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Inference in dynamic graphical models is known to be hard, ex-
cept for models with low treewidth structure. This restricts severely
the expressive power of these kinds of models. In this document we
are proposing a new type of dynamic graphical model that allows one
to model complex stochastic processes with unbounded treewidth while
guaranteeing tractable exact inferenc e. The proposed dynamic model is
an extension of a relatively new graphical model, named Sum-Product
Network, that was introduced in 2011. The document also discusses the
plan to develop a Bayesian non-parametric version of the model and an
application in the area of activity recognition.
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1 INTRODUCTION

Dynamic Bayesian Networks (DBNs) are one of the most popular tools for
modeling sequential data and complex stochastic processes. They have been
applied to a wide range of problems in different domains. Examples include
information extraction, speech recognition, computer vision, and computa-
tional molecular biology. However, despite their expressive power, performing
inference in DBNs —and probabilistic graphical models, in general- is known to
be #P-hard [25]; the complexity of performing exact inference is exponential
in the treewidth of the DBN’s structure. Hence, in practice most DBN appli-
cations either rely on approximate inference methods or restrict themselves
to only low-treewidth, i.e. tree-like, structures. That, consequently, severely
limits the expressive power of DBNs.

In 2011, Hoifung Poon and Pedro Domingos proposed a new graphical
probabilistic model named: Sum-Product Networks (SPNs) [22]. It was de-
signed to avoid the intractability of most of the graphical models. This new
class of graphical models can have unbounded treewidth while guaranteeing
tractable and fast exact inference. Its inference complexity is linear in the
number of the edges. It also showed significantly better results when com-
pared to other deep learning models. A simple interpretation of an SPN is
to see it as a hierarchical recursive network of low-level arithmetic opera-
tions. Hence, the structure of a SPN is nothing but alternate layers of sum and
product nodes, as these are the only two required mathematical operations to
answer any probabilistic inference query (sums substituted with integrals in
the case of continuous variables).

In this document we are proposing a dynamic extension of Sum-Product
Networks, which we name: Dynamic Sum-Product Networks (D-SPNs). D-
SPNs will give the ability to model sequential and complex stochastic processes
with unbounded network treewidth, while keeping the inference tractable.
Similar to DBNs, this new model can be considered a factored state-space
model. We will show how the main inference tasks for state-space models:
monitoring, smoothing, and prediction can be done using D-SPNs. We are
also proposing a Bayesian Nonparametric version of D-SPNs that requires no
manual engineering to choose the right parameters for the model. Finally,
we will discuss the plan to apply D-SPNs to a real-life activity monitoring
application to show the performance of the proposed model and compare it to
other state-of-the-art models and approximation methods.

The rest of this document is organized as follows. Section 2 reviews two
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Figure 1: A simple Bayesian network, where (a) shows the network structure
(b) CPTs, and (c) the joint probability distribution [6].

important concepts related to this research: (1) network polynomials, and
(2) context-specific independence. A summary of the main contributions is
given in section 3. Section 4 presents a survey of the three related research
areas: (1) dynamic graphical models, (2) complexity of inference in graphical
models, and (3) sum-product networks. The problem formulation is given in
section 5. In section 6 we describe Sum-Product networks and show how they
can be learned from data. Section 7 introduces our proposed solution and dis-
cuss its relation to other dynamic models. Section 8 discusses the application
that we are going to apply our proposed model to. Finally, a conclusion and a
summary of the research directions is given in section 9.

2 PRELIMINARIES

2.1 NOTATION

This document follows the standard convention of denoting random variables
using upper-case letters, e.g. X, and their instantiations using lower-case let-
ters, e.g. x. The value false for a Boolean random variable X is denoted by X,
while x is used for the true value.

2.2 NETWORK POLYNOMIAL

A discrete Bayesian network can be represented using a multi-linear func-
tion f called the network polynomial. This function can be used to per-
form probabilistic inference tasks through simple evaluation and differenti-
ation procedures[6].

First, we define a set of indicators A for all the values of the random vari-
ables in the Bayesian Network. Then we multiply each instantiation in the
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joint distribution by the compatible indicators and take their sums to define
the network polynomial. For example, the indicators for the basic Bayesian
network in figure 1 are: A,, A4, A}, and A;. Its network polynomial is:

f = 2250404, + A A50,0,p + 2320504 + AaA50:6a5 (D

More formally, the network polynomial for a Bayesian network is defined

as follows:
f=2l16
x 0y

where the summation is over the instantiations of all the random variabes, the
product is over the parameters that are compatible with x and its parents, and
A, are the compatible indicators.

Computing the probability of evidence e corresponds to evaluating the
function f when the indicators are replaced with 1 or O based on whether
they are consistent with e or not, respectively. If, for example, we observed
the evidence e = ab for the network in Figure 1, we can compute its probabil-
ity using Equation 1 by setting A, =0, A, =1, A, =1, and A;; = 0:

fle) = (0)(1)8,64, + (0)(0)0, 645 + (1)(1)0564, + (0)(0)0;643
= 9a6a|b

which is equal to P(e) in the Bayesian network.

2.3 CONTEXT-SPECIFIC INDEPENDENCE

Consider the example in figure 2. The Bayesian network structure tells us that
the random variable X depends on its three parents A, B, and C. We cannot say
anything else about X from the graph. However, by examining the CPT we can
see that under a specific assignment the variable X becomes independent from
some of its parents. In particular, X becomes independent of B and C given
that the value of A = t. Also, X becomes independent of C when A = f and
B = t. This type of independence is called context-specific independence [2].

Context-specific independence is a type of independence that holds only
for certain values of a set of variables. It can be represented using a tree as
in figure 2(c). Nodes, edges, and leaves represent random variables, possible
values, and conditional distributions, respectively. A full path from the root to
a leaf gives a context in which an independence holds.
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Figure 2: An example of context-specific independence represented as a tree.
(a) the Bayesian network structure, (b) the CPT for X, and (c) the tree-CPD
for P(X|A,B, C).

3 OVERVIEW OF CONTRIBUTIONS

In this section we give a brief overview of each of the three main proposed
contributions of my work. Figure 3 summarizes the scope of the first and
second contribution. The gray area in the figure shows the scope of the first
contribution, which consists of developing a new dynamic graphical model.
The black area is the scope of the second contribution where we are planning
to develop a Bayesian Non-parametric version of the newly developed model.

3.1 A NEw TRACTABLE DYNAMIC GRAPHICAL MODEL

The main contribution of my research is the development of a new class of dy-
namic probabilistic graphical models, which we name Dynamic Sum-Product
Networks (D-SPNs). As the name suggests, the new model is an extension
of Sum-Product Networks [22]. It allows one to model discrete time-sliced
stochastic processes. It guarantees fast and tractable exact inference even for
some high-treewidth models. Moreover, D-SPNs can be learned much faster
than typical probabilistic graphical models. That is essentially due to the fact
that inference tasks are almost always parts of the learning process of proba-
bilistic models. Consider for example the well known Baum-Welch algorithm
for parameters learning. When applied to factored state-space models, such
as DBNs, this algorithm requires at least two computationally intensive infer-
ences tasks for each observation sequence at each learning iteration: one to
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Figure 3: Research Scope. The gray and black area correspond to the first and
second part of my research, respectively.

compute the forward probability and another one for the backward probabil-
ity. One can clearly see that these two inferences tasks are the bottlenecks in
the learning process as they their complexity is exponential in the number of
states variables. If we can improve the speed of the inference algorithm, as we
propose to do in D-SPNs, then we would also be able to improve the speed of
the learning process.

3.2 BAYESIAN NONPARAMETRIC D-SPNs

As will be discussed in section 7, we augment the basic nature of SPNs by
adding what we call Summary Variables S. The cardinalities of these latent
variables have direct impact on the performance of the D-SPN. A low cardinal-
ity means that the model will have less degrees of freedom to represent all the
necessary information about the belief state; hence, errors will propagate over
time. On the other hand, high cardinality means that the model would have
more parameters. This in turn makes the model more complex and requires
more data to estimate the parameters accurately. Hence, the question: "How
big should the latent variable state-space be?" is a crucial part of the D-SPN
learning process.

The research area of Bayesian Non-Parametric models provides a prag-
matic way to deal with the previous question through two models: Dirichlet
Processes (DPs) [10] and its extension Hierarchical Dirichlet Processes (HDPs)
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[26]. HDPs was applied successfully to HMMs [26, 12] to answer a similar
question: "How many hidden states are sufficient to represent the available
data?"; the model was named: Infinite Hidden Markov Model GHMM), in ref-
erence to the fact that the parameter space of the model is allowed to grow as
more data is obtained.

My second contribution is to develop a Bayesian Non-parametric version
of the D-SPNs (Infinite D-SPNs), which allows the cardinality of the summary
variables S, to grow with the available data. This research will also lead to
a contribution consisting of a Bayesian non-parametric version of the original
static Sum-Product Networks, which can be seen as special cases of D-SPNs
with one time slice.

3.3 Acrtivity REcoGgNITION USING D-SPNSs

D-SPNs with their fast inference capability are suitable for many real life ap-
plications, especially time critical ones. For example, a D-SPN model can be
used in a highly rich networked sensor environment to monitor and assist
individuals with Alzheimer’s disease. The advantage of D-SPNs over other al-
ternatives in these applications is that it allows one to develop complex models
that incorporates all the sensors and hidden factors in the environment, while
simultaneously allowing for near real-time inference. The last contribution of
my research will be a real life application in the area of Activity Recognition
that utilizes the power of D-SPNs.

4 LITERATURE REVIEW

This section gives a brief description of the most important literature that is
related to this work. The three areas of research focused upon from the lit-
erature include dynamic graphic models, complexity in graphical models and
the progress of Sum-Product networks. Other areas related to this work are
covered in more detail in the background section.

4.1 DyNAMIC GRAPHICAL MODELS

The history of dynamic graphical models goes back to the Russian mathemati-
cian, Andry Andreyevich Markov, who was born in 1856. He established the
branch of stochastic processes and studied one of the essential properties for
most of the work in this area, which carries his namesake: the Markov prop-
erty [1]. In [23], Rabiner and Jaung developed the first version of Hidden
Markov Models, which can be seen as the first dynamic graphical model. Dean
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and Kanazawa coined the term Dynamic Bayesian Networks in 1989 [7]; their
work is considered the first work that extends graphical models to the dynamic
space. Several dynamic models that use the framework of DBNs were pub-
lished after that, including Factorial HMMs [16], and Hierarchical HMM [11].

4.2 COMPLEXITY OF INFERENCE IN GRAPHICAL MODELS

Cooper [5] was the first to formalize the complexity of inference in Bayesian
Networks. Roth [25] showed latter that inference in graphical models is #P-
hard, which is a class of complexity that is harder than NP-hard. A more
recent work by Chandrasekaran [4] showed that in typical graphical models
treewidth is the only property that can ensure tractability.

4.3 Sum-ProbpucT NETWORKS

Sum-Product Networks were first introduced in [22]. The paper described the
new model and presented a generative learning method that uses an online
hard EM algorithm. A discriminative learning method was then presented in
[14]. An algorithm to learn the structure of the SPN was recently published
by Gens and Domingos in [15]. Their algorithm learns the structure from the
data and showed comparable likelihood results to other graphical models.

5 PROBLEM FORMULATION

The focus of this work is on finite discrete-time Markovian stochastic pro-
cesses. Such processes are defined over sequences of countably infinite ran-
dom variables. These random variables can be hidden X (can not be measured
directly from the environment), or observed (evidence) E.

Dynamic Bayesian Networks (DBNs), which are extensions of Bayesian
Networks, can be used to compactly represent the kind of processes that are
considered in this work. Performing probabilistic inference with DBNs means
that we want to compute the distribution of a set of variables A, given the
values of another set of variables B. If the set B is empty then this is an in-
ference task to compute the marginal of A, i.e. P(A). On the other hand if B
is not empty then we want to compute the posterior (conditional) probability,
i.e P(AB).

5.1 INFERENCE TASKS IN DYNAMIC MODELS

The three main inference tasks that are of interest when dealing with dynamic
graphical models are: monitoring, smoothing, and prediction [20]. Moni-
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Figure 4: The three main inference tasks in state-space models. The horizontal
fat bars represent the available evidences and the vertical bars represents the
query that we are interested in.

toring is the task of performing inference about the current state given all the
observations up until the current time slice: P(X,|E,.,). It is called monitoring,
because we are tracking the state of the process over time. Smoothing consists
of performing inference about a state in the past, given all the observations
up until the current time: P(X_|E,..), where 0 < 7 < t. An alternative name
for this task is: hindsight, which describes the nature of this task better. One
example of this task is when investigating a case in the past and we want to
use all available information, including the evidence that has happened after
the occurrence of the case. Smoothing allows the investigator in this exam-
ple to compute the probability of a state using both the evidence that occurs
before the case as well as "through hindsight" the evidence that occurs after
the case. Finally, prediction is the task of predicting the state of the process
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in a future time point, given all the available observations up until the current
time: P(X.|E,..), where T > t. Figure 4 visualizes these three inference tasks
on a timeline.

5.2 DISTANCE METRIC

For the purpose of testing the performance of a new model, one could design
an experiment using synthetic data and then compare the learned model with
the ground truth model. In such a situation and in many others a measure-
ment to compute the distance between the two probability distributions (the
learned one and the ground-truth) is required. There are several statistical
measurements designed for this purpose; one of which is Kullback-Leibler di-
vergence (commonly known as KL-divergence) [18]. KL-divergence, basically,
measures the amount of information lost when one probability distribution is
used to approximate another. KL-divergence is formally defined as:
P(i
D(PIIQ) =) wg(%)})(i)

This measurement is going to be used throughout my research.

5.3 PROBLEM STATEMENT

The main goal of this work is to develop a dynamic probabilistic graphical
model that can perform tractable exact inference for the three previously men-
tioned tasks and allows for unbounded treewidth. The performance of the
model, in terms of speed and accuracy, shall be compared to current state-of-
the-art inference techniques. Among the methods the model being developed
in this work will be compared to are: Variational methods, Boyen-Koller [3],
Markov Chain Monte Carlo, and Loopy Belief Propagation [19]. KL-divergence
and inference time will be used to measure accuracy and speed, respectively.

6 SumMm-ProbpDUCT NETWORKS

Sum-Product Networks (SPNs) are rooted directed acyclic graphs that repre-
sent joint distributions over random variables. The leaves of SPNs are indica-
tors for atomic values of the random variables. For example, a binary random
variable x would have two leaves in an SPN: a leaf as an indicator for x = 0,
and another one for x = 1.

The internal structure of the SPNs consists of alternating layers of sum and
product nodes. A non-negative weight w is assigned to each edge of a sum
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node. These two types of nodes, the sums and products, represent the low
level mathematical operations that need to be performed in order to complete
any inference task.

To compute the value of the SPN, we evaluate the network from bottom-up
and report the value of the SPN’s root as the result of the computation. We
start by assigning either 0 or 1 to the indicators. If a random variable was
observed, then the indicator of the observed value will be 1 while the other
indicators of this same variable will be 0. On the other hand, if a random
variable has not been observed and it is a part of the inference query, we set
all its indicators to 1.

The value of a product node p; is the result of the product of its childrens’

values:
l—[ Vj

jeChild(p;)
where Child(X) is a set of all the children of node X. The value of a sum node

s;, on the other hand, is the summation of the products of its edges’ weights
times the children values:
Z WijV;

jeChild(s;)

where w;; is the weight for the edge from the sum node s; to node j, and v; is
the value of node j.

Three basic SPNs are depicted in figures 5, 6, and 7. Figure 5 shows an
SPN over one binary variable. To compute the probability of X1 = 0 from this
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Algorithm 1 Learning an SPN [22]

Input: Dataset D over variables X.
Output: An SPN that is learned from D and represents a distribution over X.
S «— GenerateDenseSPN(X)
InitializeWeights(S)
repeat
for alld € D do
UpdateWeights(S, Inference(S), d)
end for
until convergence

SPN, we perform the following computation:
PX1=0)=(1*xwl)+ (0xw2)

The SPN in figure 6 is over two binary independent variables. Computing the
probability of X1 =1 and X2 = 1 can be done as follows:

P(X1=1,X2=1)=((0*w1)+ (1 *w2))*((0xw3) + (1 xw4))

Figure 7 shows a slightly more complex SPN. It depicts a network over two
conditionally independent binary random variables. We can perform inference
in this network using a computation that is similar to the previosuly mentioned
one.

6.1 LEARNING SPNs

In the original paper that introduced SPNs [22], Poon and Domingos pre-
sented a general generative learning algorithm to learn the structure and pa-
rameters of an SPN. In general, the algorithm starts by generating a dense SPN
over variables X and initializing the weights randomly. It then runs inference
on each data point in the dataset and updates the weights. This process is
repeated until convergence and, then, zero-weight edges are pruned and non-
root nodes that have no parents are recursively removed. The resulting SPN is
considered the final SPN. Algorithm 1 shows this general learning procedure.

Poon and Domingos’ paper proposed two specific methods for updating
weights: Gradient Descent, and Expectation-Maximization. For the gradient
descent method we firstly compute the likelihood gradient using:

28(x) (25
wy (a si(x))'sj(x)

1
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where S(x) is an SPN over x, w;; is the weight of the edge that connects node
i and j, and S;(x) is the sub-SPN for node i. It is worth noting that the terms
of this equation can be efficiently computed using the inference algorithm for
SPNs mentioned previously. A gradient step can then be used to update the
weights of the sum nodes.

Expectation-Maximization can also be used to learn SPNs. In this pro-
cedure the Inference task in Algorithm 1 is considered the E step, where we
compute the marginals over the hidden variables of the SPN. The UpdateWeights
procedure is where the M step happens, in which we add the marginals to their
values at the previous iteration and then we normalize the weights to obtain
their new values.

This procedure includes internally a procedure to learn the structure of the
SPN by starting from a generic SPN and then pruning all non-necessary nodes.
However, the structure in this case is not completely learned from the data; it
is restricted to the form of the initial generic SPN. Gens and Domingos [15]
recently proposed a new learning algorithm that can learn the entire structure
from the data. Essentially, their algorithm recursively tries to partition the
set of variables X into independent subsets. If the partitioning succeeds we
repeat the same procedure with each subset and return a product node of
these partitions. Otherwise, we learn a sum node from a sub-set of the dataset
and return it.

7 PROPOSED SOLUTION: DYNAMIC-SPNSs

Our proposed approach to model stochastic processes using Sum-Product Net-
works is to define two SPNs: one that represents the process at its initial state,
and a second SPN that works as a template for the process at different time
steps; this template represents the transition model of the process. The Initial-
SPN and Transition-SPN can then be used to represent a stationary process
of length T by instantiating the Initial-SPN and repeating the Transition-SPN
T — 1 times.

The nature of Sum-Product Networks leads to implicitly introducing latent
variables between time slices (because, in SPNs, sum nodes can be seen as
summing out a latent variable). We augment the implicit latent variables at
each time step t by explicitly adding a set of latent random variables that work
as the interface between time step t and t 4+ 1. The explicitly added latent
variables help in collecting sufficient statistics about the state of the process
at each time step. This augmentation can, simply, be seen as wrapping the
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Figure 8: An example of a Dynamic Sum-Product Network. The network is
over two binary random variables X; and X,, and it uses one binary summary
variable S. The figure shows the process for three time slices. A network like
this can be used to model a simple process that has very strong correlation
between two variables and requires no more than one bit of information to
summarize its state.

stochastic process with a dynamic mixture model that has N components. The
components are responsible for summarizing the entire state of the process
at time t, including its hidden and observed variables, and propagate it to the
consecutive time t+1. We call these latent variables, the Summary variables S.

The use of the repeated (template-based) structure and the summary vari-
ables ensures that the proposed model can be used to represent any stationary
discrete Markovian stochastic process. It also ensures that the number of edges
of the resulting model is low, which has the effect of keeping the inference
time complexity low. Another factor that plays an important role in keeping
the model tractable is exploiting context-specific independence between the
summary variables and other random variables.

More formally, a Dynamic Sum-Product Network (D-SPN) is a directed
probabilistic graphical model that represents a discrete-time Markov process
over a countably infinite collection of hidden {X, : t € N}, and observed {E, :
t € N} random variables. Analogously to the DBN, the structure of the D-
SPN can be defined using a pair of SPNs [SPN,_,,SPN,.,], where SPN,_,
represents the initial state of the D-SPN and SPN,., represents a template
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of the evolving process. In addition to the hidden and observed variables, a
D-SPN also includes a set of summary variables {S, : t € N}.

The network structure within a time slice, i.e. the intra-time slice edges,
can vary depending on the problem. However, a basic general structure is to
condition all the variables at time slice t on the summary variable S,. This
structure simplifies the process and keeps the number of edges low. The same
thing also applies to the structure between time slices, i.e. the inter-time slice
edges, where all the variables on a time-slice are conditioned on the previous
time-slice summary variable S,_;. This structure allows the summary variable
to collect all the necessary information about time slice t, and also to broadcast
the collected information to the next time slice t + 1. The following equations
summarize the conditional independencies that hold by this structure for the
hidden X and the observed E variables:

P(Xt|X0:t—1,t+1:T’EO:T7SO:T) = P(thst—l’st) (2)

p(Et|XO:T:EO:t—l,t+1:T’SO:T) = P(Etlst—lzst) 3)

Figure 8 shows an example of a Dynamic Sum-Product Network. The figure
depicts three time slices for a process that has two binary random variables X
and X,. The summary variable in this example is also binary; thus, it can only
hold one bit of information. A D-SPN like this can be used to model a simple
process with a strong correlation between its variables.

7.1 RELATION TO OTHER MODELS

D-SPNs are closely related to several dynamic probabilistic models. In partic-
ular, D-SPNs are more general than Hidden Markov Models in the sense that
they can (1) represent a factored state-space stochastic process, (2) model
processes that don’t necessarily have natural forward dependencies, and (3)
induce dependencies between observations in different time-slices.

D-SPNs also differ from Dynamic Bayesian Network in a number of ways.
First, exact inference is tractable in D-SPNs even in high treewidth models.
This gives us the ability to build practical models with complex interactions
between variables within and among time slices. Second, the nature of SPNs
leads to models that have rich latent structure within time slices. In this sense,
D-SPNs can be seen as a class of temporal deep learning models. Finally, ex-
ploiting determinism and context-specific independence are inherent proper-
ties of D-SPNs. That is in contrast to typical learning and inference procedures
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Algorithm 2 Learning a D-SPN

Input: Dataset D over variables X.
Output: A D-SPN that is learned from D and represents a distribution over X.

G < GenerateGeneralDynamicSPN(X)
DSPN « InitializeWeights(G)
repeat
for all d €D do
a «— ForwardProbability(d,DSPN)
B < BackwardProbability(d,DSPN)
for all i,j € PairOf HiddenStates(DSPN) do
y « ExpectedTransition(i,j,a,3,d, DSPN)
DSPN < UpdateWeights(y, DSPN)
end for
end for
until convergence

for Dynamic Bayesian Networks, which are based on the structure of the model
and, usually, lead to intractable models.

The previous differences also apply to dynamic conditional random fields
(DCRFs), which are generalizations of linear-chain conditional random fields
(CRFs). However, it seems that DCRFs and D-SPNs share the same expressive-
ness, but not the same complexity.

One of the research directions that we will investigate is the relationship
between D-SPNs and DCRFs. Also, more generally, the relationship between
D-SPNs and CRFs. The work in this direction will also contribute to a better
understanding of SPNs and their expressiveness.

7.2 LEARNING D-SPNs

This section considers the problem of learning D-SPNs from data. We first
assume that the structure of the D-SPN is known and our task is to estimate
the parameters using the available data. Then, we discuss an initial idea for
learning the structure of D-SPNs. The dataset in this context is a set of inde-
pendent and identically distributed (i.i.d.) cases, where each case is a full or
partial assignment of the random variables for one or more time steps.

We are proposing a general scheme to learn the parameters of D-SPNs
when the structure is known. The scheme is based on the Expectation-Maximization
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algorithm and can be viewed as a generalization of the learning algorithm that
was presented in section 6.1. It can also be seen as a special instance of the
Baum-Welch algorithm applied to D-SPNs.

Similar to algorithm 1, we start with a general D-SPN structure. Such
structure could be based on the one that was described in section 7 (summa-
rized by equations 2 and 3). We, then, initialize the weights of the selected
structure. Next, for each sequence of observations E((f%, where the superscript
(d) indicates the index of the case in the dataset, and T is the length of the
case, we compute the probability that the D-SPN, with its current weights,
will end up with a specified assignment i for the hidden variables (includ-
ing the summary variable) at each time step, given the observation sequence
E(()d% This probability is denoted by a,(i) and can be computed recursively for
t=1,2,...T using:

o, (D) = P(E|X, = i).PSPIé\,O(X =1) t=0 @
‘ P(Et|Xt = i)-2j=1 at—l(j)P(Xr—l = ]lXt = i’Et) t>0

where P(E,|X, = i) is the probability of observing E, when i is the assign-
ment of the hidden variables, Pspy (X = 1) is the initial probability for i, N
is the combination of all the possible states, and P(X,_, = j|X, =i, E,) is the
probability of ending with the assignment i for the hidden variables when the
assignment of the previous time step is j. Essentially, a,(i) is the forward-
probability of having the assignment i at time t while all the previous assign-
ments are consistent with the observation case E(()d% Similarly, we compute the

backward-probability of E((f% using:

N
Bi) = Bi(NP(Eei X1 = DP(Xyy = jIX, =1, E,). (5)
j=1

This gives us the probability that at time t we have the i assignment and the
next time step will be consistent with Egi)l. We can then use the forwards and
backwards probabilities to maximize weights of the transition model. Algo-
rithm 2 gives an overview of the proposed scheme.

We now turn to discuss the problem of learning the structure of D-SPNs
from data. Adopting the general structure that was described in section 7 helps
us with restricting the inter-time slices connections to a smaller set, because
the model is defined such that the summary variables are the only interfaces

between time slices. However, it still leaves us with three problems:
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e The intra-time slice connections: in which we need to decide how the
random variables interact with each others within the time slice.

e The number of summary variables: If more than one summary variables
are going to be used then a decision needs to be made about how many
of them are required to sufficiently collect and propagate information
between time slices. This also leads to the next problem.

e The decomposition of the stochastic process into sub-processes: Us-
ing more than one summary variable is equivalent to decomposing the
stochastic process into multiple sub-processes. In this problem these
sub-processes need to be identified, so that dependent subsets of ran-
dom variables end up together in their own sub-process (i.e. they are
sharing the same summary variable)

We are planning to pursue our research in the area of structure learning of
D-SPNs in order to solve these three problems. One of the possible solutions is
to extend the algorithm that was recently given in [15]. The algorithm tries to
recursively learn an SPN from data by approximating the dependencies among
the random variables. Our plan is to extend the algorithm by, first, applying
independence tests over random variables within time-slices (first problem),
then between time slices (second and third problem). A D-SPN structure could
then be built according to the results of these tests.

7.3 BAYESIAN NoN-PARAMETRIC D-SPN

As the previous example shows, the cardinality of the summary variable |S|
determines its capacity to accurately summarize the states of the process. Ba-
sically, choosing a low-cardinality means that the model will have less degrees
of freedom and, at the learning time, it will try to fit many —-maybe unrelated—
states together. This in turns will introduce errors that propagate over time.
On the other hand, increasing the cardinality will reduce the possibility of such
errors, but it will also increase the complexity of the model.

The problem is similar to one of the most common problems in machine
learning: the problem of model selection. It arises in Hidden Markov Models,
where the right number of hidden states needs to be chosen. It also appears in
the k-means algorithm, where the number of clusters k has to be chosen. The
problem also appears in mixture models where there is a need to determine
the best number of clusters that describe the available data. A simple solution
for this issue is to use a method like cross-validation to evaluate models with
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different configurations and then pick the most suitable model. Another ap-
proach is to adopt the Bayesian Non-parametric framework, so that the model
can grow with the data.

We are planning to study the ability of augmenting the summary variables
even further by defining a Hierarchical Dirichlet Process (HDP) over them. An
HDP is a hierarchical Bayesian non-parametric model that can be used to de-
fine infinite mixture models, where the mixture components are shared [26].
Another possible research direction in this area is to study the ability to de-
fine a Bayesian non-parametric prior over the entire structure of the network,
such that the complexity of the D-SPN structure grows with data. Indian Buf-
fet Processes [17] have already been successfully applied to several graphical
models in order to make their structures grow with the data (e.g. Infinite Fac-
torial Hidden Markov Models [13] and iDBNs [8]). A similar technique can
be used to develop a version of D-SPNs that has infinite structure.

8 APPLICATION: ACTIVITY RECOGNITION USING D-SPNs

Activity recognition is the task of automatically assigning labels of actions per-
formed by an agent to segments of sequential data. Possible actions of interest
are: gestures, interactions between people, or activities like walking and sit-
ting. The source of the data can be a set of sensors. Many different types of
sensors are used for activity recognition, including: microphones, accelerom-
eters, cameras, etc. Activity recognition has many applications in areas such
as surveillance, human-computer interaction, and sports.

To evaluate our proposed model we are going to apply it to the problem
of activity recognition. We are planing to use three datasets to benchmark the
accuracy, tractability, and inference time of our proposed model. The datasets
have different numbers and types of sensors, which will help in testing and
studying the characteristics of our models in different settings. The three
datasets are:

e Kasteren, et al. Benchmark [27]: The benchmark consists of three
datasets and also contains the results of four models: Naive Bayes, Hid-
den Markov Model, Hidden Semi-Markov Model, and Conditional Ran-
dom Field. These results are supposed to be used as a baseline for perfor-
mance with other models. The three datasets are the sensors’ readings
from three different houses. All the sensors give binary outputs and the
data was manually annotated.
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e OPPORTUNITY Activity Recognition Benchmark [24]: The dataset con-
sists of readings from 72 different sensors. The data was collected from
four subjects that operated in a room simulating a small apartment. The
sensors were attached to the subjects’ body and the objects in the room,
in addition to some other ambient sensors.

e SmartWalker [21] Dataset: The dataset consists from two sensor read-
ings of two experiments that were done using a special walker equipped
with several accelerometers and load-cells. The experiments were done
in a controlled environment. Video recordings were used to manually
annotate the data by aligning the recordings with the sensor readings.

A possible contribution out of the work in this area is to provide a tractable
dynamic graphical model that can model complex interactions in sensor-rich
environments.

Some of the datasets’ readings are continuous values; and there is still no
known way to build a tractable SPN over variables with continuous domains.
One obvious solution to this issue is to convert these values to discrete inter-
vals using a discretization method like Fayyad&Irani [9]. A research direction
that could result in a contribution to both SPNs and D-SPNs is to study the
possibility of defining these networks over random variables with continuous
domains.

O CoONCLUSION AND FUTURE PLANS

Dynamic Sum-Product Networks are extensions of Sum-Product Networks that
allow one to model sequential and complex stochastic processes with un-
bounded network treewidth while keeping the inference tractable. We have
proposed a specified structure that augments the implicit hidden variables in
Sum-Product Networks by explicitly adding a special type of latent variables
that we call summary variables. These variables help in keeping the number
of edges low, which in turn keeps the model tractable. We have also presented
an algorithm to learn the parameters of the proposed model and discussed a
plan to develop a structure learning algorithm.

The following list summarizes the four research directions that we are plan-
ning to pursue in the future:

e Characterizing the relationship between D-SPNs and DCRFs: Study-
ing and formalizing the relationship between D-SPNs and DCRFs. In
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particular, we are interested in answering the question of whether they
share the same expressive power or not.

e Structure learning for D-SPNs: Developing an algorithm to learn the
structure of D-SPNs, which involves three sub-tasks: (1) learn the con-
nections between the variables within a time slice, (2) choose the num-
ber of summary variables, (3) decompose the process into sub-processes,
where each process shares a summary variable.

¢ Bayesian Non-Parametric D-SPNs: Developing a Bayesian Non-Parametric
extension of D-SPNs such that the cardinality of the summary variables
can grow with the data. A more general extension would allow the en-
tire structure of the D-SPN to also grow with the data.

e Activity Recognition using D-SPNs: Apply D-SPNs to a real-life activity
monitoring application to show the performance of the proposed model
and compare it to other state-of-the-art models and approximation meth-
ods.
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