Zone-based Synthesis of Timed Models with
Strict Phased Fault Recovery

Fathiyeh Faghih and Borzoo Bonakdarpour

School of Computer Science, University of Waterloo, Canada

TECHNICAL REPORT CS-2013-05

Abstract. In this paper, we focus on efficient synthesis of fault-tolerant timed mod-
els from their fault-intolerant version. Although the complexity of the synthesis
problem is known to be polynomial time in the size of the time-abstract bisimula-
tion of the input model, the state of the art currently lacks synthesis algorithms that
can be efficiently implemented. We propose an algorithm that takes a timed automa-
ton, a set of fault actions, and a set of safety and bounded-time response properties
as input, and utilizes a space-efficient symbolic representation of the timed automa-
ton (called the zone graph) to synthesize a fault-tolerant timed automaton as output.
The output automaton satisfies strict phased recovery, where it is guaranteed that
the output model behaves similarly to the input model in the absence of faults and
in the presence of faults, fault recovery is achieved in two phases, each satistying
certain safety and timing constraints. Our algorithm is fully implemented and we
report encouraging experimental results.

1 Introduction

'Dependability and time-predictability are two vital properties of most embedded (espe-
cially, safety/mission-critical) systems.time-sensitive computing systems. Consequently,
providing fault-tolerance and meeting timing constraints are two inevitable aspects of de-
pendable real-time embedded systems. However, these two features have conflicting na-
tures; i.e., fault-tolerance deals with unanticipated faults, while meeting time constraints
requires time predictability. This conflict inevitably makes design and analysis of fault-
tolerant real-time systems a tedious and error-prone task. Hence, it is highly desirable to
have access to techniques that automatically generate correct-by-construction models that
ensure fault-tolerance and meet timing constraints simultaneously.

Automated synthesis is a rigorous but highly complex method to generate models that
are correct by construction. There are different approaches for model synthesis depend-
ing upon the input. Examples include synthesis from a temporal logic specification [3,16]
along with quantitative objectives [6, 14], program sketching [24], and controller synthe-
sis [22,23]. Automated addition of fault-tolerance is also a technique for synthesizing a
fault-tolerant model from its fault-intolerant version [8,9,18]. This line of work is in spirit
close to controller synthesis, where faults can be modeled as uncontrollable transitions?.
However, there are subtle differences (e.g., synthesis of recovery paths), which make the

! The full version of this paper can be found in our technical report [17]. Due to space limitation,
arunning example and an additional case study are omitted from this version of the paper.

2 We emphasize that representation of faults as transitions is possible for different types of faults
(e.g., stuck-at, crash, fail-stop, timing, performance, Byzantine, message loss,etc.), nature of the
faults (permanent, transient, or intermittent), or the ability of the program to observe the effects
of the faults [7].

problem more complex than conventional controller synthesis. Another important differ-
ence is in the fact that in many commonly considered systems, fault recovery has to be
achieved in multiple (possibly ordered) phases, each satisfying certain constraints. For
example, in a traffic signal controller, if the controller detects a fault, all signals should
first go red immediately to prevent catastrophic consequences (i.e., phase 1) before final
recovery to its normal behavior (i.e., phase 2).

In the context of synthesizing timed models that provide bounded-time phased fault
recovery, let @ and P be two predicates that should be reached in phase 1 and 2 of re-
covery within different time bounds, respectively. In [7], the authors have shown that if
@ is not required to be closed in the execution of recovery transitions, then synthesizing
a timed automaton [2] with 2-phase recovery is NP-complete in the size of the detailed
region graph [2] of the input automaton®. On the contrary, if the closure of Q is required
and, moreover, P C @, then the synthesis problem can be solved in polynomial time. The
polynomial-time algorithm presented in [7] to solve the latter problem is only an evidence
for proving the complexity of the problem and is not an efficient practical solution with
potential for implementation. This is simply because the size of a detailed region graph
grows incredibly huge even for small models.

With this motivation, in this paper, we propose a time- and space-efficient algorithm
for synthesizing timed automata that provide 2-phase recovery, where () is required to be
closed and P C @, while no new behaviors are added in the absence of faults. The latter
is guaranteed by only augmenting the semantic model with safe recovery paths in the
presence of faults and adding no transitions that originate from states that can be reached
only in the absence of faults. For space efficiency, we utilize the notion of zone graphs [15]
developed as finite representation of timed automata. Although there is work on synthesis
of timed models using zone graphs (most notably the tool UPPAAL-Tiga [4]), the state
of the art currently lacks two ingredients to make synthesis of fault-tolerant timed models
possible: (1) zone-based controller synthesis for bounded response properties of the form
Q —<s P;ie., when @ becomes true, P should become true within ¢ time units, and
(2) zone-based addition of safe recovery paths that do not exist in the original intolerant
model. This is a challenging problem, as adding zones without considering their properties
might lead to generating deadlock computations.

Our fully implemented algorithm addresses both aforementioned problems. Given a
timed automaton, a set of fault actions, and constraints of 2-phase recovery, our imple-
mentation first generates a zone graph using the tool IF [11]. Then, it adds paths for each
phase of recovery by incorporating its constraints. Finally, it ensures deadlock freedom
by implementing a global fixpoint computation and repair. Our experiments show that
the performance of the proposed synthesis algorithm can compete with model checking,
where the synthesis time is proportional to the corresponding verification time (i.e., zone
graph generation time for the input model).

Organization. The rest of the paper is organized as follows. In section 2, we present the
preliminary concepts. Section 3 describes timed automata with faults and the notion of
strict 2-phase recovery. Section 4 formally states the synthesis problem, while Section 5
presents our zone-based synthesis algorithm. We describe our implementation and ex-
perimental results in Section 6.Related work is discussed in Section 7. Finally, we make
concluding remarks in Section 8. For reasons of space, all proofs appear in the appen-
dices.

3 A detailed region graph is a finite bisimilar representation of a timed automaton.

2 Preliminaries

In this section, we present the preliminary concepts on timed automata and specifications
in Subsections 2.1 and 2.2, respectively.

2.1 Timed Automata with Deadlines (TAD) [2,10]

Syntax Let X = {x1,x9,...,2,,} be a finite set of clock variables that range over real
numbers R>o U {—1}. The value —1 identifies a disabled clock variable. The set @ of all
clock constraints over X is inductively defined as follows:

pi=z~n|pAp|-p

where n is a constant non-negative integer, and ~€ {<, <, >, >}.Let V be a set of finite-
domain discrete variables. We denote the set of all guards (i.e., Boolean expressions) over
1% by GD.

Definition 1. A timed automaton with deadline is a tuple TAD = (L,1y,V,U, X, E),
where

— L is a finite set of locations

— lp € L is the initial location

— V is a finite set of discrete variables

— U is a finite set of update functions

— X is a finite set of clock variables and

- ECLxUxGp x®x®x2% x2X x Lis afinite set of timed switches.

Each timed switch is of the form (1,u, ga, ge, dy (Xyes, Xais), '), where X es is a set of
clocks to be reset, X ;5 is a set of clock variables being disabled, such that X s N X g;s =
{}, gc € P is a clock constraint, and d € P is the transition delay, such that d = g.. O

In Definition 1, delay d determines the urgency of a switch. There are three different
types of delays [10].Intuitively, when d = g., the switch is called eager. An enabled eager
switch cannot be delayed and, hence, does not let time progress before its execution. If
d = false, then the switch is lazy, meaning that whenever it gets enabled, its execution can
be delayed by letting time progress. This delay may even result in disabling the transition.
In a delayable switch, d is the falling edge of a right-closed guard g.; i.e., whenever a
delayable switch is enabled, its execution can be delayed as long as the associated guard
remains true.

Semantics In the following, we use valg to denote a function that maps each v € V to a
value in its finite domain Dom,,, and is called a valuation of discrete variables. Likewise,
val, denotes a clock valuation, which is a function that maps each clock variable z € X
to a value in R>o U {—1}. An update function v € U, is a function Dom,,, X ... X
Domvlv‘ — Domy, X ... X Domvw‘ that maps each valuation valg to a valuation vall.
We denote the fact that a (clock or discrete) valuation val satisfies a guard g by val = g.
Each element of a tuple denoting a switch e is presented by the name of the element
subscripted by e. For example, u. denotes the update function of the switch e.
The semantic model of a TAD is a tuple SM = (S, so,T), where

— S'is the state space of the semantic model. Each state is a tuple (I, valg, val.), where
l € Lis alocation, and val; and val, are discrete and clock valuations, respectively.

- so = (lo, (valg)o, 0) is the initial state, where [is the initial location, (vals)o is a
valuation in which all discrete variables are initialized to some value in their domains,
and 0 denotes the clock valuation with all clocks being set to zero.

— T is the set of transitions on S. In order to define T, we first identify the clock
valuations from where time can progress from a location [/ and valuation val,. Let
E,; be the set of switches originating from . We define ¢(l, valy) as the set of clock
valuations:

c(l,valg) = {wval, | = \/ ((vale = de) N (valg = (ga)e))}

ecE;

and is called the time progress condition of location [and valuation valy. For § €
R>¢, we write val. + ¢ to denote val.(x) + ¢ for every clock variable z € X, if
x # —1 (i.e., time does not advance for disabled clocks). The set T" of transitions in
the semantic model is classified as follows:

Immediate Transitions A transition (I, valg, val.) — (I’,vall;, val[X es, Xais])
exists in 7' iff there exists a switch (I, u, gq, ge, d, (Xyes, Xais),') € E, such
that (val. = g.) A (valy = gq), where u(valy) = vall), and val [Xyes, X gis] i
the valuation val., where

e foreach z € X,.,, we have val.(z) =0
e for each z € Xy, we have val.(x) = —1
o the value of other clock variables are unchanged.
The set of immediate transitions in 7" is denoted by T, .

Delay transitions A transition (I, valg, val.) — (I, valg, val. +) exists in T iff
Vit < §: (val. +t) € c(l,valy). The set of delay transitions in T is denoted by
Ty.

Example We use the following running example to describe the concepts throughout
the paper. Consider two processes that execute in mutual exclusion using a shared mem-
ory location. To coordinate their execution, one of the processes is the master process
(illustrated in Figure 1). The automaton has three locations, execution (initial location),
cleanup, and waiting, a clock variable z, and a discrete variable token shared between the
processes. The clock constraint of switches are placed in [] and a switch delay is identified
by {}.

The master process stays in execution for 1 to 2 time units. Then, it resets x, toggles
the value of token, and goes to cleanup, where it can spend another 1 to 2 time units for
garbage collection. Changing the value of the shared variable allows the slave process (not
shown here) to start execution. Then, the master process goes to location waiting, where it
waits for the slave process execution to finish. When the value of x is between 3 to 4 time
units, it again toggles the value of token, so that the slave process stops execution, and
reaches location cleanup. In this location, the master process does the garbage collection
for the slave, and also ensures that the slave process has noticed the change in token. The
master process subsequently moves to location execution.

2.2 Specification

In this section, we present the notion of specification and what it means for a timed au-
tomaton to satisfy a specification. First, we define state predicates on a timed automaton.

Legend {false}
z:=0
Normal ___ g RN

Fault [

token := —token
<z<2
{z =2}

z:=0

{z =4}
token := —token
B<z<4

Fig. 1. An example of a timed automaton with deadline augmented with one fault switch

Definition 2. A state predicate SP of a semantic model SM = (S, sg,T) is a subset of
S, where in the corresponding Boolean expression, each clock variable is only compared
with non-negative integers. O

In other words, a state predicate must be definable by the syntax of clock constraints as
defined in Subsection 2.1.

Definition 3. A computation of a semantic model SM = (S, so,T) is a finite or infinite
sequence of states of the form: 3 = (sg,70) = (s1,71) = ... i

- foralli € Z>o : (8;,8i41) €T
— the sequence Ty, T1, . .. (called the global time), satisfies the following conditions:
e monotonicity: for all t € Z>o,7; < Tiy1
e divergence: if s is infinite, for all t € R>, there exists i € Z>q, such that T; > t
e consistency: for all i € Z>o, if (si,8i11) is a delay transition in T, such that
si = (lyvalg,val.), siy1 = (l,valg,val. + 6), then 1,41 — 7, = 6, and if
(84, Sit1) is an immediate transition in T, then 1,41 = ;. O

Observe that Definition 3 is tied with a semantic model. In general, this is not the case and
a computation is a timed state sequence that can satisfy a subset of the three constraints
in Definition 3.

We are now ready to define the notion of specifications and what it means for a timed
automaton to satisfy a specification.

Definition 4. A specification (or property) is a set of infinite computations that satisfy
time-monotonicity and divergence [19].]

Definition 5. A state predicate SP is closed in a set of transitions T, iff

— if an immediate transition in T originates from SP, it terminates in SP

— if a delay transition in T with duration § originates in state s € SP, then for all
0" <4, a delay transition with duration &' that starts in s also terminates in a state in
SP. |

Definition 6. Let TAD be a timed automaton with semantic model SM = (S, s0,T)
and SP be a state predicate of TAD. We write TAD |=gp SPEC (read TAD satisfies
SPEC from SP), iff (1) SP is closed in T, and (2) every computation of TAD that starts
from SP isin SPEC. O

The reason for defining satisfaction ‘from’ a state predicate is due to the fact that when
we add fault transitions to a model, the closure of its normal behavior is not ensured. This
notion of normal behavior is captured by a state predicate called the set of legitimate states
defined next.

Definition 7. Let TAD be a timed automaton and LS be a nonempty state predicate of
TAD. We say that LS is a set of legitimate states of TAD iff TAD =5 SPEC. O

Definition 8. Let P and () be state predicates and § € R>(. A bounded response property
is of the form P — <5 Q, and defines computations s = (so,70) — (s1,71) — ..., where
foralli >0, if s; € P, then there exists j > i, such that s; € Q and T; — 1; < 0. O

In this paper, our notion of specification consists oftwo parts: (1) a safety specifica-
tion, and (2) a liveness specification [1, 19]. Roughly speaking, our notion of safety is
characterized by a set of unsafe timing independent transitions and a set of bounded-time
response properties.

Definition 9. A safety specification consists of two parts:

1. Timing-independent Safety: Specified by a set of immediate bad transitions bt. The
specification in which each computation has no bad transitions is denoted by SPEC+;.
2. Timing Constraint: Denoted by SPEC+ is the conjunction \- | (P; —<s, Q;). 0

A bad transition that can be specified by its target state only defines a set of bad states.

Definition 10. A liveness specification SPEC' is a set of computations with this condi-
tion: for each finite computation @, there exists a nonempty suffix 8, such that af €
SPEC. 0O

Following [1, 19], liveness specification is included in all specifications and, hence, it
is not repeated in the specification representation.

Example. Consider the timed automaton in Figure 1. The timing independent safety spec-
ification for mutual exclusion between the two processes is characterized by:

bt = {(s0,51) | s1 | (execution A (token = 1))}

which requires the master process not to be in location execution, when the value of
token is 1. The set of legitimate states of this example is specified using the following
expression:

LS = ((execution) = (

(x <2) A (token =0))) A
((cleanup) = (((= <

(3 <

1<z

%) A (token = 1)) V
x) (token = 0))) A

<
((waiting) = (<4) A (token = 1))

It is straightforward to see that starting from any state in LS, execution of normal switches
of the timed automaton in Figure 1 results in a state in LS and a transition in SPEC;
will never execute.

3 Timed Automata with Faults and Strict 2-Phase Fault Recovery

In this section, we present the notions of faults and strict 2-phase fault recovery [7].

3.1 Fault Model

A fault is systematically represented as a transition. Fault representation with a transition
is possible for different types of faults (e.g., stuck-at, crash, fail-stop, timing, performance,
Byzantine, message loss, etc.), nature of the faults (permanent, transient, or intermittent),
or the ability of the program to observe the effects of the faults [7].

Given a semantic model SM = (S, 59, T'), a set F' of faults is a subset of all possible
immediate transitions*. In other words, F' C (S X S)iym, where

(S X) imm = {(I,valg, val.) — (', vally, vale[Xyes, X ais]) |
(1, valg, val.), (', vall, val [X es, Xais]) € S A Xais = 0}

Similar to the notion of legitimate states for a timed automaton in the absence of faults,
we introduce the notion of fault-span to reason about the behavior of a timed automaton
in the presence of faults.

Definition 11. For a semantic model SM = (S, so,T), legitimate states LS, and a set
F of faults, a state predicate FS is a fault-span or F-span of the model SM from LS iff
(1) LS C FS, and (2) FS is closedin T U F. O

Hence, a fault-span is a state predicate up to which (but not beyond which) faults can
perturb the state of a system. In order to distinguish the transitions/switches defined in
the given timed automaton and faults, in the remainder of the paper, we call the former
normal transitions/switches.

Example. In Figure 1, the fault switch introduced in location cleanup, resets clock vari-
able x at any time. Notice that if = gets reset when = < 2, then this fault starts and ends
within the legitimate states. However, if 3 < x < 5 and x gets reset, then the fault leads
the execution to a state outside the legitimate states. The delay of the fault switch is set to
lazy, since it does not impose any constraints on time progress. Observe that, if a compu-
tation starts from a state in LS where 3 < x < 5 and token = 0, when the fault occurs,
after 1 to 2 time units, the computation goes to waiting and subsequently to cleanup where
token gets toggled (with value 1). The next transition of the computation is a bad transi-
tion, as the model goes to execution location, while token = 1. This clearly violates the
safety specification.

3.2 Strict 2-phase Fault Recovery

Intuitively, in strict 2-phase recovery [7], when the state of a system is perturbed by faults,
the system is required to either directly return to its legitimate states LS within § € Z>
time units, or, if direct recovery is not feasible, then it should first reach an intermediate
recovery predicate () within 0 € Z>¢ (i.e., phase 1), from where the system reaches LS
within § € Z>(time units (i.e., phase 2).

Definition 12. Ler SM = (S, sg,T) be the semantic model of a timed automaton with
legitimate states LS, Q) be a state predicate called intermediate recovery predicate, F' be
a set of faults, SPEC be a specification, and 0,6 € Z>¢. The strict 2-phase recovery
specification for SM is SPEC;- = (—LS —<¢ Q) N (Q —<s5 LS). O

4 We note that while delay faults cannot be modeled explicitly due to the semantics of TADs, one
can specify a delay fault by employing an additional location, where the delay occurs.

The other types of 2-phase recovery that are outside the scope of this paper are
specified by different SPEC [7]. For example, ordered-strict recovery is specified by
SPECy; = (-LS =<9 (Q — LS)) N (Q <5 LS). In order to define the notion of
fault-tolerance using 2-phase recovery, we first characterize a notion where computations
that can be produced in the presence of faults can be extended, such that they eventually
meet the specification.

Definition 13. A timed automaton TAD with semantic model SM = (S, so, T) main-
tains SPEC from state predicate SP iff

— SP is closed inT, and
— for every computation prefix o of SM that starts in SP, there exists a computation

suffix B, such that o3 € SPEC.

We say that TAD violates SPEC from SP iff it is not the case that TAD maintains
SPEC from SP. |

Concerning Definitions 6 and 13, we note that if a timed automaton satisfies SPEC
from SP, then it maintains SPEC from SP as well. However, the reverse direction does
not always hold. Definition 13 is introduced for computations that TA D cannot produce,
but can be extended to a computation in SPEC by adding recovery computation suffixes.

Definition 14. A timed automaton TAD with semantic model SM = (S, s9,T) is F-
tolerant to SPEC from LS iff

1. TAD =rs SPEC,
2. there exists an F-span FS of TAD from LS, such that
- (8,50, T U F) maintains SPEC from FS, where SPEC+ is as defined in Defi-
nition 12, and

- (S, s0,T UF) satisfies F'S — <, LS from FS. |

The last condition is added to handle the case where response properties in SPEC- are
unbounded (since in this case, Definition 13 fails, as it only captures finite prefixes).

Example. Let () be the set of states in which the automaton stays in waiting long enough to
ensure that nothing bad happens; i.e., Q = (waiting A (z > 5)). The timing-independent
safety property for this automaton in defined in Subsection 2.2. The timing constraint of
TAD is defined as follows:

SPECW e (_‘LS =<6 Q) A (Q =<2 LS)
where the response times are chosen arbitrarily. SPEC.

4 Problem Statement

Given are a fault-intolerant timed automaton T’A D with semantic model SM = (S, s, T')
and legitimates states LS, a set F of faults, and specification SPEC, such that TAD =5
SPEC. Our goal is to develop an algorithm for synthesizing an automaton TAD' with se-
mantic model SM’ = (S', 59, T') and legitimate states LS’ from TAD, such that TAD'
is F-tolerant to SPEC from LS’. We require that the algorithm for adding fault tolerance
does not introduce new behaviors to TA D in the absence of faults. To this end, we define
the notion of projection. Intuitively, the projection of transitions 7" on state predicate SP
includes all immediate transitions that start and end in SP, and the delay transitions that
start in SP and remain in SP continuously.

Definition 15. The projection of a set T' of transitions on a state predicate SP is defined
as follows:

T | SP = {(80,81) € Timm | S0,81 € SP} @]
{(l,valg,val.) — (I,valg,val. +0) € Ty |
((1,valg,val;,) € SP) N (Ve € Rsp: ((e <0) =
(I, valg, val. + €) € SP))}

Using this definition, we clarify our requirement of not adding new behavior to TAD
in the absence of faults. If LS’ contains a state that is not included in LS, then TAD' may
have a computation that reaches a state that is not reachable in TAD in the absence of
faults. This may falsify TAD' =15+ SPEC and, hence, we require LS’ C LS. Likewise,
if 7" | SP' contains a transition that is not included in 7' | SP’, then there may exist a
computation in the synthesized model that is not in the original model in the absence of
faults. Hence, we also require (1" | SP’) C (T | SP").

We assume there exists a clock for each bounded response property. This clock is
needed to measure time when the first predicate in the property becomes true. Also, for
simplicity and without loss of generality, we assume that when a fault occurs, no fault will
happen until the system goes back to LS’. In [8], the authors present an algorithm based
on region graphs that can deal with the case where faults can occur in the fault-span as
well.

Problem statement. Given a fault-intolerant timed automaton TAD with semantic
model SM = (S, s, T), a set F' of faults, intermediate predicate), where LS C
@, and specification SPEC, such that TAD s SPEC, our goal is to propose
an algorithm for synthesizing an automaton TAD' with SM’ = (S’, s}, T"), and
legitimate states LS " from TAD, such that:

1. LS’ C LS,

2. Qisclosedin T,

3. (T" | LS') € (T'| LS"), and

4. TAD' is F-tolerant to SPEC from LS’.

The constraint on closure of and LS C () are included, because otherwise the
problem becomes NP-complete [7] in the size of time-abstract bisimulation of TAD. In
this paper, our focus is on devising a zone-based algorithm for the case where the problem
can be solved in polynomial time in the size of time-abstract bisimulation of TAD.

5 The Synthesis Algorithm

In this section, we present our zone-based algorithm for solving the problem of synthe-
sizing a fault-tolerant TAD' from a given TAD as stated in Section 4.

5.1 Zone Graphs

Since the state space of a timed automaton is infinite, in order to formally analyze a
timed automaton, we use an equivalent space-efficient finite symbolic transition system,
called a zone graph [15]. Let x be a set of clock zones, say &, inductively defined as
Eu=x=n|z—y3n|{AE, where z and y are clock variables, n is a constant
integer, and <€ {<,<}. Let & be a clock zone on the set of m clock variables and
[€] = {val. € RY, | val. = £}. The operators up and resdis are defined on clock zones
as follows: a

- up(f) = {Ualc + d | UCLlC S [[E]] A de Rzo}
- resdis(g, (Xres,Xdis)) = {Ualc[Xrgs, Xdis] | valc (S [[g]]}

Observe that operator up has no effect on disabled clock variable. A zone z is a tuple
z = (l,valg, [€]), where [is a location, valg is a valuation of discrete variables, and € x
is a clock zone.

Definition 16. Let TAD = (L,ly, V,U, X, E) be a timed automaton. The zone graph of
TAD is defined as a transition system Z(TAD) = (Z, zg, ~>), where

— Z is the set of zones defined on TAD

- 20 = {lo, (vala)o,up(0) N c(lo, (vala)o))

— ~ is the relation defined on zones by: (I,valg,&) ~ (I vall;, &), if there exists
(1,0, 9dy Ger dy (Xyes, Xais), I') € E, such that valg = ga, u(valg) = wvall,, and
¢ = up(resdis(& A gey (Xres, Xais)) N c(l';vally). O

Example. Figure 2 shows the zone graph of the automaton in Figure 1.
We will use the following zone operators [5, 12] in our algorithm:

and (&1, &) returns the conjunction of the constraints in &; and &s.
down(§) returns the weakest precondition of £ with respect to delay, which is the set
of clock assignments that can reach £ by some delay d:

down(§) = {val. | val.+0 € £ A § € Rxp}
— free(&, z) removes all constraints on the clock x:

free(&,x) = {walcJx = 8] | val. € £ A 6 € Ry}

pred (&) computes the set of clock valuations that after some delay ¢ can take switch
e, and reach &, and is formally defined as

pred, (&) = {wval. | (val. 4+ 0) = ge N (vale + 0)[Xyes, Xais] € EN
e = (1,4, 9d, Ge; d; (Xres, Xais)) N 0 € Rxo}.

execution execution
token = 1 token = 0
0<a<2

cleanup cleanup
token = 0 token = 0
3<z<5

Fig. 2. Zone graph of the timed automaton in Figure 1

10

Algorithm 1 Zone_based_Synthesis

Input: A timed automaton T'A D, with legitimate states L.S, fault switches F', bad transitions BT, intermediate recovery

predicate @ st. LS C @, recovery and intermediate recovery times and 6.

Output: If successful, a fault-tolerant TA D’ with legitimate states LS’.

AR Al SR e

TAD" < Enhance_Automaton(TAD, LS, F,Q, 5,0, BT)

1 (Z, z9, ~+) — Construct Zone_Graph (TAD"")

(Z', 2, ~), waiting <+ Add_Trans((Z, zo, ~), BT)

(Z', z{, ~) + Backward_Zones((Z’, z{, ~'), ~, waiting)

(Z’', 2, ~) + CycleRemoval (Z', z, ~")

nz < {z0 | 321,22...2n - (Vi |0<j<n:(zj,2j41) € F'*) A(2n—1,2n) € BT'*};
Z1+ Z' —nz

1 LS} «+ LS'* — nz

: mz « {(20,21) | (21 € n2) V (20,21) € BT'*};

10: ~s—~ —mz

11: repeat
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

Za, LSj — 71, LST
nz « {20 | P21 : (20,21) E~};
Z1 « Z1 — nz;
LS} < LS — nz;
mz < {(z0,21) | z1 € nz};
A4 — Iz
nz' <+ {20 | (20,21) € mz N F*};
7y <+ Z1 —nz';
LS% «+ LS% — nz’;
if (Zy =0V LS; = () then

print “no fault tolerant program exists”;exit;
end if

23: until (Z, = Zy A LS% = LSZ)
24: TAD' + Construct_Automaton((Z1, zo,~), LS?)
25: return TAD'

5.2 Algorithm Sketch

Our zone-based algorithm consists in the following steps (Algorithm 1):

. (Automaton enhancement) The input model is enhanced, so that the corresponding

zone graph is more efficient and is augmented with delay transitions that can be uti-
lized for adding 2-phase recovery.

(Zone graph generation) Next, the zone graph of the enhanced input automaton is
generated. We utilize an existing algorithm from the literature of verification for this
step.

(Adding recovery behavior) To enable 2-phase recovery, we add possible transitions
among the zones of the zone graph. In this step, new zones may be added to the zone
graph.

(Backward zone generation) For the newly added zones in the last step, we identify
the backward reachable zones to ensure that the new zones do not introduce terminat-
ing computations.

(Cycle removal) Since adding recovery transitions may create cycles, the algorithm
removes the possible cycles to ensure correct recovery.

(Zone graph repair) The zone graph is modified, so that it satisfies the safety proper-
ties in the presence of faults, and also does not introduce any deadlock states.

Finally, one can generate an automaton from the repaired zone graph. We consider this
step as a black box, which gets a zone graph and returns a timed automaton corresponding
to that semantic model.

11

Function 2 Enhance_Automaton

Input: A timed automaton TAD = (L, lo, V, U, X, E), with legitimate states LS, fault switches F, intermediate recovery
predicate Q, recovery time &, intermediate recovery time 6, and bad transitions BT'
Output: An enhanced automaton TAD' = (L', 1o, V,U, X', E’)

X'+ XU{zs,zq}

1 L' + L U {deadlock}

Eo + {(l,u, g4, true, true, (0, X"), deadlock) | Vvalg |= ga : (I,valg) € BS}

E1 + {(L,u, true,zy = 0,25 =0, (0, X’), deadlock) |l € L}

Es «+ {(l,u, true,xq = 8,24 = 5, (0, X"),deadlock) | I € L}

F' + {(l1,u, ga, ¢, false, (r1 Uz s, r2),1l2) | V(I1,u, ga, ¢, false, (r1,7r2),l2) € F}

D Es <+ {(l,u,g4, ¢ Ny > 0,true, (xq,25),1) | Yvalg = gq : Yvale = ¢ : (I, valg,val.) € Q — LS}
Es + (l1,u,9d,9c N (xf <0),d, (r1,7r2),12) | Y(l1,u, 94, ge, d, (r1,72),l2) € E}

L Es « (li,u, ga, ge A (zy > 0), false, (r1,72),12) | Y(I1,u, 9d, ge, d, (r1,72),12) € E}
10: B' «+~ EUF U, E;

11: return TAD' = (L', 1o, V,U, X', E')

VreIanswn =

5.3 Algorithm Description

The main algorithm (Algorithm 1) takes a timed automaton TA D, with legitimate states
LS, fault transitions F, and intermediate recovery predicate @) st. LS C () as input.
The specification consists of the time-independent safety specification (the set BT of bad
transitions) and timing constraints (as the recovery time ¢ and intermediate recovery time
0).

Steps 1, 2: Automaton Enhancement / Zone Graph Generation Algorithm Zone_based-
Synthesis starts by automaton invoking function Enhance_Automaton (see Function 2).
The entire - LS is (often) too large and impractical to build and explore. Hence, func-
tion Enhance_Automaton uses a heuristic to build a weak enough fault-span (rather than
considering the entire —LS), such that we generate the zones only reachable using (1)
the program switches, and (2) any possible delay, when the state of the model is in =Q).
We exclude @ — LS, since adding delay transitions may violate the closure of). The
clocks z and x4 are added to keep track of the time elapsed since a computation reaches
= LS and @, respectively (Line 1). A new location, called deadlock (Line 2), along with
the added switches leading to deadlock are used to prune the computations violating the
specification.

The first set of pruned computations are those violating timing-independent safety
specification in terms of bad states BS (Line 3). Computations reachable from a bad state
can be pruned, and, hence, eager switches F are used not to let time progress after we
reach a bad state. The second set of states that can be used to prune the zone graph are the
ones that violate timing constraints of 2-phase recovery:

— A computation cannot stay in = LS — @) for more than 6 time units. Hence, the set £;
of switches are added to ensure that every computation that stays more than 6 time
units in = LS — @ will be pruned (Line 4). Note that switches in F; are eager.

— Similarly, we respect the recovery time d by adding the switches in E5, which do not
let time progress when the value of x, = § (Line 5).

Note that all added switches to the deadlock location disable all clocks. Also, a unique
update function u is used to set the value of discrete variables. This is done to avoid having
multiple deadlock states with different clock valuations or discrete variables valuations in
the semantic model.

12

Function 3 Add-Trans

Input: A zone graph (Z, zg, ~»), a set of legitimate zones LS?, a set of intermediate recovery zones Q, a set of bad

transitions BT*

Output: A zone graph (Z’, z(), ~+"), with recovery transitions being added, and a set of new subzones waiting

1: waiting < 0

36: function ConnectZonesRes(Z1, Zs: Set of zones){

2: 72« Z
3: s 37: for all z € Z; st. —con(z) A loc(z) #
4: FindZonesRanking (Z, zg, ~) deadlock A
5: ConnectZones(Z — Q7, Z) P2 (2,2") €', 2 € Zast (2,2) ¢
6: ConnectZones(Q® — LS?, Q%) BT? do
7: ConnectZonesRes(Z — Q7, Z) 38: if (rank(z) < oo) break
8: ConnectZonesRes(Q* — LS*, Q%) 39: Let 2= = (L (valy),£) and 2 =
9: return (Z', 2, ~"), waiting (', (vally), &
10: function ConnectZones(Z1 , Zs: Set of zones){ 11 igf(giﬁ tQ)o)ii)ignue
11: forallz € Z1,2" € Zast. (2,2') & (~ U BT?*)do 42: if (¢ = &) then
12: if (rank(z) < oo) break 43: if (rank(z) > rank(z’) + 1) then
13: Let z = (I, (vala), &) and 2’ = (I', (valy), &) 44: rank(z) = rank(z’) + 1
14 ¢« ¢ctog 45: end if
15: if (¢"" = () continue 46: sl i U (2, 27)
16: con(z) =1 47: else
17: if (¢ =€) then 48: 2"+ (1, (vala), &)
18: if (rank(z) > rank(z’) + 1) then 49: waiting « waiting U {(z", 2)}
19: rank(z) = rank(z’) + 1 50: =7 U 2"
20: end if 51: " U (2, 2)
21: ! U{(z,2')} 52: endif
22: else 53: end for
23: 2" <+ (1, (vala), &)
%g Ztu(t_m;/eu ziz/z/ztmg VAGET 2} 54: operator toves(&q,&2: Clock zone, X': Set of
26: ! U (2,2 clocks) { ,
27: end if 55: for ?llm € X' do
78: end for 56: if lowerbound(&2, x) # O then

57: return ()

58: endif
29: operator to(&1, &2 Clock zone) { 59: end for

60: forallz € X do
6l: ifz¢g X' A
upperbound(z,&1) <

30: forallz € X do
31: if upperbound (&1,) <

lowerbound (&2, x) then lowerbound(z, &2)

) then

32: return { 62: return ()
33: end if 63: end if

34: end for 64; end for '

35: return and (£1, down(€2)) 65" &5 = and (1, free(down(€s), X'))

66: return £3

The set F’ of switches (Line 6) corresponds to the set F' of faults, where the delay is
set to false, as the fault transitions may not be taken in the computation, and with the clock
cy being added to the set of clocks to be reset. F3 are eager switches that are triggered as
soon as a state in () — LS is reached, where x; is disabled and z, is reset (Line 7). Ey
and E5 are added, so that the switches of the program are lazy when the computation is
not in (), while they have the specified urgency when the computation in (). This way, we
allow any possible delay in —() for generating the fault-span (Lines 8 and 9).

Example. Figure 3 shows the result of applying our algorithm on the running example
(Figure 1). The dashed zones are in —LS, and the dashed transitions corresponds to the
fault. Zone 5 is generated by switch E5. Adding this switch lets the states in = LS —)
have any possible delay. Observe that lazy urgency of E5 allows adding larger zones in

-Q.
13

Step 3: Adding Recovery Paths After generating the enhanced automaton (Line 1),
Algorithm 1 calls Function 3 (Add_Trans) to add recovery transitions (Line 3 of Algo-
rithm 1). In order to reduce the complexity of this step, our idea is to first find the ranking
of each zone in = LS based on its possible path to LS, and then dynamically update this
ranking during the recovery addition step. As soon as a zone in LS gets a ranking less
than infinity (there is a path for it to LS), we stop finding a recovery transition starting
from that zone. Adding recovery transitions in Function 3 is achieved by applying two
strategies: (1) connecting existing zones to each other (Lines 5-6), and (2) connecting
zones by resetting clocks for deadlock zones that cannot get connected using strategy 1
(Lines 7-8).

Strategy 1 After initializations (Lines 1-3 of Function 3), we add recovery transitions
from zones in = LS — @ to any possible zone, and also from zones in () — LS to any
possible zone in) (Lines 5 and 6, respectively) by calling function ConnectZones (de-
fined in Lines 10-28). For adding the transitions between zones, one has to ensure that an
added transition respects the clock constraints of source and target zones. To this end, we
introduce the operator to (defined in Lines 29-35) for finding the subset of a zone which
can be connected to another zone. Two conditions for connecting two zones are:

— The upper bound of each clock variable in the first zone should be larger than its
lower bound in the second zone. If this condition does not hold, then there is a time
gap between the two zones.

— The time monotonicity condition should hold between them. For checking this con-
dition, the intersection of the clock valuations that can reach the target zone, and
the source zone is calculated. The result is a subzone of the source zone that can be
connected to the target zone, which obviously can be empty or the original source
zone.

If zone z is connected to zone z’, we set the variable con(z) to 1 to remember that a
subset of this zone has been connected to another zone (Line 16). In case a new subzone
7" is created (Line 23), since £ does not include all clock valuations of £, we need to
ensure that all incoming computations to 2z’ respect time monotonicity. To this end, all
new subzones are added to a waiting set (Line 24), which will be processed in Line 4 of
Algorithm 1. Each member of the waiting list is a tuple with the first element being the
new subzone, and the second being the original zone from which the subzone is formed.
Example. In Figure 3, zone 9 is added when Algorithm 3 attempts to connect zone 5 to
zone 3 in strategy 1. Likewise, zone 6 is added when trying to connect zone 8 to zone 4.
The transition from zone 7 to zone 1 is also added in this step.

Strategy 2 Next, Algorithm Add_Trans handles deadlock zones that could not be con-
nected to other zones (Lines 7 and 8) by calling function ConnectZonesRes (defined in
Lines 36-53). This strategy is identical to strategy 1, except it uses operator totes (instead
of to). This operator (defined in Lines 54—66) finds a subzone of the first zone that can
be connected to the second zone by resetting a set of clock variables. Again applying this
operator may result in creation of new subzones that are added to the set waiting for later
backward zone generation processing.

Step 4: Backward Zone Generation Since addition of recovery transitions in Step 3
may create new subzones (returned in waiting by Function 3), if all incoming transitions

14

Function 4 Backward_Zones
Input: A zone graph (Z, zé, ~~"), the original set of transitions ~+, and a set of pairs of zones waiting.
Output: A zone graph (Z’, z{, ~"), with newly added zones being traced backward.

1: while waiting # 0 do

2: Let (20, z1) be a pair in waiting

3: waiting + waiting — {(z0, z1)}

4: for all z st. (2, z1) €~ do

5: Let e be the original switch for transition (z, z1)

6: Let (1, (valg), &) = zand (I1, (valg)1,&1) = 21
7. ¢« pred, (&1)

8: 2" = (I, (valg), &)

9: Let waiting denote the set of first elements in waiting
10: if (2 ¢ Z' U waiting,) then

11: waiting = waiting U (2', 2)

12: end if

13: ~'=~" U (2, 20)

14: end for

15: end while
16: return (Z’, 2, ~')

of the original superzone are added to the new subzone naively, we may introduce ter-
minating computations. This happens when there are valuations in the predecessor zones
of the original zone that cannot reach the new subzone. To address this case, Function 4
(Backward_Zones) is invoked for backward generation of predecessor zones for each new
subzone in waiting (called in Line 4 of Algorithm 1).

In Function 4, for each new zone in waiting, the switches (including faults) leading

to the original zone are considered (Lines 4 and 5), and for each switch, the previous
zone of the new zone using this switch is calculated using the pred, operator (Line 7).
If the previous zone is not already included in the set of zones nor in the waiting list, it
will be added to waiting (Line 11). The algorithm repeats these steps until all backward
reachable zones are explored and the appropriate transitions leading to the new zone are
added (Line 13).
Example. In this step, zone 6 is traced backward using the switch corresponding to the
transition from zone 5 to zone 6. The result is the added transition from zone 5 to zone 8.
Zone 9 is likewise traced backward using the fault switch (corresponding to the transition
from zone 4 to zone 5), and as a result, the transition from zone 4 to zone 9 is added.

Step 5: Removing Cycles Adding recovery transitions may lead to introducing a cycle
in the zone graph, which violates the bounded response requirement. Thus, the possible
added cycles are removed (Line 5 of Algorithm 1). Observe that our assumption on closure
of () will not allow any cycles to be formed between Q — LS and —=LS — Q. Hence, the
only possibility of introducing a cycle is between zones in —LS — @ and in) — LS.

Removing the cycles can be implemented by applying classic graph-theoretic algo-
rithms. We rank each zone in LS — @ (respectively, () — LS) based on the length of
the shortest path to a zone in @ (respectively, LS). For each transition in =LS — @ (re-
spectively, Q — LS), if the rank of the source is less than the rank of the target, then
the transition will be removed, as it does not contribute in synthesizing a solution. This
transition removal ensure cycle-freedom in the fault span.

Step 6: Zone Graph Repair In order to ensure that the synthesized zone graph does not
violate timing-independent safety, in Lines 610, Algorithm 1 identifies and removes the
set of zones/transitions from where faults alone can lead a computation to a state from

15

7o 17 2

,7 " execution "~

execution cleanup

[boken =0, token = 0 token = 1
\ 42§f_<6/ 0<z<2 0< <2
“ “waiting 7 cleanup cleanup waiting
! token =0 a1 token =0 e o_——____ token = 0 token = 1
L 1<ae<6) . 0<a | 3<z<5 1<a<4
v 1Ze;<6 “0Z = !
N [N ‘
I
I
I
I
I
I
I
|
== /—j -
Zone in LS 77 waiti .- cleanup
! token / token =0
. 1<a 0<z<4)
Zone in LS W13z N 0Z ;<4
6 =" 9\\‘—>7{7—/,
-7 waiting N N
! token = 0O \
| == 5 i
_wg=0 '
10 -----~

Fig. 3. Synthesized zone graph of the timed automaton in Figure 1

where safety can be violated (since occurrence of faults cannot be prevented). The rest of
the algorithm (Lines 11-23 of Algorithm 1) removes deadlock zones and ensures the clo-
sure of legitimate states in the zone graph using a straightforward fixpoint computations.
Finally, in Line 24 of Algorithm 1, it generates the output automaton out of the repaired
zone graph.

Example. Zone 8 is a deadlock zone and, hence, gets removed in this step.

Theorem 1. The algorithm Zone_based_Synthesis is sound.

Proof. Refer to the appendix.

6 Implementation and Experimental Results

We have implemented our algorithm to evaluate the efficiency of our proposed synthesis
method. We leveraged the IF toolset [11] for zone graph generation. IF provides an in-
termediate representation for specification of timed automata with urgency. It implements
and evaluates different semantics of time, and various types of real-time constructs. We
use the intermediate representation syntax to model a timed automaton with faults and
automatically add switches to the the input model (Step 1 of Algorithm 1). Then we uti-
lize the IF API to generate the zone graph of the enhanced automaton. The generated
zone graph is stored in a graph data structure with zones being marked with LS, Q — LS,
and —(Q). Then, the rest of the algorithm (Steps 2 — 6) are performed on the generated
zone graph. The result is a synthesized zone graph, which can be used to generate the
fault-tolerant timed automaton. We tested our algorithm on two case studies.

16

1<y <2
{vi =2}
sigi =Y

zi =0

sigi == R

{=i =5} .
sigi =G N
Yi ‘= 0 ,‘
sigi ==Y -
Vi.2 < i < signum.z; > 2 Az < 1]
[z < 1] {false}
{z =1} Vil < < signum.sig; = R
sig;i = R 29 := 0
x; =0
sig; =G

Fig. 4. Automaton for traffic controller

The first case study (adopted from [7]) is an automaton for a circular traffic controller
(see Figure 4), with signum signals. In this automaton, j = (¢ + 1) mod 2. The dashed
switch shows the fault, and the others are switches of the input model. For each signal,
a discrete variable sig; is defined and ranges over { R, G, Y }. Also, there are three clock
variables for each signal, x;, y;, and z;, that act as timers to change the signal phase.
All signals operate identically. One possible set of legitimate states for this model is the
following predicate:

LS =Vi € [0, signum). [(sig; = G) = ((sig; = R) A (z; <5) A (2 > 1)) A
[(sig; = @) = ((sig; = R)A (i < 2) A (2 > 1))] A
[(sig; = R) A (sig; = R) = ((z: < 1) & (2 < 1))]

, where j = (i + 1) mod 2, and @ denotes an exclusive or operator. A bad transition is
one that reaches a state where more than one signal is not red, which can be specified as
follows:

bt = {(s0,51) | s1 |= (3. (i #) A (sigi # R) A (sig; # R))}

The fault (as can be seen in Figure 4) can reset 25, when all z;s, except for z;, are greater
than 2. This fault can cause the system to reach a bad state. The bounded response property
considered for this model is the following:

SPECﬁ = ("LS =<2 Q) A (Q =<3 LS)

Our second case study is a railway signal controller, consisting of signum signals
operating in a circular manner for controlling m trains (see Figure 5). In this automaton,
k = (i +1) mod 2. Train j is modeled by a discrete variable ¢r; that ranges from 1 to
signum, which shows the location of the train (i.e., the signal ahead of the train). When a
train passes a signal, it changes phase from green and yellow to red. When a signal ¢ + 2
turns red, its previous signal ¢ + 1, which is also red, turns yellow. Then, if the previous
signal ¢ is yellow, it may turn green. It takes a train 5 time units to travel from one signal to
the next. All signals operate similarly and, hence, the entire model of the train controller
is the parallel composition of signum timed automata illustrated in Figure 5.

17

{t; =5}
sig; =Y
trj =1
x; =0
tj =
sig; '= R
lyr < 1]
{yr =1}
sig; =Y
sigi =G P
" {false}
) sigi =Y
.. sig; =G
[t; =5]
{t; =5}
sigi = G
try =1 [z, < 5]
z;:=0 {z) =5}
tj = sigi = R
sigi =R y; =0
sig; ==Y

Fig. 5. Automaton for train signal controller

The safety specification of this model requires that no two train can have the same

location at the same time, which can be represented by the following predicate for the bad
transitions:

bt = {(s0,51) | 51 = (30, 5. (i #) A (tri = trj))}

The fault in our case study occurs when the first signal changes phase from yellow to
green due to circuit problems. This fault does not cause the computation to violate the
specification, but it may result in a terminating computation, where trains cannot proceed
due to the signal phases. The bounded response property considered for this model is the
following:

SPECy = (-LS =<2 Q) A (Q —<1 LS)

Table 2. Results for train signal controller
Table 1. Results for traffic signal controller

l [4[5T6]

[[3] 5 [7 [9 [11 | Steps 1,2 (sec) 0.78 [1.89[3.38
Steps 1.2 ec) _[0.02] 0.06 | 0.62 | 8.92 [265.059 gil’zgzgg g?g 122-5925 493-1389
Steps 3-6 (sec) 0.02| 002 | 007 | 0.10 | 0.15 s[eg 5 (00 sl il s
Total synthesis time (sec)|0.04| 0.08 0.69 | 9.02 (265.209 Step 6 (se0) 222|256 | 718

Zone Graph Gen.

00 |2h,38m| > 3h | > 3k | > 3h Total synthesis time (sec)|17.34|21.64| 66.8
Intolerant Model

Zone Graph Gen.

Zone Graph Size Intol Model 1o} 1.0 1.0
309 | 1279032 |> 10%|> 10%| > 10° ntolerant Mode
Intolerant Model Zone Graph Size
- 442 | 792 | 1112
Zone Graph Size Intolerant Model
of Enhanced 47 59 71 83 95 Zone Graph Size
Automaton of Enhanced 893 | 1424|1942
Automaton

18

We compared the synthesis time to the zone graph generation time for the intoler-
ant input automaton with fault (before enhancement) (Tables 1 and 2). This comparison
enables us to analyze synthesis versus corresponding verification time.

In the traffic signal controller, as can be seen in Table 1, by increasing the model
size, the zone graph generation time increases considerably, which turns out to be the
bottleneck of our algorithm. However, this step outperforms the zone graph generation
time for the original automaton with faults. This is because the fault leads to bad states,
and a significant number of reachable zones are cut by our pruning switches added in
Function 2.

Table 2 presents the results for the train signal controller. Each column shows the
number of signals. In all experiments, there are two trains in the model. In this case study,
as can be seen in Table 2, the bottleneck is mostly on the step for adding transitions
among zones. The reason is due to the fact that in this model, the fault does not lead the
computation to reach bad states and, hence, our pruning strategy does not help in this
regard. Comparison between the number of zones in the original model and the enhanced
one shows that there is an increase in the zone graph size. This is due to adding switches
E5 in Function 2, which let any possible delay in states out of (). We should note that our
idea for ranking the zones and updating the ranks dynamically has helped significantly to
make this step more efficient. However, we believe using heuristics we can still make this
step more efficient, although some of the solutions might be lost.

7 Related Work

The objective of fault diagnosis in timed automata [25] is to design a diagnoser which
takes sequences of observable events (from a run of the automaton) as input and decides
whether a fault has occurred. The announcement of a fault is made at most n steps after
the fault occurrence.This work focuses on detecting faults, while our technique focuses
on synthesizing a fault-tolerant timed automata.

Controller synthesis of timed systems is in spirit close to our work. Maler, et al. [22]
propose an algorithm for synthesizing timed automata formulated by the notion of timed
games. The idea is to define a predecessor function that finds the configurations from
which the automaton can be forced to the desirable set of configurations, and the algorithm
is a fixed-point iteration of this function. controller have the option of doing nothing and
let the time pass, in addition to choosing among actions. We have made a similar decision
to let the program have any possible delay when it is not in its legitimate state.

An on-the-fly algorithm on synthesizing timed models using zone graphs is proposed
in [13], which is implemented in the tool UPPAAL-TIGA [4]. The algorithm is a symbolic
extension of the on-the-fly algorithm suggested by Liu and Smolka [20]. The main idea
of this work is (1) to use a combination of forward algorithm, and backward propagation,
which helps the algorithm to terminate as soon as a winning strategy has been identified,
and (2) to use zone graph as the underlying structure of the algorithm. We use similar
ideas in the area of fault-recovery for timed models. The distinction of our work with these
work (and also with [21]) is handling bounded response properties and, more importantly,
adding recovery paths that the zone graph of the original model does not contain.

Automated addition of fault-tolerance to timed models has been studied with special
focus on complexity analysis [7, 8]. To our knowledge, our work is the first in designing
an efficient algorithm that can be used in practical tools with solid experimental results.

19

8 Conclusion

The goal of model synthesis is to generate computing artifacts that are correct by con-
struction from existing models and logical specifications. Automated synthesis is known
to be a notoriously difficult problem due to high complexity of the associated decision
procedures. This complexity is further amplified in the context of timed formalisms that
are widely used to model real-time embedded systems.

In this paper, we focused on synthesizing fault-tolerant timed models from their fault-
intolerant version. The type of fault-tolerance under investigation is strict 2-phase recov-
ery, where upon occurrence of faults, the system is expected to recover in two phases,
each satisfying certain constraints. Our contribution is a synthesis algorithm that adds 2-
phase strict fault recovery to a given timed model, while not adding new behaviors in the
absence of faults. The latter is guaranteed due to the fact that the only transitions added
to the semantic model are safe recovery transitions and our algorithm adds no transition
that originates from a legitimate state of the input model.

The algorithm works on a space-efficient representation of timed models, know as
the zone graph. To our knowledge, this is the first instance of such an algorithm. Our
experiments show that the proposed algorithm can compete with model checking, where
the synthesis time is proportional to the corresponding verification time (i.e., zone graph
generation time for the input model).

For future work, we plan to investigate the instances of addition of phased recovery
that are known to be NP-complete in the size of zone graph. Another research direction
is to synthesize fault-tolerant timed models compositionally, where the input model is in
terms of a set of interacting components.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21:181-185,
1985.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183—
235, 1994.

3. A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant concurrent programs. In
Principles of Distributed Computing (PODC), pages 173-182, 1998.

4. Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. UPPAAL-Tiga: Time for playing games! In CAV, pages 121-125,
2007.

5. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In Lectures on
Concurrency and Petri Nets, pages 87-124, 2003.

6. R.Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better quality in synthesis through
quantitative objectives. In Computer Aided Verification (CAV), pages 140-156, 2009.

7. B.Bonakdarpour and S. S. Kulkarni. Synthesizing bounded-time 2-phase recovery. In Springer
Journal of Formal Aspects of Computing (FAOC). To appear.

8. B. Bonakdarpour and S. S. Kulkarni. Incremental synthesis of fault-tolerant real-time pro-
grams. In International Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS), pages 122—136, 2006.

9. B.Bonakdarpour, S. S. Kulkarni, and F. Abujarad. Symbolic synthesis of masking fault-tolerant
programs. Springer Journal on Distributed Computing (DC), 25(1):83-108, March 2012.

10. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In COMPOS, pages
103-129, 1997.

20

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-Pierre Krimm, and
Laurent Mounier. IF: An intermediate representation and validation environment for timed
asynchronous systems. In World Congress on Formal Methods, pages 307-327, 1999.

Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR, pages 66-80,
2005.

Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR, pages 6680,
2005.

P. Cerny, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative synthesis
for concurrent programs. In Computer Aided Verification (CAV), pages 243-259, 2011.

D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Inter-
national workshop on Automatic verification methods for finite state systems, pages 197-212,
1990.

E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchro-
nization skeletons. Science of Computer Programming, 2(3):241-266, 1982.

F. Faghih and B. Bonakdarpour. Zone-based synthesis of timed models with strict phased fault
recovery. Technical Report CS-2013-04, University of Waterloo, 2013.

A. Girault and E. Rutten. Automating the addition of fault tolerance with discrete controller
synthesis. Formal Methods in System Design (FMSD), 35(2):190-225, 2009.

T. A. Henzinger. Sooner is safer than later. Information Processing Letters, 43(3):135-141,
1992.

Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed points (ex-
tended abstract). In ICALP, pages 53-66, 1998.

O. Maler, D. Nickovic, and A. Pnueli. On synthesizing controllers from bounded-response
properties. In Computer Aided Verification (CAV), pages 95-107, 2007.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 229-242, 1995.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of the
IEEE, 77(1):81-98, 1989.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial sketching
for finite programs. ACM SIGPLAN Notices, 41(11):404-415, 2006.

S. Tripakis. Fault diagnosis for timed automata. In Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT), pages 205-224, 2002.

21

A Proof of Soundness (Theorem 1)

We show that any output of algorithm Zone_based_Synthesis meets the four conditions of
the problem statement in Section 4. We distinguish four cases:

1. By construction, LS’ C LS trivially holds, as no state is added to LS. LS’ might
have some states removed compared to LS and those are the ones removed in Step
6. Also, observe that clock variables x; and x, are disabled in LS and, hence, their
values are irrelevant in LS.

2. Qisclosed in T". Recall that @ is closed in the original model. The only switches we
add to the automaton in Stepl originating from () are the ones leading the states that
do not satisfy the safety properties to the deadlock location. Note that the deadlock
zone and all its incoming transitions will be removed in Step 6. Finally, in adding
recovery transitions in Step 3, no transition is added from @ to =Q).

3. By construction, (T | LS") C (T | LS’) also trivially holds, as no transition origi-
nating from LS is added.

4. TAD'is F-tolerant to SPEC from LS’. To prove this condition, we distinguish two
cases:

— First, we have to show that TAD' Ers SPEC. By construction, and following
cases 1 and 3, as well as the fact that the algorithm removes all deadlock states,
it follows that the set of computations of TAD' is a subset of computations of
TAD' in the absence of faults. Hence, we have TAD' =15 SPEC.

— We now need to show that there exists an F-span from where TAD’ maintains
SPEC in the presence of faults. To this end, notice that if a computation reaches
a state in = LS, by construction, no suffix of this computation includes a transition
in BT. Hence, TAD' in the presence of faults maintains SPEC7;. Moreover, any
computation that reaches a state in —LS is guaranteed to reach () and LS within
0 and § time units. This is ensured by Step 1 (by adding eager switches that do
not let x; and x4 exceed the allowed bounds), Step 4 (by not letting terminat-
ing computations being added to the synthesized model), Step 5 (by removing
cycles), and Step 6 (by removing deadlocks and ensuring the closure of fault-
span and LS). Observe that since all computations are guaranteed to reach LS,
liveness is automatically preserved.

22

