It is surprising how few cases
actually require a deep human semantic understanding of the
model in order to visualize well.

There are still more possibilities for improvement in the
Alloy visualizer. For example, Zave’s models of the Chord
distributed hashtable protocol (e.g., [13]) do not display well
with the hierarchical layout algorithm currently used by the
visualizer. A circular layout algorithm would be better. We
are investigating alternative layout algorithms — and the
inferences necessary for Magic Layout to help the user select
the most appropriate algorithm.

REFERENCES

[1] D. Rayside, S. Chang, S. Dennis, S. Seater, and D. Jack-
son, “Automatic visualization of relational logic models,”
in First Workshop on the Layout of (Software) Engineer-
ing Diagrams (LED’07), 2007.

[2] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold,
M. Harman, K. Lano, and Z. Li, “Model projection:
simplifying models in response to restricting the envi-
ronment,” in Software Engineering (ICSE), 2011 33rd
International Conference on, may 2011, pp. 291 -300.

[3] Z. Manna, A. Browne, H. Sipma, and T. E. Uribe, “Visual
abstractions for temporal verification,” in AMAST, ser.
Lecture Notes in Computer Science, A. M. Haeberer, Ed.,
vol. 1548. Springer, 1998, pp. 28-41.

[4] M. Ben-Ari, “Video demonstration of the Erigone/Spin
visualizer,” 2011. [Online]. Available: http://screencast.
com/t/HNQ5111ijXsJ

[5]1 S. Merz, “Model checking: A tutorial overview,” in
Proceedings of the 4th Summer School on Modeling
and Verification of Parallel Processes, ser. MOVEP
’00. London, UK, UK: Springer-Verlag, 2001, pp.
3-38. [Online]. Available: http://dl.acm.org/citation.cfm?
1d=646410.692520

[6] A. Gurfinkel and M. Chechik, “Proof-like counter-
examples,” in TACAS, ser. Lecture Notes in Computer
Science, H. Garavel and J. Hatcliff, Eds., vol. 2619.
Springer, 2003, pp. 160-175.

[7] P. Caserta and O. Zendra, “Visualization of the Static
Aspects of Software: A Survey,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 7, pp.
913-933, Jul. 2011.

[8] M. Eisenstadt and M. Brayshaw, “The Transparent Pro-
log Machine (TPM): an execution model and graphical
debugger for logic programming,” Journal of Logic Pro-
gramming, vol. 5, no. 4, pp. 277-342, 1988.

[9] M. Eisenstadt, M. Brayshaw, and J. Payne, “The Trans-
parent Prolog Machine: visualising logic programs,”
1991.

[10] Y. Adachi, K. Tsuchida, T. Imaki, and T. Yaku,
“Logichart — Intelligible Program Diagram for Pro-
log and its Processing System,” in Tenth Workshop on
Logic Programming Environments (WLPE), ser. Elec-
tronic Notes in Theoretical Computer Science, vol. 30,
no. 4, 1999, pp. 276-288.

[11]

[12]

[13]

A. D. Bimbo, L. Rella, and E. Vicario, “Visual specifica-
tion of branching time temporal logic,” in Proceedings
of the 1I1th International IEEE Symposium on Visual
Languages (VL’95), 1995.

K. Sugiyama, S. Tagawa, and M. Toda, “Methods for
visual understanding of hierarchical system structures,’
Systems, Man and Cybernetics, IEEE Transactions on,
vol. 11, no. 2, pp. 109 —125, feb. 1981.

P. Zave, “Using lightweight modeling to understand
chord,” SIGCOMM Comput. Commun. Rev., vol. 42,
no. 2, pp. 49-57, Mar. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2185376.2185383

