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ABSTRACT
The Resource Description Framework (RDF) is a World
Wide Web Consortium (W3C) standard for the conceptual
modeling of web resources, and SPARQL is the standard
query language for RDF. As RDF is becoming more widely
utilized, RDF data management systems are being exposed
to workloads that are much more diverse and dynamic than
they were designed to support, for which they are unable to
provide consistently good performance. The problem arises
because these systems are workload-agnostic; that is, they
rely on a database structure and types of indexes that are
fixed a priori, which cannot be modified at runtime.

In this paper, we introduce chameleon-db, which is a work-
load-aware RDF data management system that we have de-
veloped. chameleon-db automatically and periodically ad-
justs its layout of the RDF database to optimize for queries
so that they can be executed efficiently. Since one cannot
afford to stop processing queries, we propose a novel de-
sign that enables partitions to be concurrently updated. We
demonstrate that chameleon-db can achieve robust perfor-
mance across a diverse spectrum of query workloads, out-
performing its competitors by up to 2 orders of magnitude,
and that it can easily adapt to changing workloads.

1. INTRODUCTION
RDF and SPARQL are the building blocks of the semantic

web, and they are important tools in web data integration.
RDF is composed of subject-predicate-object (s, p, o) state-
ments called triples [17]. Each triple describes an aspect of a
web resource. The subject of the triple denotes the resource
that is described, the predicate denotes a feature of that
resource, and the object stores the value for that feature.

With the proliferation of very large, web-scale distributed
RDF datasets such as the Linked Open Data (LOD) cloud [6],
the demand for high-performance RDF data management
systems has increased. The wide variety of applications
that RDF data management systems support mean that
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Figure 1: Structural diversity in SPARQL.

queries submitted to these systems are becoming more di-
verse [4, 11, 16]. This diversity has a number of reasons.
First, a single triple pattern, which is the atomic unit in a
SPARQL query, can be composed in eight different ways,
and in real applications, each composition appears with in-
creasing regularity [4]. To address this type of diversity,
some systems index triples on all binary permutations of at-
tributes (i.e., s-p, s-o, p-s, p-o, o-s, o-p) [19, 29]. Second,
triple patterns can be combined in numerous ways (Fig-
ure 1), giving rise to structural diversity—query structures
can be star-shaped, linear, snowflake-shaped, or an even
more complex structure. Our objective in this paper is to
build an RDF data management system whose performance
is robust across structurally diverse queries even when the
frequently queried structures are changing.

1.1 Motivation
As SPARQL queries in typical workloads become more

structurally diverse [4, 11, 16], state-of-the-art systems are
unable to provide consistently good performance for such
workloads. The problem is that most systems are workload-
agnostic; that is, they rely on a database structure and types
of indexes that are fixed a priori, which cannot be mod-
ified at runtime. If the logical and physical schema of a
database are not designed for answering a particular type of
query, that system is likely to incur significant performance
penalty.

Consider the following experiment that demonstrates our
argument. We generated 100 million triples using the Water-
loo SPARQL Diversity Test Suite (WSDTS)1 data generator
and measured the performance of three state-of-the-art RDF
data management systems, namely, x-RDF-3x [22], Virtu-
oso [12] and gStore [34], on three query mixes, each consist-
ing of only one of (i) star-shaped, (ii) linear, (iii) snowflake-
shaped, or (iv) complex queries. Section 7 contains more
information regarding our experimental setup.

A snapshot of our results on a subset of the queries that we
used in our experiments (Table 1) highlight two important

1https://cs.uwaterloo.ca/~galuc/wsdts/
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linear:L4 star:S3 snowflake:F5 complex:C3
x-RDF-3x 7.6ms 8.9ms 56.4ms timeout

gStore 53.9ms 6.2ms timeout 162.7ms
Virtuoso 282.8ms 347.2ms 9.4ms 103623.7ms

Table 1: Snapshot from our experimental results (timeout is
issued if query evaluation does not terminate in 15 minutes).

issues. First, while performing very well on one type of
query mix, the performance of each system is consistently
worse on the remaining queries. Second, there is a different
winner by a large margin for each query type. Therefore,
deciding which system to deploy for a particular workload
is difficult. One can choose a system that efficiently handles
the “most frequent” query types in the workload. However,
since that system can be very inefficient in executing the
remaining types of queries, even though they appear less
frequently, the overall performance of the system for that
workload could be far less than optimal. Furthermore, the
system is not robust to even the slightest changes in the
workload; that is, when the frequently queried structures
change, performance will significantly degrade.

1.2 Overview of Our Approach
In this paper, we introduce chameleon-db, which is a work-

load-aware RDF data management system that we have de-
veloped. Workload-awareness means that chameleon-db will
automatically and periodically adjust the layout of the RDF
database to optimize for queries so that they can be executed
efficiently. In chameleon-db, RDF data and SPARQL queries
are represented as graphs, and queries are evaluated using
a subgraph matching algorithm [28]. In this sense, there
are similarities with gStore [34], but instead of evaluating
queries over the entire RDF graph, we partition it. Then,
during query evaluation, irrelevant partitions are pruned out
using partition indexes that are created across the partitions
based on the contents of each partition (Figure 2). Our focus
in this paper is on techniques and algorithms for the proper
partitioning of the RDF graph and efficient query execution
over this partitioned data. Therefore, we omit system fea-
tures and details; we only note that chameleon-db is a fully
operational system involving 30K lines of C++ code.

The way the graph is partitioned impacts performance,
and chameleon-db uses it as a knob to periodically auto-tune
its performance. We express query performance as a func-
tion of the number of intermediate tuples processed during
query evaluation. There may be some intermediate tuples
from which no final result is generated, which is natural
because, for instance, not all intermediate tuples need to
be joined with another tuple. We call these dormant tu-
ples. The issue with dormant tuples is that even though
resources are spent on constructing and processing them,
neither their presence nor their absence alters the final query
results. However, their abundance is bad for performance.
By carefully isolating the parts of the graph that truly con-
tribute to the final query results from those that do not, it is
possible to reduce the number of dormant tuples that need
to be processed during query evaluation, thereby improving
system performance for that workload. For this purpose, we
periodically re-partition the graph. Since we cannot afford
to stop processing queries when the partitions are being up-
dated, we propose a novel design that enables partitions to
be concurrently updated while queries are being evaluated.
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Figure 2: The architectural layout of chameleon-db.

Consider evaluating the linear query Q = ?w
A−→?x

B−→
?y

C−→?z against the graph in Figure 3b. Any triple that lies
outside the shaded region is not part of the query results.
Ideally, we would like to find a partitioning that clearly sep-
arates these irrelevant triples from the actual query results
such that as few dormant tuples as possible are produced
during query evaluation. It turns out that Partitioning A
in Figure 3c will serve this purpose. The important point
is that the irrelevant triples (marked with dashed lines) are
completely bypassed in this evaluation because query eval-
uation can be localized to P2.

In contrast, consider PartitioningB (Figure 3d) that mixes
irrelevant triples with triples that are actually part of the
query results. In this case, the query needs to be decom-

posed into three sub-queries: Q1= ?w
A−→?x, Q2= ?x

B−→?y

and Q3= ?y
C−→?z (we will postpone the discussion of “why”

to Section 4, where we describe our query evaluation model).
Then, each subquery is evaluated over partitions P3–P6, pro-
ducing three sets of tuples T1, T2 and T3, respectively. Fi-
nally, these tuples are joined as shown in Figures 3e–3i. This
evaluation produces dormant tuples. In this case, reordering
the join operations or applying sideways information pass-
ing [20] to early-prune some of the tuples in T1–T3 does not
eliminate the problem. For example, while tuples (v1, v5)
and (v4, v11) can be eliminated from T2 once v2 is identi-
fied as the only join value in T1 ./ T2, (v2, v8) remains as a
dormant tuple until all join operations are completed.

When a query is evaluated, chameleon-db collects statis-
tics to estimate whether the current partitioning produces
dormant tuples, and if so, how many. Using this informa-
tion, a better partitioning is computed next time database
re-organization takes place, which includes partitioning the
database and updating the partition indexes. Consequently,
chameleon-db achieves more robust performance than exist-
ing systems across queries with different properties (that is,
its performance is consistently good across different query
structures), and it can adapt to changing workloads.

1.3 Challenges and Our Contributions
One of the major challenges we address in this paper is

the problem of partitioning the RDF graph. The question is
how to use the information collected during query evaluation
(i.e., regarding dormant tuples) to quantify the “goodness”
of a partitioning such that an “optimal” one can be selected.
Since it is also desirable to partition the graph in multiple
ways so as to provide support for a wide range of workloads,
there is a need for a generic query evaluation model that
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Figure 3: Sample dataset, their graph representation and sample partitionings.

produces correct results under all potential partitionings of
the graph. In order to ensure correctness, a query may need
to be decomposed, and therefore, finding an “optimal” de-
composition is another challenge.

A related issue is that, unlike in relational databases, there
is no schema that describes a partitioning in a well-defined
manner that one can utilize to generate valid query plans.
Arguably, a schema can be generated from a given parti-
tioning; however, this requires expensive computational and
maintenance overhead. Alternatively, a schema can be de-
termined first, according to which the partitioning may be
computed. However, that limits the type of partitionings,
and therefore, the types of queries that can be efficiently
supported by the system, which is contradictory to the idea
of workload-awareness. Therefore, we propose efficient tech-
niques for generating query plans without having to know
the complete structure of the underlying partitioning.

Creating the partition indexes is another challenge, be-
cause partitions can be indexed on different (potentially ex-
ponentially many) combinations of attributes, some of which
will never be relevant to the queries in the workload. For
space considerations, we provide only an overview of our in-
dexing approach in this paper (Section 6); it will be treated
more fully elsewhere.

The paper makes the following contributions:

• We introduce a set of operations and a query eval-
uation model, namely, partition-restricted evaluation
(PRE). The operations are carefully designed to ac-
commodate a repartitioning of the RDF graph that
does not disrupt query evaluation (Section 4).
• We prove that (i) for any partitioning of the graph,

there exists a PRE expression that correctly evaluates
the query and that (ii) this expression can be gen-
erated deterministically (Section 4). We extend our
query evaluation model with a set of equivalence rules
to generate more efficient expressions.
• We introduce methods to quantify the “goodness” of a

partitioning with respect to a workload and develop a
strategy in which the partitioning can be concurrently
updated while queries are being evaluated (Section 5).
• We experimentally quantify the benefits of our work-

load-aware partitioning over workload-agnostic tech-
niques employed by other RDF data management sys-
tems (Section 7), and we show that chameleon-db is
more robust across all query structures and that it
can adapt to changing workloads.

2. RELATED WORK

Research on RDF data management systems can be classi-
fied into two categories: (i) single-node approaches that aim
to improve query performance by using alternative storage
layouts, logical representations of data and indexing meth-
ods [1, 7, 12, 21, 30, 32, 34], and (ii) distributed approaches
that focus on improving scalability through techniques for
distributing RDF data on multiple machines and for an-
swering queries over the distributed system [8,13,18,31,33].
These two are orthogonal research directions. In fact, the
underlying query engine in most distributed approaches is a
single-node system such as RDF-3x [21] or gStore [34], which
is responsible for processing queries within each distributed
node. chameleon-db falls into the first category of systems,
therefore, we continue our discussion with single-node RDF
data management systems.

Existing RDF data management systems are workload-
agnostic by “design”, that is, their choice of storage layout,
logical representation of data and indexing had already been
fixed at the time the system was implemented, and their
design cannot be changed at runtime. Specifically, they
• use (i) a row-oriented [7,12,30], or (ii) a column-oriented

store [1,12], (iii) a native store [21,32], or (iv) a graph
store [34];
• represent RDF data as (i) a single table of triples [12,

21], (ii) a single large RDF graph [34], or (iii) a par-
titioned database in which each partition corresponds
to a two-attribute table (one for each predicate in the
dataset) [1], or (iv) same as (iii) but each partition
corresponds to groups of triples that describe similar
resources (i.e., resources that share common set of at-
tributes are considered “similar”) [7, 30];
• index (i) only a predefined (sub)set of attributes [1, 7,

12, 34], or (ii) exhaustively, all possible combinations
of attributes [21].

These design choices affect the types of queries that can
be efficiently supported by each system, and as our exper-
iments show, these systems are unable to support certain
types of queries efficiently. For example, gStore [34] is op-
timized to handle star-shaped queries and it needs to de-
compose more general queries into stars before executing
them. In SW-Store [1], data are fully partitioned into two-
attribute tables (one for each predicate), hence, queries need
to be decomposed even further. RDF-3x [21] is designed to
evaluate triple patterns efficiently. However, when it comes
to star-shaped, snowflake-shaped or linear queries, they al-
ways need to be decomposed into triple patterns, which can
result in a very large number of join operations. Although
DB2-RDF [7] clusters triples that belong to the same type
in an effort to reduce the number of joins, clustering relies
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on the characteristics of the data, but not the workload.
chameleon-db uses a graph-store, but in contrast to exist-
ing systems, it dynamically and periodically partitions the
RDF graph and updates the indexes based on the current
workload. Therefore, it is far more robust in the type of
query structures it can handle, and it is capable of adapting
to changing workloads.

3. BACKGROUND AND PRELIMINARIES
This section formally describes the parts of RDF and

SPARQL that are relevant to this paper. We represent RDF
data and the conjunctive fragment of SPARQL queries as
graphs, as the example in Figure 3b, because a graph-based
representation is suitable for describing how queries are eval-
uated in chameleon-db, where query evaluation is modeled
as a subgraph isomorphism problem [28].

Assume two disjoint, countably infinite sets U (URIs)
and L (literals)2. URIs uniquely denote Web resources or
features of Web resources. Literals denote values such as
strings, natural numbers and booleans. Then, an RDF triple
is a 3-tuple from the set T = U × U ×

(
U ∪ L

)
.

Definition 1. An RDF graph is a directed, labeled multi-
graph G = (V,E) where: (i) the vertices (V ) are URIs or
literals such that V ⊂ (U ∪L); (ii) the directed, labeled edges
(E) are RDF triples such that E ⊂

(
V × U × V

)
∩ T ; and

(iii) each vertex v ∈ V appears in at least one edge, where
for each edge (s, p, o) ∈ E, s is the source of the edge, p is
the label, and o is the target of the edge. Hereafter, we use
V (G) and E(G) to denote the set of vertices and the set of
edges of an RDF graph, respectively.

To define queries, we assume a countably infinite set of
variables V that is disjoint from both U and L. It is possible
to restrict the values that can be bound to a variable using
a filter expression.

Definition 2. A filter expression is an expression of the
form ?x ◦ c where ?x ∈ V, c ∈ (U ∪ L), and ◦ ∈ {=, <,≤, >
,≥}.

Next, we define what we consider as the most basic class
of SPARQL queries within our framework. Similar to RDF
graphs, we use a graph-based representation.

Definition 3. A constrained pattern graph (CPG) is a

directed, labeled multi-graph Q = (V̂ , Ê, R) where: (i) the

vertices (V̂ ) are variables, URIs, or literals such that V̂ ⊂
V∪U∪L; (ii) the directed, labeled edges (Ê) are 3-tuples such

that Ê ⊂ V̂ × (V ∪U)× V̂ , where for each edge (ŝ, p̂, ô) ∈ Ê,
ŝ is the source of the edge, p̂ is the label, and ô is the target
of the edge; (iii) each vertex v̂ ∈ V̂ appears in at least one
edge; and (iv) the graph is augmented with a finite set of
filter expressions R.

Figure 1 depicts three CPGs. Note that these simple ex-
amples do not contain any filter expressions. CPGs corre-
spond to the and-filter fragment of SPARQL as defined
by Pérez et al. [24], where each edge in a CPG represents a
triple pattern. CPGs can be combined using operators and,
union, and opt [24]. Thus, our notion of a SPARQL query
is defined recursively as follows.
2 For simplicity, we ignore blank nodes in our discussions;
however, our formalization can be extended to support
them.

Definition 4. Any CPG is a SPARQL query. If S1 and
S2 are SPARQL queries, and F is a filter expression, then
expressions (S1 andS2), (S1 unionS2), (S1 optS2), and (S1

filterF ) are SPARQL queries.

We now define the semantics of these queries. As a basis
for this definition we use standard SPARQL solution map-
pings [24].

Definition 5. A solution mapping is a mapping µ : V ′ →
(U ∪L), where V ′ is a finite subset of V. Two solution map-
pings µ1 and µ2 are compatible, denoted by µ1 ∼ µ2, if
µ1(?x) = µ2(?x) for all variables ?x ∈ dom(µ1) ∩ dom(µ2).

Figures 3e to 3i depict sets of solution mappings in a tab-
ular form. Sets of solution mappings can be combined based
on the following standard SPARQL algebra operations [24].

Definition 6. Let Ω1 and Ω2 be two sets of solution map-
pings and let F be a filter expression. Union (∪), join (1),
difference (\) and selection (Θ) are defined as follows:

Ω1 ∪ Ω2 =
{
µ | µ ∈ Ω1 or µ ∈ Ω2

}
,

Ω1 1 Ω2 =
{
µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2

}
,

Ω1 \ Ω2 =
{
µ ∈ Ω1 | ∀µ′ ∈ Ω2 : µ 6∼ µ′

}
,

ΘF (Ω1) =
{
µ ∈ Ω1 | µ satisfies F

}
,

where a solution mapping µ satisfies a filter expression ?x◦c,
if ?x ∈ dom(µ) and µ(?x) ◦ c3.

For our most basic type of SPARQL query, that is, a
CPG, solution mappings can be computed from subgraphs
of a queried RDF graph that match the CPG. This is very
similar to the notion of a “match” in the context of sub-
graph isomorphism [28] except for the presence of variables
in SPARQL. To accommodate this difference, we first intro-
duce compatibility between an edge in an RDF graph and
an edge in a CPG (Definition 7). Informally, two edges are
compatible if they have the potential to match. Formally:

Definition 7. Let e = (s, p, o) ∈ E be an edge in an

RDF graph G = (V,E), and let ê = (ŝ, p̂, ô) ∈ Ê be an edge

in a CPG Q = (V̂ , Ê, R). Edges e and ê are compatible if
either (i) p = p̂, or (ii) p̂ ∈ V.

Using the notion of edge compatibility, we define a match
between a CPG and an RDF graph as surjection from the
edges (and vertices) of a CPG onto the edges (and vertices)
of an RDF graph (possibly a subgraph of the queried RDF
graph) such that corresponding edges are compatible and
the source (and the target) vertices of a pair of correspond-
ing edges are also mapped onto.

Definition 8. Let G = (V,E) be an RDF graph, and let

Q = (V̂ , Ê, R) be a CPG. Given a solution mapping µ, G µ-
matches Q if (i) dom(µ) is the set of variables mentioned in
Q, (ii) µ satisfies all filter expressions in R, and (iii) there

exist two surjective functions MV : V̂ → V and ME : Ê → E
such that:

• for each (v̂1, v2) ∈ V̂ ×V with MV (v̂1) = v2: if v̂1 ∈ V,
then µ(v̂1) = v2, else v̂1 = v2;

3 We assume that each binary relation ◦ ∈ {=, <,≤, >,≥}
over sets U and L is defined in the obvious way according
to the SPARQL specification [25].
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• for each (ê1, e2) ∈ Ê × E with ME(ê1) = e2: ê1 =
(ŝ1, p̂1, ô1) and e2 = (s2, p2, o2), (a) ê1 and e2 are
compatible and if p̂1 ∈ V, then p2 = µ(p̂1), and (b) if
MV

(
ŝ1

)
= s2, then MV

(
ô1

)
= o2.

G matches Q if there exists a solution mapping µ such that
G µ-matches Q.

Putting it all together, we define the expected result of
evaluating a SPARQL query over an RDF graph as follows.

Definition 9. The result of a SPARQL query S over an
RDF graph G = (V,E), denoted by JSK∗G, is defined recur-
sively as follows:

1. If S is a CPG Q, then JSK∗G =
{
µ
∣∣G′ is a subgraph of G

and G′ µ-matches Q
}

;
2. If S is S1 and S2, then JSK∗G = JS1K∗G 1 JS2K∗G;
3. If S is S1 union S2, then JSK∗G = JS1K∗G ∪ JS2K∗G;
4. If S is S1optS2, then JSK∗G =

(
JS1K∗D 1 JS2K∗G

)
∪
(
JS1K∗G\

JS2K∗G
)
.

5. If S is S1 filter F , then JSK∗G = ΘF (JSK∗G).

The query model that we support, as codified in Defi-
nition 9, corresponds to the query model in SPARQL 1.0
specification except for complex filter expressions involving
built-in functions.

4. QUERY EVALUATION
In this section, we present how chameleon-db computes

the results of a SPARQL query as specified in Definition 9.
For the implementation of joins (./), unions (∪) and set
difference (\), we use existing techniques [21]. Therefore
we primarily focus on Step-1 of Definition 9, which defines
query results over all subgraphs of an RDF graph that match
a CPG. With only subtle differences, this is the subgraph
matching (or isomorphism) problem, therefore we adapt an
existing algorithm [28] in our implementation.

We propose a novel framework for evaluating CPGs, which
we call partition-restricted evaluation (PRE). Given a CPG
Q and an RDF graph G, instead of evaluating the CPG
over the whole graph, we partition the graph and describe
a method that produces the expected result, that is, JQK∗G,
over the partitioned graph. For several reasons, this method
is much more suitable for a workload-aware system such as
chameleon-db. First, query processing can be more easily lo-
calized since irrelevant partitions can be pruned out early in
the evaluation of a CPG. Second, for partitions that are con-
sidered relevant, indexes can be built on more than one at-
tribute and even combinations of attributes, thus, enabling
better pruning, whereas, an index on a single attribute will
be sufficient for the remaining partitions. Third, PRE en-
ables the results to be computed in isolation on each par-
tition, thereby enabling the system to concurrently update
the partitioning while queries are being executed on other
partitions of the RDF graph.

4.1 Partition-Restricted Evaluation
In this section, we define what a partitioning of an RDF

graph is, and then we introduce two new operations: parti-
tioned-match (Definition 11) and prune (Definition 12), which
are the fundamental building blocks of PRE. Finally, we dis-
cuss how CPGs are evaluated using PRE.

Definition 10. Given an RDF graph G = (V,E), a par-
titioning of G is a set of RDF graphs P = {P1, . . . , Pm} such
that (i) each Pi is a subgraph of G, (ii) Pi’s are edge disjoint,
(iii) E(G) =

⋃
Pi∈PE(Pi), and (iv) V (G) =

⋃
Pi∈P V (Pi).

In a partitioning of an RDF graph, vertices can be shared
between partitions whereas each edge always belongs to a
single partition, as shown in Figures 3c and 3d. Next, we
define the operations partitioned-match and prune.

Definition 11. Given a CPG Q and a partitioning P of
an RDF graph, the partitioned-match of Q over P, denoted
as TQU(P), is defined as TQU(P) =

⋃
P∈PJQK∗P .

Definition 12. Given a partitioning P of an RDF graph
and a CPG Q, a prune of P with respect to Q, which is
denoted by σQ(P), is defined as a subset Pr of P such that
JQK∗P = ∅ for all P ∈ (P \ Pr).

Now, we expand Step-1 of Definition 9 and discuss how
we apply our partition-restricted evaluation method to com-
pute the results of a CPG. In other words, we aim to replace
JQK∗G with a semantically equivalent expression that oper-
ates on a partitioning of an RDF graph (or subsets of par-
titions thereof), instead of the entire graph. We call these
type of expressions PRE expressions. Naturally, if Q is a
CPG, and P is a partitioning of an RDF graph, TQU(P) and
TQU(σQ(P)) are PRE expressions because they both oper-
ate on a set of partitions. Furthermore, if M1 and M2 are
PRE expressions, then we define (M1 ./ M2) and (M1∪M2)
to be PRE expressions.

For performance reasons, our partitioning algorithm, which
will be introduced in Section 5, aims to find a partitioning
P of an RDF graph G such that JQK∗G = TQU(P) for most
queries in the workload. However, this condition may not
hold for every CPG Q. The reason is that the partitioned-
match operation ignores subgraphs of G (i.e., the queried
RDF graph) that match the CPG but that span more than
one partition in a partitioning P of G. In that case, we may
need to decompose Q into a set of smaller CPGs, and then
use this set to construct a more complex PRE expression M
such that JQK∗G = M . A decomposition that we are particu-
larly interested in is the trivial decomposition of a CPG, in
which the CPG is decomposed into single-edge CPGs (Def-
inition 13), because with this type of decomposition we can
guarantee the construction of a PRE expression M such
that JQK∗G = M for any CPG Q and any partitioning P of
an RDF graph G (Theorem 1). We call this expression the
baseline PRE expression (Definition 14).

Definition 13. Given a CPG Q = (V̂ , Ê, R), if the fil-
ter expressions in R mention only the variables in Q, then
the trivial decomposition of Q is defined as the set Q =
{Q1, . . . , Qk} of CPGs, where each Qi ∈ Q contains ex-
actly one edge, the set of edges in each Qi are disjoint,

V̂ =
k⋃

i=1

V (Qi), Ê =
k⋃

i=1

E(Qi), R =
k⋃

i=1

R(Qi), and for each

i ∈ {1, . . . , k}, filter expressions in R(Qi) mention only the
variables in Qi.

Definition 14. Let Q be a CPG, let G be an RDF graph,
and let P be a partitioning of G. If {Q1, . . . , Qk} is the trivial
decomposition of Q, then the baseline PRE expression for
Q over P is TQ1U(P) ./ · · · ./ TQkU(P).
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Theorem 1. Given a CPG Q, an RDF graph G and a
partitioning P of G, if the baseline expression is defined for
Q over P4, then JQK∗G = M , where M is the baseline PRE
expression for Q over P5.

From the baseline PRE expression, it is possible to gener-
ate a collection of equivalent expressions that all produce the
expected result of a CPG. Consequently, there is an opportu-
nity for cost-based optimization. Deferring that discussion
to Section 4.2, we describe how chameleon-db computes the
results of a CPG. First, for a given CPG, a PRE expres-
sion is generated (which of the equivalent expressions the
system chooses is the topic of Section 4.2). Figure 4a il-
lustrates a tree representation of such a PRE expression.
Then, each sub-expression of the form σQi(P) is evaluated
by pruning out the irrelevant partitions using the parti-
tion indexes (Figure 2). Consequently, each sub-expression
of the form TQiU(σQi(P)) is simplified to TQiU(Pi), where
Pi ⊆ P. Then, for each resulting sub-expression TQiU(Pi),
(i) the sub-expression is evaluated in isolation on each par-
tition using a standard subgraph matching technique [28],
and (ii) the results from each evaluation are unioned. In the
subsequent steps, intermediate tuples from the evaluation of
each sub-expression are joined or unioned according to the
standard definitions in SPARQL algebra (cf., Definition 6).

To perform subgraph matching within each partition, we
represent each RDF graph in the partitioning as an adja-
cency list and use a variation of Ullmann’s algorithm [28].
For each vertex v̂ in the CPG, we compute candidate match-
ing vertices in the RDF graph. If v̂ is a URI or literal,
one can directly lookup the vertex in the adjacency list.
Otherwise, if v̂ is a variable, we rely on the labels of the
edges that are incident on v̂ to prune the search space. Of
course, it is possible to build an index (other than adjacency
list) over each partition to facilitate subgraph matching (cf.,
gStore [34]), but that is outside the scope of this paper.

4.2 Query Rewrite
We use the baseline PRE expression to generate a set of

equivalent expressions that all produce the expected result
of a CPG. Then, we use a cost model to choose the one that
has the best estimated cost. In our model, we define cost as a
function of the number of dormant tuples that are processed
during query evaluation. For simplicity, we currently ignore
disk related I/O costs. Therefore, in this paper, we rely
on a heuristic which states that with increasing number of
join operations within a PRE expression, one expects the
number of dormant tuples to increase. Later in this section,
we use an example to illustrate the reasoning behind our
heuristic and in Section 7, we experimentally validate our
observation. Future work will improve the cost function.

To realize the aforementioned logical query optimization
scheme, we introduce equivalence rules that are in two cate-
gories: generic and conditional. Generic rules are applicable
irrespective of how the RDF graph is partitioned, whereas
the applicability of a conditional rule depends on whether
the partitioning satisfies certain conditions.

Table 2 lists our equivalence rules. Assuming QA and QB

are two CPGs, let P be a partitioning of an RDF graph,
4Note that if the baseline expression is not defined (because
Q contains filter expressions that mention variables not in
Q), then JQK∗G is unsatisfiable, hence, query result is always
empty.
5 The proofs are in the Appendix.

Name Equivalence Rules Condition

1 Expansion TQAU(P) =
m⋃

i=1
TQAU(Pi)

m⋃
i=1

Pi = P

2 Join elimination* TQAU(P1) ./ TQBU(P2) = ∅ Thm. 2
3 Join reduction* TQAU(P1) ./ TQBU(P1) Thm. 3

= TQA ⊕QBU(P1)
4 Identity (./) Ω1 ./ ∅ = ∅ ./ Ω1 = ∅ Ω1,Ω2,Ω3

5 Identity (∪) Ω1 ∪ ∅ = ∅ ∪ Ω1 = Ω1 are sets of
6 Associativity (./) Ω1 ./ (Ω2 ./ Ω3) solution

= (Ω1 ./ Ω2) ./ Ω3 mappings
7 Associativity (∪) Ω1 ∪ (Ω2 ∪ Ω3)

= (Ω1 ∪ Ω2) ∪ Ω3

8 Distributivity Ω1 ./ (Ω2 ∪ Ω3)
(./ over ∪) = (Ω1 ./ Ω2) ∪ (Ω1 ./ Ω3)

9 Reflexivity Ω1 ./ Ω2 = Ω2 ./ Ω1

Table 2: Equivalence rules that are applicable to PRE ex-
pressions (P1, . . . ,Pm represent sets of RDF graphs).

and let P1, . . . ,Pm be subsets thereof (Pi ⊆ P for all i ∈
{1, . . . ,m}). Rules 1–3 are specific to the partition-match
operation, whereas rules 4–9 are derived from SPARQL al-
gebra [3]. Rules that are marked with an asterisk (*) are
conditional. Observe that the expansion rule relies on a
condition that is independent of the way the graph is par-
titioned. In other words, for any partitioning P of an RDF
graph, one may generate some P1, . . . ,Pm, such that the
condition is satisfied; hence, its classification as a generic
rule. On the contrary, we shall see that the conditions in
join elimination and join reduction are directly related to
the way the graph is partitioned; therefore, they need to
be checked every time a query is evaluated. The following
theorems formalize these conditions.

Theorem 2. Given a partitioning P of an RDF graph
and two CPGs QA and QB with V (QA) ∩ V (QB) 6= ∅,
let I =

⋃
(Pi,Pj)∈P1×P2 V (Pi) ∩ V (Pj), where P1,P2 ⊆ P.

Then, TQAU(P1) ./ TQBU(P2) = ∅ if for each vertex v ∈
I, there exists a vertex v̂ ∈ V (QA) ∩ V (QB) and an edge
ê ∈ inc(QA, v̂) ∪ inc(QB , v̂) such that ê is not compatible
(cf., Definition 7) with any edge from

⋃
P∈P1∪P2 inc(P, v),

where inc(G, v) denotes the set of edges that are incident on
a vertex v.

Definition 15. Given two CPGs QA and QB, we define
the concatenation of QA and QB, denoted by QA ⊕QB, as
a CPG Q = (V̂ , Ê, R) such that (i) V̂ = V (QA) ∪ V (QB),

(ii) Ê = E(QA) ∪ E(QB) and (iii) R = R(QA) ∪R(QB).

Theorem 3. Given a partitioning P and two CPGs QA

and QB with V (QA) ∩ V (QB) 6= ∅, TQAU(P) ./ TQBU(P) =
TQA ⊕QBU(P) if for each vertex v, where

∣∣cont(P, v)
∣∣ > 1,

(where cont(P, v) denotes the subset of partitions in P that
contain v), either

(i) there exists a vertex v̂ ∈ V (QA) ∩ V (QB) and an edge
ê ∈ inc(QA, v̂)∪ inc(QB , v̂) such that ê is not compat-
ible with any edge from

⋃
P∈P inc(P, v), or

(ii) there exists a single partition P̄ ∈ P such that for
every edge e ∈

⋃
P∈P inc(P, v) and for every vertex

v̂ ∈ V (QA) ∩ V (QB), if e is compatible with an edge
from inc(QA, v̂) ∪ inc(QB , v̂), then cont(P, e) = {P̄}.

Let us revisit the example from Section 1 and demon-
strate how join reduction can be applied to the partition-

restricted evaluation of query ?w
A−→?x

B−→?y
C−→?z over

the partitioning in Figure 3c. The baseline PRE expres-
sion for this CPG is TQ1U(P) ./ TQ2U(P) ./ TQ3U(P), where
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inc(P, v1) inc(P, v2) inc(P, v3) in inc(P, v4)

v1
A−→ v2 v2

A←− v1 v3
A−→ v9 P1 v4

B−→ v11

v1
A−→ v6 v2

B−→ v3 v3
B←− v2 P2 v4

C←− v3

v1
B−→ v5 v2

B−→ v8 v3
C−→ v4 P2 v4

C−→ “10”

v2
C−→ v7 v3

C−→ v10 P2

Table 3: Incident edges on v1–v4 in Partitioning-A (Fig. 3c)

?w
A−→?x, ?x

B−→?y, ?y
C−→?z are the three CPGs Q1, Q2

and Q3 in the trivial decomposition of the query, and P
consists of P1 and P2 in Figure 3c. For simplicity, we ig-
nore prune operations for now. This baseline PRE ex-
pression can be rewritten as TQ1U(P) ./ TQ2 ⊕ Q3U(P) if
TQ2U(P) ./ TQ3U(P) = TQ2 ⊕Q3U(P). For the given parti-
tioning, the four vertices v1, v2, v3 and v4 exist in multiple
partitions. Therefore, we need to check the conditions in
Theorem 3. Note that inc(Q2, ?y) ∪ inc(Q3, ?y) consists of
two edges, namely, (?x,B, ?y) and (?y, C, ?z). Condition (i)
holds for v1 because (?y, C, ?z) is not compatible with any of
the edges in inc(P, v1), which is illustrated in Table 3. For
v2, (?y,B, ?z) is not compatible with any of the edges in
inc(P, v2) due to the direction of edges. The same argument
holds for v4. As for v3, both (?x,B, ?y) and (?y, C, ?z) have
at least one compatible edge, therefore, we also need to check
condition (ii) for v3. Since all compatible edges are from the
same partition, namely, P2, the baseline PRE expression
can be simplified to TQ1U(P) ./ TQ2 ⊕Q3U(P). Continuing
with the process, the expression can be further simplified to
TQ1 ⊕ Q2 ⊕ Q3U(P), which may be more efficient because
in the latter case three predicate patterns, namely, 〈A〉, 〈B〉
and 〈C〉, can be collectively used to prune out partitions,
making the evaluation more selective. In fact, as Figure 5c
in Section 7 suggests, when we analyzed all of the execution
logs generated during our experimentation with chameleon-
db, we found out that as the number of join operations in a
query plan increases, it generally causes an increase in the
number of triples that are processed.

The algorithm for rewriting a baseline PRE expression
proceeds in three phases. We describe this algorithm us-
ing the example illustrated in Figure 4. Consider a base-
line PRE expression: TQ1U(σQ1(P)) ./ TQ2U(σQ2(P)) ./
TQ3U(σQ3(P)) (Figure 4a). First, the joins in the baseline
expression are reordered according to their estimated selec-
tivities [27]. Second, by using generic equivalence rules, the
expression is transformed into a canonical form. A PRE ex-
pression is in canonical form if it consists of the union of a set
of sub-expressions T1∪· · ·∪Tm, where each sub-expression is
made up of the exact same set of partitioned-match opera-
tions, which differ only in the partitions they operate on. For
this purpose, each prune operation is evaluated, producing
multiple sets of partitions with one set for each prune op-
eration (Figure 4b). As illustrated in Figure 4b, these sets
of partitions are factorized into maximal common subsets
such that factorization produces as few segments as possi-
ble. Then, each partitioned-match operation is expanded
across the corresponding subsets of partitions using Rule 1.
Rules 4–9 are applied to the nodes of the expression-tree
in a bottom-up fashion, which is repeated until no further
rewriting is possible. At this stage, the canonical expression
is produced (Figure 4c).

In the third phase, each sub-expression in the canonical
form is optimized independently using conditional rules (i.e.,
Rules 2–3) as well as Rules 4–9. For query optimization,

./

TQ3U

σQ3

./

TQ2U

σQ2

TQ1U

σQ1

P

(a)

./

TQ3U

./

TQ2UTQ1U

P1

P1 P2

P1

(b)

⋃
./

TQ3U

P1

./

TQ2U

P2

TQ1U

P1

./

TQ3U

P1

./

TQ2U

P1

TQ1U

P1

join
elimination

join reduction

(c)

Figure 4: Illustration of query rewriting and optimization.

we rely on the aforementioned heuristic that decomposing a
CPG is likely to increase the number of dormant tuples that
need to be processed. For instance, considering our earlier
example about join reduction, we prefer TQ1⊕Q2⊕Q3U(P)
over TQ1U(P) ./ TQ2U(P) ./ TQ3U(P). In this regard, join
reduction and join elimination are applied recursively to the
nodes of each sub-expression until the number of join oper-
ations are reduced as much as possible. The right-hand side
of union is eliminated using join elimination (Figure 4c) and
the remaining expression is simplified to TQ1⊕Q2⊕Q3U(S1)
using join reduction.

4.3 Discussion
Partition-restricted evaluation offers important advanta-

ges. First of all, it is possible to compute a partitioning
such that most of the queries in a workload do not require
join operations across partitions. We demonstrate that this
has significant impact on performance because it helps re-
duce the number of dormant tuples. Even in the worst case
when a query cannot be rewritten as any other expression,
the baseline PRE expression still guarantees correct results,
which provides the flexibility to compute a partitioning that
favors the most frequent query patterns in a workload, and
update the partitioning as these frequencies change.

Second, by enforcing PRE, we limit the scope of sub-
graph matching to contents within each partition. Although
this introduces query rewriting and optimization overhead,
it provides isolation, whose reward is much higher (as our ex-
periments will show). Since partitions are now truly isolated
from each other, new partitions can be added and existing
partitions can be split or merged without affecting the in-
tegrity of query evaluation on other parts of the graph. Con-
sequently, query evaluation can be more easily interleaved
with re-partitioning of the graph, which is one of the key
objectives of our work. There is also an opportunity for
parallelization—subgraph matching can be performed con-
currently on multiple partitions.

Third, when determining whether or not a partition con-
tains a subgraph that matches a query, the index needs
to consider only the subgraphs that reside within a single
partition. For this reason, by manipulating how the graph
is partitioned, chameleon-db can execute linear queries or
more complex queries efficiently without the heavier index-
ing overhead of other systems. Needless to say, having this
update-friendly and memory-efficient index is a requirement
for a system like chameleon-db that constantly needs to re-
organize its layout for changing workloads.

5. WORKLOAD-AWARE PARTITIONING
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Our partitioning algorithm is workload-driven: without
making any a-priori assumptions about how the partition-
ing should be, chameleon-db partitions the graph based on
the workload. Initially, every edge of the RDF graph is
placed in its own partition, which is not necessarily an op-
timal partitioning for any workload. However, as soon as
some queries are executed, the system gains a better un-
derstanding of the workload, and periodically computes a
better partitioning of the RDF graph.

To facilitate the computation of a suitable partitioning,
upon the execution of a CPG, we annotate each distinct
subgraph that matches the CPG with a unique label and
a timestamp. Each annotation is of the form 〈qid, sid, t〉,
where (i) qid is a unique identifier generated by chameleon-
db for every CPG that comes in, (ii) sid is a unique identifier
for the corresponding subgraph, and (iii) t is a timestamp.
Since matching subgraphs can be overlapping, for each an-
notated edge of the RDF graph we maintain a (fifo) queue.
At every repartitioning, annotations that are too old to fit
within a user-defined window are deleted from the queue,
after which the partitioning is computed based on the re-
maining annotations.

In a query workload, the same query structure may have

multiple instantiations. For example, both Prof1
A−→?x

B−→
?y

C−→ VLDB14 and Prof2
A−→?x

B−→?y
C−→ SIGMOD14 are

instantiations of the same linear query ?w
A−→?x

B−→?y
C−→

?z. Our partitioning algorithm detects if a particular query
structure occurs frequently, and if so, it tunes the partition-
ing to better support instantiations of that query structure.
For this purpose, we generalize every CPG that is evalu-
ated on the system to its structural form, which means that
every URI or literal vertex in the CPG is replaced with a
distinct variable as shown above. Second, we determine the
frequency of occurence of each query structure. Finally, be-
fore periodic repartitioning takes place, we actually execute
the most frequent structures and annotate the RDF graph
based on their results—just as we would do for any other
query in the workload—to generate the labels also for the
generalized CPGs.

In the remainder of this section, we describe our parti-
tioning algorithm. First, we formulate an objective func-
tion (Section 5.1), and then we explain the algorithm (Sec-
tion 5.2). Finally, we discuss how partitions are updated
following each partitioning (Section 5.3).

5.1 Partitioning Objectives
Given an RDF graph G and a CPG Q (with a specific qid),

let G∗ be the subgraph of G that consists of all edges in G la-
beled with 〈qid, ∗, ∗〉, where wildcard (*) can take any value.
Since JQK∗G = JQK∗G∗ , we call the edges in G∗ as relevant,
and the rest of the edges in G as irrelevant to the evaluation
of Q. For example, for the CPG in Figure 1b, the relevant
edges are indicated by the shaded region in Figure 3b. Re-
call that from a performance standpoint, our objective is to
eliminate all dormant tuples from query evaluation. How
well this can be accomplished depends on two conditions:
(i) every partition that is not pruned (see Section 6) should
contain as few irrelevant edges as possible, and (ii) every
subgraph that matches a CPG should be distributed over as
few partitions as possible.

The first condition is intuitive. The earlier irrelevant
triples are pruned out in query evaluation, the less likely

it is for the dormant tuples to accumulate as partial results
are joined. The second condition has to do with the way
partition-restricted evaluation works. If a subgraph that
matches a CPG is distributed across more than one parti-
tion, the CPG needs to be decomposed to obtain the correct
results. A side-effect of decomposition is that each subquery
generally contains fewer selection predicates than the orig-
inal query. Therefore, evaluation of each subquery is likely
to produce more dormant tuples (e.g., Figure 3e–Figure 3i).
Using these two conditions as guidelines, we quantify the
“goodness” of a partitioning as a combination of two mea-
sures: segmentation and minimality. Segmentation is a mea-
sure of how distributed subgraphs that match a query across
the partitions of an RDF graph are. Minimality indicates
how minimal partitions are with respect to those subgraphs
that match a CPG.

Definition 16. Given a partitioning P of an RDF graph
G, let ΓQ

G denote all distinct subgraphs of G that match a
CPG Q, and let E∗ =

⋃
G′∈Γ

Q
G
E(G′). Then, segmentation

and minimality of P with respect to Q are defined as:

segmQ
P =

∣∣∣{(G′, P ) ∈ ΓQ
G × P | E(G′) ∩ E(P ) 6= ∅

}∣∣∣− ∣∣∣ΓQ
G

∣∣∣
minimQ

P =
∣∣∣E∗∣∣∣ / ∣∣∣{E(P ) | P ∈ P and E(P ) ∩ E∗ 6= ∅

}∣∣∣
The definitions of segmentation and minimality can be

easily extended to a query workload W = {Q1, . . . , Qn}:

segmW
P =

n∑
i=1

segmQi

P /|W| and minimW
P =

n∑
i=1

minimQi

P /|W|.

Segmentation can take any positive real value, while min-
imality is always between [0, 1]. An ideal partitioning is one
whose segmentation is minimal (0) and minimality takes the
highest possible value (1) with respect to a query workload.
We say that a partitioning is completely segmented if its
segmentation is maximal with respect to a query workload.

5.2 Partitioning Algorithm
Given a query workload, we address the problem of com-

puting a suitable partitioning of an RDF graph using a hier-
archical clustering algorithm, which starts from a completely
segmented partitioning, and successively merges partitions
until the clustering objective is achieved. The clustering
algorithm operates as follows:

1. Initially, each edge of the RDF graph resides in its
own partition, which corresponds to a completely seg-
mented partitioning for any workload;

2. The pair of partitions, whose merging improves seg-
mentation the most, while causing the least trade-off
in minimality, is identified;

3. Partitions found in Step 2 are merged, which results
in a potential decrease in segmentation and/or mini-
mality;

4. Steps 2–3 are repeated as long as the aggregate mini-
mality of the partitioning is greater than a threshold.

It is important to note that segmentation and minimality
measures are monotonically non-increasing within this al-
gorithm. That is, whenever two partitions are merged, seg-
mentation will potentially decrease because edges having the
same qid and sid labels may be brought together. However,
at the same time, edges having different qid labels may also
be placed in the same partition, which does not affect seg-
mentation, but reduces minimality. While we would like to
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reduce segmentation, we would like to increase minimality.
When partitions contain too many edges that are individu-
ally irrelevant to the execution of most of the queries, the
overhead of subgraph matching within each partition can
mask the benefits of reduced segmentation. Specific to our
implementation, we observed that if the partitions contain
on average more than 10 times as many irrelevant triples
as there are relevant ones, performance of query evaluation
starts to degrade. For this reason, we set the lower threshold
on minimality as 0.1.

There are two reasons for choosing a hierarchical cluster-
ing algorithm. First, the way hierarchical clustering works
is aligned with our clustering objectives. That is, parti-
tions are merged one pair-at-a-time until a global objective is
achieved. This is not true for centroid-based clustering [15]
or spectral clustering [15]. Second, other algorithms such as
k-means [15] require the number of clusters to be known in
advance, which is not possible in our case.

We expect the final partitioning to be fine-grained since
subgraphs that match the queries in the workload are likely
to be comparable in size to the query graphs, which are rela-
tively small. Furthermore, the final partitions are not likely
to be much larger than these subgraphs due to the mini-
mality threshold. Therefore, a bottom-up (agglomerative)
approach can reach the clustering objective in fewer number
of iterations than a top-down (divisive) approach (hence, the
reason why we start with a completely segmented partition-
ing and employ agglomerative clustering).

A critical issue is to decide which pair of partitions to
merge in each iteration. We define a distance function δ :
P × P → [0, 1] over the partitions such that: (i) δ = 1
is reserved for partitions that should not be merged; (ii) a
smaller distance between two partitions implies that the de-
crease in segmentation is higher (with a lower trade-off in
minimality) if these two partitions are merged.

To compute the pairwise distances between partitions, we
rely on the annotations of edges in each pair of partitions,
namely, the set of 〈qid, sid, t〉 3-tuples. We define the dis-
tance between a pair of partitions as a combination of two
Jaccard distances: δS is defined over the sets of subgraph
identifiers (sid), and δQ is defined over the sets of query
identifiers (qid). For any partition P ∈ P, let πs(P ) and
πq(P ) denote the set of subgraph identifiers and the set of
query identifiers with which P is annotated, respectively.
Given two partitions P1 and P2, the distances δS(P1, P2)
and δQ(P1, P2) are respectively defined as:

δS = 1− |πs(P1) ∩ πs(P2)|
|πs(P1) ∪ πs(P2)| , δQ = 1− |πq(P1) ∩ πq(P2)|

|πq(P1) ∪ πq(P2)| .

The two distance functions are complementary. By merg-
ing P1 with P2, segmentation decreases by at least |πs(P1)∩
πs(P2)|, therefore, δS is more sensitive to predicting the ex-
pected change in segmentation. Likewise, |πq(P1)∪πq(P2)|−
|πq(P1)∩πq(P2)| is a more accurate approximation of the ex-
pected decrease in minimality, thus, δQ is more sensitive to
changes in minimality, hence our reliance on a combination
of both distances. However, in doing so, we pay particular
attention to some race conditions. Specifically, the distance
function is designed such that the following order, in which
partitions are merged, is always preserved: (i) a pair of par-
titions whose δS = 0 (which also implies that δQ = 0) are
merged before any other pair of partitions; (ii) partitions
whose δS 6= 0, but δQ = 0, are merged next; (iii) finally,

partitions whose δS 6= 0 and δQ 6= 0 are merged according
to a combined distance δ = αδS + (1−α)δQ, where α = 0.5.

Note that in the first two cases, minimality will not de-
crease because the two partitions that are merged have sub-
graphs that match only a single query. Hence, they are
preferred over the third case, whose minimality is expected
to decrease. Furthermore, even though the first and second
cases are both guaranteed to reduce segmentation (without
a compromise in minimality), the first case can achieve the
same objective with smaller partitions, hence, it is preferred
over the other. When two partitions P1 and P2 are merged,
all distances between the new partition and any other ex-
isting partition Px for which δ(P1, Px) < 1 or δ(P2, Px) < 1
need to be updated.

5.3 Updating the Partitions
Once a suitable partitioning is computed, the system re-

alizes the transformation from the current partitioning to
the desired one as a set of atomic update (i.e., deletion and
insertion) operations on the set of partitions. Each opera-
tion has the property that before and after the operation,
the database represents exactly the same RDF graph—only
using a different partitioning.

The update operations are executed concurrently with the
queries. The trick lies in the fact that according to PRE,
once results are computed within a partition, query evalu-
ation does not need to access that partition anymore, thus
allowing that partition to be updated even though the query
may be processing other partitions. In order to ensure that
updates do not take place before a query has completely
“consumed” the contents of a partition, we use a two-level
locking scheme, whose details we omit in this paper.

6. INDEXING THE PARTITIONS
To prune the partitions irrelevant to a query, we employ

a workload-aware, incremental indexing technique, which is
similar to work on database cracking by Idreos et al. [14].
This specific indexing technique is orthogonal to the focus of
this paper, therefore we restrict the discussion to a summary
of our technique, which will be described fully elsewhere.

Before any query is evaluated, the partition index consists
of only a doubly-linked list of pointers to all of the parti-
tions. Initially, the index does not assume anything about
the contents within each partition. However, as queries are
evaluated, it uncovers more information about the partitions
and indexes them as follows: When the first CPG, say Q1,
is evaluated, the list is divided into two segments, namely,
Pl and Pr such that every partition that lies to the left of a
pivot has matching subgraphs for the CPG, whereas those
to the right do not. The overhead of restructuring the list
is small. Note that the list has to be traversed anyway to
compute the matching subgraphs; while doing so, partitions
can be reordered in-place and in one-pass over the list—just
like the partitioning step of the quicksort algorithm [9]. For
the next CPG (Q2), there are three possible scenarios:

• If Q2 is the same as Q1, query results can be computed
directly from the partitions in Pl, which does not need
to be divided any further.
• If Q2 is a strict supergraph of Q1, a subset of par-

titions in Pl are relevant. Therefore, Pl needs to be
traversed and divided into two segments: Pl.l and Pl.r

like previously.

9



• For all other cases, potentially some partitions in both
Pl and Pr have matching subgraphs of Q2. Therefore,
both lists need to be traversed and divided further.

As the list of partition pointers gets divided into multiple
segments, we keep track of which segments are relevant to
which queries using a decision tree. For every segment of
partitions, which contain at least one matching subgraph
for any CPG in the decision tree, we also maintain two
second-tier indexes. The vertex -index is a hash table that
maps URIs to the subset of partitions that contain vertices
of that URI. The range-index keeps track of the minimum
and maximum literal values within each partition for each
distinct predicate, and it works as a filter when partitions
are traversed. Consequently, as more queries are evaluated,
the index becomes more effective in pruning partitions.

7. EXPERIMENTAL EVALUATION
chameleon-db is implemented in C++, and it consists of

more than 30K lines of native source code. The system
supports SPARQL 1.0 except for complex filter expressions
that involve built-in functions. Join operations are currently
implemented using the hash-join algorithm [10], which we
extended with an adaptation of sideways information pass-
ing [20], which is a technique that is also used by x-RDF-
3x. We use integer encodings to compress URIs and order-
preserving compression to reduce the size of the literals [2].
The dictionary is stored in Berkeley DB [23]. In main mem-
ory, each partition is represented as an adjacency list and it
is serialized on disk as a consecutive sequence of RDF triples
that are sorted on their subject attributes.

7.1 Experimental Setup
In our evaluations, we used the Waterloo SPARQL Diver-

sity Test Suite (WSDTS)6, which we developed to measure
how an RDF data management system performs across a
wide spectrum of SPARQL queries with varying (i) struc-
tural characteristics, and (ii) selectivity classes. WSDTS
differs from existing benchmarks in two aspects. First, ex-
isting benchmarks are designed to evaluate other features of
systems such as how fast a system can do semantic inferenc-
ing, or how well different SPARQL features such as filter
expressions or optional patterns can be handled by a sys-
tem, but they do not test directly (and in detail) how well a
system performs across different query structures. Second,
it has been argued [5, 32] that the query workloads existing
benchmarks are too simple, repetitive and contain unreal-
istically selective triple patterns (in some cases retrieving a
single triple). Third, as pointed out by Duan et al. [11],
existing SPARQL benchmarks do not accurately represent
the true structural diversity of the RDF data on the Web.

In WSDTS, data are generated such that some resources
are more structured, while some are less structured, thereby
providing the opportunity to generate queries that can have
very different selectivities. Our query workload consists of 4
structural categories: linear (L), star (S), snowflake (F)
and complex (C) queries. We generated our test query tem-
plates randomly while making sure that each query structure
is sufficiently represented, and that the selectivities of the
queries within each query structure vary. The full descrip-
tion of the WSDTS dataset and the 20 test queries that we

6https://cs.uwaterloo.ca/~galuc/wsdts/

used in our experiments are in the Appendix as well as at
the aforementioned link.

In our experiments, we use WSDTS with scale factor 100
and 1000, which generates 10 million and 100 million triples,
respectively. The raw size of the largest dataset is 16 GBs.
We use a commodity machine with AMD Phenom II X4 955
3.20 GHz processor, 16 GB of main memory, and 100 GB
of available hard disk space. We configured chameleon-db’s
buffer pool to store a maximum of 100 thousand partitions,
which corresponds to less than 1% of the partitions that
can be generated using the test datasets. The underlying
operating system is Ubuntu 12.04 LTS.

7.2 Static Performance
The purpose of our first experiment is to determine whe-

ther chameleon-db can achieve consistently good performance
across a diverse set of SPARQL queries. We compare chame-
leon-db against a system that relies on exhaustive indexing
(x-RDF-3x 0.3.7) [21], a graph-based RDF engine (gStore,
0.2) [34], and a relational-backed system (Virtuoso 6.1.7) [12].
In contrast to chameleon-db, none of these systems are work-
load-aware. For this reason, for each query template, first,
we train chameleon-db with 3 training workloads (executed
in a sequence), and until the end of the training phase, we
let chameleon-db re-partition its database. Once training is
over, we turn-off re-partitioning and execute the test work-
loads. For fairness, we also execute the training workloads
on other systems prior to evaluating them. Moreover, as a
baseline, we disable chameleon-db’s partitioning advisor and
repeat our experiments.

Both the test or training workloads are randomly gener-
ated from 250 instantiations of a query template. In all of
our experiments, we take measurements over 10 independent
executions and report the average.

Figures 5a and 5b show the speedup for each query achieved
by chameleon-db relative to the best system among others
(Table 4). A speedup of x implies that chameleon-db per-
forms x times as fast as the best system. For reference, we
also display the speedup of the slowest system, which is less
than or equal to 1 by definition. In these figures, we do not
include those systems that have timed-out.

Our results highlight several important points. First, by
employing a workload-aware approach, chameleon-db ad-
dresses some of the weaknesses of existing systems, and
it can achieve consistently better performance across most
WSDTS queries with a speedup of up to 2 orders in mag-
nitude. The only major exceptions are S6 at 10M triples
and L4 at 100M triples, which we believe can be improved
by using a more sophisticated query optimization strategy.
Nevertheless, even in those cases, chameleon-db performs
much better than the slowest system. In fact, the difference
between the performance of the fastest and the slowest sys-
tem can be very large. There are several reasons for this.
For example, regardless of how complex a query is, x-RDF-
3x needs to decompose it into triple patterns because of
the way data are organized, evaluate each triple pattern in
some sequence, and join the results. If the first triple pat-
tern that is evaluated is selective, but the others are not,
then x-RDF-3x does not encounter any problems, and it
outperforms other systems. On the other hand, if all triple
patterns are selective, x-RDF-3x is not able to get rid of dor-
mant tuples until all join operations are completed, hence,
it displays poor performance. In contrast, in that second

10

https://cs.uwaterloo.ca/~galuc/wsdts/


(a) Relative speedup at 10M triples (b) Relative speedup at 100M triples

(c) Correlation between the num-
ber of join operations and the av-
erage number of triples that are
processed

(d) Static performance of chameleon-db (e) Correlation between the number of triples
processed during query evaluation and the time
to execute the query

Figure 5: Performance evaluation of chameleon-db

L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7 F1 F2 F3 F4 F5 C1 C2

10M

RDF-3x
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

gStore
√ √ √

Virtuoso
√

chameleon-db ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠

100M

RDF-3x
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

gStore
√

Virtuoso
√ √

chameleon-db ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠

Table 4: Best system with and without chameleon-db:
√

marks the best system excluding chameleon-db, and ♠ indi-
cates chameleon-db has outperformed the best system.

case, if the queries are star-shaped, gStore is able to pro-
cess them much more efficiently because it is optimized for
pruning star-shaped patterns all at once as opposed to per-
forming joins on the fly. However, it cannot perform as well
on other types of queries (e.g., linear and complex ones).
These observations strengthen the motivation of our paper
and highlight potential areas of improvement.

Now, consider Figure 5d, which shows the absolute query
execution times for chameleon-db. Note that chameleon-db
(i) is robust, with little fluctuation in mean query execu-
tion time across different WSDTS queries, (ii) it scales well
when going from 10 to 100 million triples (with sub-linear
deterioration in performance), and (iii) owes most of its per-
formance improvements to its workload-aware partitioning.
In fact, without workload-aware partitioning (i.e., baseline
case in Figure 5d), chameleon-db is generally slower and
its performance fluctuates more across the queries. We at-
tribute the improvement after re-partitioning to the reduced
number of join operations, which in turn reduces the num-
ber of dormant tuples. To validate the latter hypothesis,
we analyzed all of the execution logs generated during our
experiments. Figure 5e illustrates that there is a strong pos-
itive correlation between the number of triples that are pro-
cessed in executing a query and the execution time of that
query. The only exception is when there are cache-misses,
which highlights an area of potential fine-tuning.

Figure 6: Adaptive behaviour of chameleon-db

7.3 Adaptive Behaviour
Next, we demonstrate how the current version of chame-

leon-db adapts to changing workloads. For this reason, we
defined two query mixes over WSDTS. The first one con-
sists of 4200 instantiations of L1 and L3, which are linear
queries. The second query mix consists of 4200 instanti-
ations of S1, S4 and S6, which are star-shaped queries.
Again, we randomly picked these queries. In this experi-
ment, initially, chameleon-db starts with a partitioning in
which each partition contains a single triple. We config-
ure chameleon-db so that re-partitioning takes place only
twice—just before executing the 600th and 4500th queries.
Note that re-partitioning is a process in which (i) a suitable
partitioning is computed, and (ii) the underlying partitions
are updated in parallel with query processing. For the ex-
periments, we instrumented chameleon-db to record when a
re-partitioning process has been completed and found out
that this phase lasts for a very short time, often within the
lifetime of the subsequent 5–10 queries.

Figure 6 depicts how throughput changes as our test work-
load is executed. Note that before re-partitioning takes
place, throughput is low, which is normal because the un-
derlying partitioning is not suitable for the given workload.
Furthermore, the partition-index has not yet fully adjusted
to the recently introduced CPGs. After partitions are fully
updated, throughput is improved because the system is us-
ing a much better partitioning, which validates our previous
observations. During the re-partitioning phase throughput
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recovers fast (i.e, very soon after the 600th query).
Note that after the 4200th query throughput drops. At

this stage, the workload has changed, but the system has
not yet been triggered to re-partition. Hence, queries are not
fully optimized, which reflects poorly on performance until
re-partitioning kicks in at the 4500th query. This points to
an area of future work, which is discussed next.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented chameleon-db, an RDF store

that can automatically adapt its physical layout for differ-
ent SPARQL workloads to achieve efficient query execution.
Evaluation of chameleon-db using a diverse set of query
structures with varying selectivities shows that it is more ro-
bust with predictable performance than its competitors and
can achieve speedups of up to 2 orders of magnitude over
them. Our experiments show that chameleon-db can adapt
well to changing workloads, a desirable feature that is not
present in other systems. These advantages open up three
areas that can be exploited in the future to further optimize
the performance of chameleon-db. First, we would like to
support parallelization so that (i) results of a single query
can be computed in parallel across partitions where there
is a query match, (ii) system throughput can be increased
by parallelizing the execution of multiple queries. Second,
we want to integrate a more sophisticated cost-model into
our query rewriting and optimization. Finally, our ultimate
objective is to make chameleon-db a fully autonomous, self-
tuning system that can decide when to re-partition and that
can continuously adapt to changing workloads.
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APPENDIX
A. RELATED PROOFS

In this section we provide the proofs of the theorems introduced
in the paper. However, first we introduce two lemmas, which we
use in the subsequent proofs.

Definition 17. Given two RDF graphs GA and GB, we de-
fine the concatenation of GA and GB, denoted by GA ⊕GB, as
an RDF graph G = (V,E) such that (i) V = V (GA) ∪ V (GB)
and (ii) E = E(GA) ∪ E(GB).

Lemma 4. Let µ be a solution mapping; and let QA and QB be
two CPGs. Given an RDF graph G, G µ-matches the (concate-
nated) CPG QA ⊕ QB iff there exist two solution mappings µA
and µB and two RDF graphs GA and GB such that G = GA ⊕
GB, GA µA-matches QA, GB µB-matches QB, µ = µA ∪ µB
and µA ∼ µB.

Proof of Lemma 4. In order to prove Lemma 4, we need to
show both of the following statements are true:

C1. Given two RDF graphs GA = (VA, EA) and GB = (VB , EB),

and two CPGsQA = (V̂A, ÊA, RA) andQB = (V̂B , ÊB , RB),
if GA µA-matches QA and GB µB-matches QB , where µA
and µB are two solution mappings such that µA ∼ µB , then

G µ-matches Q = (V̂ , Ê, R), where G is an RDF graph with
G = GA ∪GB , µ = µA ∪ µB and Q = QA ⊕QB .

C2. Given an RDF graph G = (V,E), and two CPGs QA =

(V̂A, ÊA, RA) and QB = (V̂B , ÊB , RB), if G µ-matches QA⊕
QB , where µ is a solution mapping, then there exists two
RDF graphs GA = (VA, EA) and GB = (VB , EB), and two
solution mappings µA and µB such that GA µA-matches QA,
GB µB-matches QB , µA ∼ µB , and µ = µA ∪ µB .

We use proof by construction for both of the above statements.
To prove that C1 is true, first we show that µ satisfies conditions
(i) and (ii) in Definition 8 and then we construct two surjective
functions MV and ME that satisfy condition (iii) in Definition 8.
Let us prove each of the following one by one.

• Is dom(µ) the set of variables mentioned in Q?

– Since µ = µA ∪ µB ,

dom(µ) = dom(µA ∪ µB)

= dom(µA) ∪ dom(µB) (1)

– Furthermore, Q = QA⊕QB implies that the set of vari-
ables mentioned in Q is the union of the set of variables
mentioned in QA and the set of variables mentioned in
QB .

– Consequently, according to Equation 1, dom(µ) denotes
the set of variables mentioned in Q.

• Does µ satisfy all filter expressions in R?

– Since µ = µA ∪ µB and µA ∼ µB , it is not difficult to
see that µ ∼ µA and µ ∼ µB .

– Based on Definition 8, we also know that µA satisfies
all filter expressions in RA and µB satisfies all filter
expressions in RB .

– Observe that given any two solution mappings µ1 and
µ2 such that dom(µ1) ⊆ dom(µ2) and µ1 ∼ µ2, if µ1

satisfies a filter expression F , then µ2 also satisfies F .
– Since dom(µA) ⊆ dom(µ) and µ ∼ µ ∼ µA, µ satisfies

all filter expressions in RA.
– Likewise, since dom(µB) ⊆ dom(µ) and µ ∼ µ ∼ µB , µ

satisfies all filter expressions in RB .
– Consequently, µ satisfies all filter expressions in R be-

cause R = RA ∪RB .

• Does there exist two surjective functions MV and ME such
that condition (iii) in Definition 8 is satisfied?

– Let us define MV : (V̂A ∪ V̂B)→ (VA ∪ VB) such that

∗ MV (v̂) = MA
V for every v̂ ∈ (V̂A \ V̂B),

∗ MV (v̂) = MA
V for every v̂ ∈ (V̂A ∩ V̂B) and

∗ MV (v̂) = MB
V for every v̂ ∈ (V̂B \ V̂A), where

MA
V : V̂A → VA and MB

V : V̂B → VB denote the two
surjective functions implied by GA µA-matches QA and
GB µB-matches QB , respectively.

– Let us define ME : (ÊA ∪ ÊB)→ (EA ∪EB) such that

∗ ME(ê) = MA
E for every ê ∈ (ÊA \ ÊB),

∗ ME(ê) = MA
E for every ê ∈ (ÊA ∩ ÊB) and

∗ ME(ê) = MB
E for every ê ∈ (ÊB \ ÊA), where

MA
E : ÊA → EA and MB

E : ÊB → EB denote the two
surjective functions implied by GA µA-matches QA and
GB µB-matches QB , respectively.

– Note that as long as

∗ MA
V (v̂) = MB

V (v̂) for every v̂ ∈ (V̂A ∩ V̂B) and

∗ MA
E (ê) = MB

E (ê) for every ê ∈ (ÊA ∩ ÊB),

it can be shown that bothMV andME satisfy condition
(iii) in Definition 8 because of the way MV and ME are
defined with respect to MA

V , MB
V , MA

E and MB
E , which

already satisfy condition (iii) in Definition 8.

∗ We know that if v̂ is a constant, then MA
V (v̂) = v̂

and MB
V (v̂) = v̂, therefore MA

V (v̂) = MB
V (v̂).

∗ If v̂ ∈ V, then MA
V (v̂) = µA(v̂) and MB

V (v̂) =
µB(v̂).

∗ Since µA ∼ µB , it holds that µA(?x) = µB(?x)
for all variables ?x ∈ dom(µA) ∩ dom(µB), where

dom(µA) ∩ dom(µB) = (V̂A ∩ V̂B) ∩ V.

∗ Consequently, MA
V (v̂) = MB

V (v̂) for every v̂ ∈ (V̂A∩
V̂B) is true.

∗ The proof of MA
E (ê) = MB

E (ê) for every ê ∈ (ÊA ∩
ÊB) follows almost the same approach, therefore,
we omit it.

For C2, we only provide a sketch of our proof.

• It is possible to construct a surjective function MA
E : ÊA →

EA by projecting ME onto the domain ÊA.

• Likewise, we can construct a surjective function MA
V : V̂A →

VA by projecting MV onto the domain V̂A.
• As we are taking projections, it is not difficult to see that

there exists a solution mapping µA, such that µA ∼ µ and
dom(µA) corresponds to the set of variables mentioned in
QA, for which conditions (ii) and (iii) in Definition 8 are
satisfied.

– Perhaps the more difficult part is to prove that for each

(ê1, e2) ∈ ÊA×EA with MA
E (ê1) = e2: ê1 = (ŝ1, p̂1, ô1)

and e2 = (s2, p2, o2), if MA
V

(
ŝ1
)

= s2, then MA
V

(
ô1

)
=

o2.

– However, since V̂A and ÊA define a CPG (i.e., QA), we
also know that both the source and the target of each

edge ê ∈ ÊA have to be elements of V̂A, which makes
the proof possible.

– The observation above can also be utilized in order to
show that GA = (VA, EA) is an RDF graph.

• Similar arguments can be made about the existence of an
RDF graph GB and a solution mapping µB such that GB

µB-matches QB .
• Since (i) µA ∼ µ and µB ∼ µ, and (ii) dom(µA) ⊆ dom(µ)

and dom(µB) ⊆ dom(µ), it also holds that µA ∼ µB .
• Furthermore, Q = QA⊕QB implies that dom(µ) = dom(µA)∪

dom(µB), hence, it also holds that µ = µA ∪ µB .
• Consequently, Statement C2 is true.

Lemma 5. Given an RDF graph G and two CPGs QA and
QB, JQA ⊕QBK∗G = JQAK∗G ./ JQBK∗G.

Proof of Lemma 5. In order to prove Lemma 5, we need to
show that both of the following statements hold:

L1. If µ is a solution mapping such that µ ∈ JQA ⊕QBK∗G, then

µ ∈
(
JQAK∗G ./ JQBK∗G

)
; and
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L2. If µ is a solution mapping such that µ ∈
(
JQAK∗G ./ JQBK∗G

)
,

then µ ∈ JQA ⊕QBK∗G.

We prove both of these statements by contradiction. Let us start
with statement L1.

• Assume there exists a solution mapping µ such that µ ∈
JQA ⊕QBK∗G, but µ 6∈

(
JQAK∗G ./ JQBK∗G

)
.

• By Definition 9(1), there exists an RDF graph G′ that is
a subgraph of G such that G′ µ-matches QA ⊕ QB where
µ 6∈ JQAK∗G ./ JQBK∗G.

• Then, according to Lemma 4, there exists two RDF graphs
GA and GB that are subgraphs of G′ such that GA µA-
matches QA and GB µB-matches QB , where µA and µB are
two solution mappings such that µ = µA∪µB and µA ∼ µB .

• Since GA and GB are also subgraphs of G (transitively),
according to Definition 9(1), µA ∈ JQAK∗G and µB ∈ JQBK∗G.

• However, since µ = µA ∪ µB and µA ∼ µB , according to
Definition 6, µ must also be an element of JQAK∗G ./ JQBK∗G,
which is a contradiction.

• Consequently, Statement L1 must hold.

Now, let us prove statement L2.

• Assume there exists a solution mapping µ such that µ ∈(
JQAK∗G ./ JQBK∗G

)
, but µ 6∈ JQA ⊕QBK∗G.

• Based on Definition 6, there must exist two solution map-
pings µA ∈ JQAK∗G and µB ∈ JQBK∗G such that µ = µA∪µB
and µA ∼ µB .

• According to Definition 9(1), there must exist two RDF
graphs GA and GB such that (i) GA and GB are both
subgraphs of G, (ii) GA µA-matches QA, and (iii) GB µB-
matches QB .

• Since µ = µA ∪ µB and µA ∼ µB , Lemma 4 suggests that
there also exists an RDF graph G′ such that G′ = GA∪GB

and G′ µ-matches QA ⊕QB .
• Since both GA and GB are subgraphs of G, so is G′, and

according to Definition 9(1), µ ∈ JQA ⊕ QBK∗G, however,
this is a contradiction.

• Consequently, Statement L2 must hold.

Proof of Theorem 1. We need to show that given a CPG
Q, an RDF graph G and a partitioning P of G, JQK∗G = M
holds, where M is the baseline PRE expression for Q over P.
Let TD(Q) = {Q1, . . . , Qk} be the trivial decomposition of Q,
and let P = {P1, . . . , Pm}. Note that according to Definition 11,
for each Qi ∈ TD(Q),

TQiU(P) = JQiK∗P1
∪ · · · ∪ JQiK∗Pm

. (2)

Based on Definition 13, we also know that each Qi ∈ TD(Q)
contains exactly one edge, therefore

JQiK∗P1
∪ · · · ∪ JQiK∗Pm

= JQiK∗P1∪···∪Pm

and

TQiU(P) = JQiK∗P1∪···∪Pm
. (3)

Since P = {P1, . . . , Pm} is a partitioning of G, by Definition 10,
P1 ∪ · · · ∪ Pm = G, hence,

TQiU(P) = JQiK∗G. (4)

Substituting values in the baseline PRE expression with the right
hand side of Equation 4, we get

M = JQ1K∗G ./ · · · ./ JQkK∗G. (5)

By recursively applying Lemma 5, we get

M = JQ1 ⊕ · · · ⊕QkK∗G. (6)

Since Q = Q1 ⊕ · · · ⊕ Qk by definition of trivial decomposition,
JQK∗G = M holds.

Proof of Theorem 2. Assuming the conditions in Theorem 2,
we want to show that TQAU(P1) ./ TQBU(P2) = ∅ holds. Note
that according to Definition 11, a semantically equivalent expres-
sion that we can prove is

⋃
(Pi,Pj)∈P1×P2JQAK∗Pi

./ JQBK∗Pj
= ∅,

which we do by using proof-by-contradiction.

A. Let us assume that there exist two partitions Pi ∈ P1 and
Pj ∈ P2 such that JQAK∗Pi

./ JQBK∗Pj
6= ∅.

B. Based on Definition 6, since the join in the above expression
returns a non-empty set of solution mappings, there must exist
a solution mapping µ ∈ JQAK∗Pi

./ JQBK∗Pj
and two solution

mappings µA ∈ JQAK∗Pi
and µB ∈ JQBK∗Pj

such that µ =

µA ∪ µB and µA ∼ µB .
C. Then, according to Definition 9(1), there must exist two RDF

graphs GA and GB such that (i) GA is a subgraph of Pi and
GA µA-matches QA, and (ii) GB is a subgraph of Pj and GB

µB-matches QB .
D. Lemma 4 suggests that there also exists an RDF graph G′

such that G′ = GA ∪GB and G′ µ-matches QA ⊕QB .
E. Statements (C) and (D), together with Definitions 3 and 8

imply that for every vertex v̂ ∈ V (QA) ∩ V (QB)

• inc(QA, v̂) 6= ∅ and inc(QB , v̂) 6= ∅ (because according
to Definition 3, a vertex in a CPG cannot exist without
an edge incident on it); and

• there exists a vertex v ∈ V (GA) ∩ V (GB) to which v̂

is mapped (because the three surjective functions M
GA
V ,

M
GB
V and MG′

V implied by GA µA-matches QA, GB µB-
matches QB and G′ µ-matches QA ⊕QB must agree on
all common vertices) such that

– every edge ê ∈ inc(QA, v̂) is compatible with an edge
from e ∈ inc(GA, v);

– likewise, every edge ê ∈ inc(QB , v̂) is compatible
with an edge from e ∈ inc(GB , v) (which follows the
previous statement and Definition 8); and

F. In other words, for every vertex v̂ ∈ V (QA) ∩ V (QB), there
exists a vertex v ∈ V (GA) ∩ V (GB) such that every edge
ê ∈ inc(QA, v̂) ∪ inc(QB , v̂) is compatible with an edge from
inc(GA, v) ∪ inc(GB , v).

G. Recall that V (QA) ∩ V (QB) 6= ∅, therefore, Statement (F)
also implies that there exists a vertex v ∈ V (GA) ∩ V (GB)
and a vertex v̂ ∈ V (QA) ∩ V (QB) such that every edge
ê ∈ inc(QA, v̂) ∪ inc(QB , v̂) is compatible with an edge from
inc(GA, v) ∪ inc(GB , v).

H. However, Statement (G) contradicts the conditions in The-
orem 2, therefore proof-by-contradiction suggests Statement
(A) does not hold under these conditions.

I. Consequently,
⋃

(Pi,Pj)∈P1×P2JQAK∗Pi
./ JQBK∗Pj

= ∅ and

Theorem 2 holds.

Proof of Theorem 3. Assuming the conditions in Theorem 3,
we want to show that

TQAU(P) ./ TQBU(P) = TQA ⊕QBU(P) (7)

holds. According to Definition 11, Equation 7 is equivalent to⋃
(Pi,Pj)∈(P×P)

JQAK∗Pi
./ JQBK∗Pj

=
⋃
P∈P

JQA ⊕QBK∗P . (8)

Furthermore, according to Lemma 5, the right hand side of Equa-
tion 8 can be rewritten as follows:⋃

(Pi,Pj)∈(P×P)

JQAK∗Pi
./ JQBK∗Pj

=
⋃
P∈P

JQAK∗P ./ JQBK∗P , (9)

Given the equivalence of Equation 7 and Equation 9, we prove
Theorem 3 by showing that Equation 9 holds. Note that Equa-
tion 9 holds iff

JQAK∗Pi
./ JQBK∗Pj

= ∅ (10)
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for all (Pi, Pj) ∈ P × P with Pi 6= Pj . We need to prove that
Equation 10 holds both for sub-condition (i) and sub-condition
(ii) in Theorem 3. The proof of sub-condition (i) follows the
same steps as the proof of Theorem 2, therefore, we omit it. We
prove that Theorem 3 holds for sub-condition (ii) using proof-by-
contradiction.

A. Let us assume that there exist two partitions Pi, Pj ∈ P, where
Pi 6= Pj , such that JQAK∗Pi

./ JQBK∗Pj
6= ∅.

B. Same as Statements (B)–(E) in the proof of Theorem 2
C. Furthermore, according to Definition 8, for every v̂ ∈ V (QA)∩

V (QB), there exists an edge eA in inc(GA, v), which is com-
patible with an edge in inc(QA, v̂), such that cont(P, eA) = Pi

and an edge eB in inc(GB , v), which is compatible with an
edge in inc(QB , v̂), such that cont(P, eB) = Pj .

D. However, Pi 6= Pj , which contradicts condition (ii) in Theo-
rem 3.

E. Proof-by-contradiction suggests Statement (A) does not hold
under any of the above conditions.

F. Consequently,
⋃

(Pi,Pj)∈P1×P2JQAK∗Pi
./ JQBK∗Pj

= ∅ and

Theorem 3 holds.

B. EXPRESSIVENESS
In this section, we show that the framework we use in this pa-

per has the same expressive power as the standard formalization
of SPARQL [24] except for complex filter expressions involving
built-in functions, which can be integrated into our framework
if desired. To this end, let us use filterF to denote those filter
expressions in the standard formalization that are consistent with
our definition of filter expressions (Definition 2).

Assuming that S denotes the set of all possible SPARQL ex-
pressions that can be expressed using the standard syntax [24]
(except those involving complex filter expressions with built-in
functions) and that S∗ denotes the set of all possible queries that
can be expressed using our notation, we introduce two functions

• M : S → S∗ that maps SPARQL expressions in the stan-
dard syntax to a query expression in our notation (Defini-
tion 18), and

• M∗ : S∗ → S that maps queries in our notation to a canon-
ical SPARQL expression in the standard syntax (Defini-
tions 19 and 20)—such canonicalization is necessary because
as Definition 19 suggests, a CPG can be mapped to multiple
SPARQL expressions.

Definition 18. M : S → S∗ is defined recursively as follows:

• If S is a triple pattern (ŝ, p̂, ô), then M(S) is the CPG Q =

(V̂ , Ê, R) where V̂ = {ŝ, ô}, Ê = {(ŝ, p̂, ô)} and R = ∅;
• If S is S1 andS2, and

(a) if S1 and S2 are both in the and-filterF fragment
of SPARQL, then M(S) is the (concatenated) CPG
M(S1)⊕M(S2),

(b) else M(S) is M(S1)andM(S2);
• If S is S1 filterF , where F is a filter expression that is

consistent with Definition 2, and
(a) if S1 is in the and-filterF fragment of SPARQL, as-

suming M(S1) = Q1, then M(S) is the CPG Q =

(V̂ , Ê, R) where V̂ = V (Q1), Ê = E(Q1) and R =
R(Q1) ∪ F ,

(b) else M(S) is M(S1) filterF ;
• If S is S1 unionS2, then M(S) is M(S1)unionM(S2); and
• If S is S1 optS2, then M(S) is M(S1)optM(S2).

Definition 19. Assume �T and �F are total orderings of
(i) all possible triple patterns, and (ii) all possible filter expres-
sions, respectively. Then, the canonical SPARQL representation
of a CPG Q is defined as

cr(Q) =
(
· · · ((tp1 and · · · and tpm) filterF1) · · · filterFn

)
,

where tpi ∈ E(Q) for all i ∈ {1, . . . ,m}, Fj ∈ R(Q) for all
j ∈ {1, . . . , n}, tpi �T tpj for all i < j and Fi �F Fj for all
i < j.

Definition 20. M∗ : S∗ → S is defined recursively as fol-
lows:

• If Q is a CPG, M∗(Q) = cr(Q);
• If Q is a Q1 andQ2, M∗(Q) is M∗(Q1)andM∗(Q2);
• If Q is a Q1 filterF , M∗(Q) is M∗(Q1) filterF ;
• If Q is a Q1 unionQ2, M∗(Q) is M∗(Q1)unionM∗(Q2);

and
• If Q is a Q1 optQ2, M∗(Q) is M∗(Q1)optM∗(Q2).

To show that our formalism is as expressive as the standard, we
must prove that for any RDF graph G, whose edges correspond
to a set of triples D, it holds that

I. for any SPARQL query S ∈ S, JM(S)K∗G = JSKD (Theo-
rem 6), and

II. for any query expression S∗ ∈ S∗, JS∗K∗G = JM∗(S∗)KD
(Theorems 7 and 8),

where J·K∗G denotes the evaluation function introduced in this pa-
per, and J·KD denotes the standard evaluation.

Theorem 6. Given any RDF graph G, whose edges corre-
spond to a set of triples D, for any SPARQL expression S ∈ S,
it holds that JM(S)K∗G = JSKD.

Proof of Theorem 6. We use proof by induction on the con-
struction of S, which is formally described in Definition 18.
Base case (S is a single triple pattern): We need to show that
both of the following statements hold:

B1. If µ is a solution mapping such that µ ∈ JM(S)K∗G, then
µ ∈ JSKD; and

B2. If µ is a solution mapping such that µ ∈ JSKD, then µ ∈
JM(S)K∗G.

We prove both of these statements by contradiction. Recall that
for any SPARQL expression with a single triple pattern such that

S = (ŝ, p̂, ô), then M(S) is a CPG Q(V̂ , Ê, R) where V̂ = {ŝ, ô},
Ê = {(ŝ, p̂, ô)} and R = ∅. Then, the proof of Statement B1
proceeds as follows:

• Assume there exists a solution mapping µ such that µ ∈
JM(S)K∗G, but µ 6∈ JSKD.

• By Definition 9(1), there exists an RDF graph G′ that is a
subgraph of G such that G′ µ-matches M(S).

• By Definition 8, G′ consists of a single edge, and since G′ is
a subgraph of G (which is defined over the set of triples D),
there must exist a triple t ∈ D such that µ[tp] = t.

• If such a triple exists, then µ must also be an element of
JtpKD.

• However, then µ ∈ JSKD, which is a contradiction.
• Consequently, statement B1 must hold.

We prove statement B2 using a similar reasoning.

• Assume there exists a solution mapping µ such that µ ∈
JSKD, but µ 6∈ JM(S)K∗G.

• Therefore, there must exist a triple t ∈ D such that µ[tp] =
t.

• Hence, there exists an RDF graph G′ that is a subgraph of
G which consists of a single edge that represents t.

• According to the definition of µ-match (Definition 8) and
our earlier statement about t, G′ must µ-match Q7.

• Then, according to Definition 9(1), µ ∈ JQK∗G, which is a
contradiction.

• Consequently, statement B2 must hold.

Inductive step: There are multiple cases to consider, which are
outlined shortly. For each of the cases, we need to show that both
of the following statements hold:

I1. If µ is a solution mapping such that µ ∈ JM(S)K∗G, then
µ ∈ JSKD; and

I2. If µ is a solution mapping such that µ ∈ JSKD, then µ ∈
JM(S)K∗G.

7It must be noted that µ can be defined over an empty
domain of variables.
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Case-I (S is S1 andS2, where S1 and S2 are both in the and-
filterF fragment of SPARQL): We assume by induc-
tion that JM(S1)K∗G = JS1KD and JM(S2)K∗G = JS2KD,
and we prove I1 and I2 by contradiction. Let us start
with the first statement.

• Assume there exists a solution mapping µ such
that µ ∈ JM(S1 andS2)K∗G, but µ 6∈ JS1 andS2KD.

• According to Definition 18, since S1 and S2 are
both in the and-filterF fragment of SPARQL,
µ ∈ JM(S1)⊕M(S2)K∗G.

• Then, according to Lemma 5, µ ∈ JM(S1)K∗G ./
JM(S2)K∗G.

• Therefore, by induction, µ ∈ JS1KD ./ JS2KD.
• However, JS1KD ./ JS2KD = JS1 andS2KD, there-

fore µ ∈ JS1 andS2KD, which is a contradiction.
• Consequently, statement I1 holds if S is (S1 andS2).

To prove statement I2, we use a similar method.

• Assume there exists a solution mapping µ such
that µ ∈ JS1 andS2KD, but µ 6∈ JM(S1 andS2)K∗G.

• Therefore, µ ∈ JS1KD ./ JS2KD, and by induction,
µ ∈ JM(S1)K∗G ./ JM(S2)K∗G.

• According to Lemma 5, µ ∈ JM(S1)⊕M(S2)K∗G.
• However, this is a contradiction because S1 and S2

are both in the and-filterF fragment of SPARQL,
and according to Definition 18, M(S1 andS2) =
M(S1)⊕M(S2).

• Consequently, statement I2 holds if S = S1 andS2.

Case-II (S is S1 filterF where S1 is in the and-filterF frag-
ment of SPARQL, and F is a filter expression that is
consistent with Definition 2): We assume by induc-
tion that JM(S1)K∗G = JS1KD. Recall that according
to Definition 18, assuming M(S1) = Q1, then M(S) =

Q(V̂ , Ê, R) where V̂ = V (Q1), Ê = E(Q1) and R =
R(Q1) ∪ F . Then, we can prove I1 and I2 by contra-
diction. Let us start with I1.

• Assume there exists a solution mapping µ such
that µ ∈ JM(S)K∗G, but µ 6∈ JSKD.

• By Definition 9(1), there exists an RDF graph G′

that is a subgraph of G such that G′ µ-matches Q.
• According to Definition 8, µ satisfies F .
• According to Definition 8, it also holds that G′

µ-matches Q1; therefore, µ ∈ JM(S1)K∗G.
• Then, by induction, µ ∈ JS1KD.
• However, we already know that µ satisfies F , and

according to the algebraic formalism by Schmidt
et al. [26], it can be easily shown that µ ∈ JSKD,
which is a contradiction.

• Consequently, statement I1 holds.

For statement I2, we use a similar method.

• Assume there exists a solution mapping µ such
that µ ∈ JSKD, but µ 6∈ JM(S)K∗G.

• Since F is consistent with Definition 2, it can be
concluded that µ satisfies F .

• Furthermore, µ ∈ JS1KD.
• Then, by induction, µ ∈ JM(S1)K∗G.
• According to Definition 18, µ ∈ JM(S1)K∗G because

S1 is in the and-filterF fragment of SPARQL.

• Let Q1 = (V̂ , Ê, R) be the CPG that M(S1) de-
notes.

• By Definition 9(1), there exists an RDF graph G′

that is a subgraph of G such that G′ µ-matches
Q1.

• Note that according to Definition 18, M(S) = Q′,

where Q′ = (V̂ , Ê, R′) with R′ = R ∪ {F}.
• Then, according to Definition 8, it also holds that
G′ µ-matches M(S) because M(S) = Q′ and µ
satisfies F .

• However, last statement implies that µ ∈ JM(S)K∗G,
which is a contradiction.

• Consequently, I2 holds.

Case-III (S is S1 opS2, where op ∈ {and,union,opt} such that
if op is and, then at least one of S1 or S2 is not in the

and-filterF fragment of SPARQL): We need to show
that

JM(S)K∗G = JSKD. (11)

We will show the proof steps only for op = union, but
omit the others as they are very similar.

A. Without loss of generality, Equation 11 can be re-
stated as:

JM(S1 unionS2)K∗G = JS1 unionS2KD (12)

B. According to Definition 18, Equation 12 becomes

JM(S1)unionM(S2)K∗G = JS1 unionS2KD.

C. Then, according to Definition 9, equation becomes

JM(S1)K∗G ∪ JM(S2)K∗G = JS1 unionS2KD.

D. By induction it holds that

JM(S1)K∗G = JS1KD and

JM(S2)K∗G = JS2KD.

E. Therefore, equation becomes

JS1KD ∪ JS2KD = JS1 unionS2KD.

F. However, based on the standard formalism,

JS1 unionS2KD = JS1KD ∪ JS2KD,

which proves Equation 11.

Case-IV (S is S1 filterF , where S1 is not in the and-filterF

fragment of SPARQL): The proof is very similar to the
proof of Case-III, therefore, we omit it.

To prove that for any query expression S∗ ∈ S∗, JS∗K∗G =
JM∗(S∗)KD, first, we show that

• for any CPG Q and any RDF graph G, JQK∗G = JM∗(Q)KD,
where D = E(G) (Theorem 7).

Then, we extend our proof to each sub-part of Definition 9 (The-
orem 8).

Theorem 7. Given any RDF graph G, whose edges corre-
spond to a set of triples D, for any CPG Q, it holds that JQK∗G =
JM∗(Q)KD.

Proof of Theorem 7. We use proof by induction on the num-
ber of edges in Q.
Base case (|EQ| = 1): We need to show that both of the follow-
ing statements hold:

B1. If µ is a solution mapping such that µ ∈ JQK∗G, then µ ∈
JM∗(Q)KD; and

B2. If µ is a solution mapping such that µ ∈ JM∗(Q)KD, then
µ ∈ JQK∗G.

We prove both of these statements by contradiction. Recall that
according to Definitions 19 and 20 if E(Q) = {tp} and R(Q) =
{F1, · · · , Fn}, then

M∗(Q) =
(
· · · (tp filterF1) · · ·Fn

)
.

Then, the proof of Statement B1 proceeds as follows:

• Assume there exists a solution mapping µ such that µ ∈
JQK∗G, but µ 6∈ JM∗(Q)KD.

• By Definition 9(1), there exists an RDF graph G′ that is a
subgraph of G such that G′ µ-matches Q.
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• By Definition 8, G′ consists of a single edge, and since G′

is a subgraph of G (which is defined over the set of triples
D), there must exist a triple t ∈ D such that µ[tp] = t and
µ satisfies F1, · · · , Fn.

• If such a triple exists, then µ must also be an element of
JM∗(Q)KD, which is a contradiction.

• Consequently, statement B1 must hold.

We prove statement B2 using a similar reasoning.

• Assume there exists a solution mapping µ such that µ ∈
JM∗(Q)KD, but µ 6∈ JQK∗G.

• Therefore, there must exist a triple t ∈ D such that µ[tp] =
t, where µ also satisfies all filter expressions F1 . . . Fn.

• Hence, there exists an RDF graph G′ that is a subgraph of
G which consists of the edge that represents t.

• According to the definition of µ-match (Definition 8) and
our earlier statement about t, G′ must µ-match Q.

• Then, according to Definition 9(1), µ ∈ JQK∗G, which is a
contradiction.

• Consequently, statement B2 must hold.

Inductive step (|E(Q)| = n+ 1): In order to show that JQK∗G =
JM∗(Q)KD, we need to show that both of the following statements
hold:

I1. If µ is a solution mapping such that µ ∈ JQK∗G, then µ ∈
JM∗(Q)KD; and

I2. If µ is a solution mapping such that µ ∈ JM∗(Q)KD, then
µ ∈ JQK∗G.

We prove statements I1 and I2 by contradiction. Without loss
of generality, we assume two CPGs QA and QB such that Q =
QA ⊕ QB . Given |E(QA)| ≤ n and |E(QB)| ≤ n, by induction,
JQAK∗G = JM∗(QA)KD and JQBK∗G = JM∗(QB)KD. Let us start
with the first statement.

• Assume there exists a solution mapping µ such that µ ∈
JQA ⊕QBK∗G, but µ 6∈ JM∗(QA ⊕QB)KD.

• By Definition 9(1), there exists an RDF graph G′ that is a
subgraph of G such that G′ µ-matches QA ⊕QB .

• Then, according to Lemma 4, there exists two RDF graphs
GA and GB that are subgraphs of G′ such that GA µA-
matches QA and GB µB-matches QB , where µA and µB are
two solution mappings such that µ = µA∪µB and µA ∼ µB .

• Since GA and GB are also subgraphs of G (transitively),
according to Definition 9(1), µA ∈ JQAK∗G and µB ∈ JQBK∗G.

• Due to the inductive hypothesis, it also holds that µA ∈
JM∗(QA)KD and µB ∈ JM∗(QB)KD.

• Note that JM∗(QA ⊕ QB)KD = JM∗(QA)andM∗(QB)KD
(which is easily verified by using the algebraic equivalence
shown by Schmidt et al. [26]).

• According to the standard interpretation [24], it holds that
JM∗(QA)andM∗(QB)KD = JM∗(QA)KD ./ JM∗(QB)KD.

• Since µ = µA ∪ µB and µA ∼ µB , according to the def-
inition of join (./) in the standard formalization [24], µ ∈
JM∗(QA)KD ./ JM∗(QB)KD.

• Thus, µ ∈ JM∗(QA ⊕QB)KD, which is a contradiction.
• Consequently, statement I1 holds.

To prove statement I2, we use a similar method.

• Assume there exists a solution mapping µ such that µ ∈
JM∗(QA ⊕QB)KD, but µ 6∈ JQA ⊕QBK∗G.

• Note that JM∗(QA ⊕ QB)KD = JM∗(QA)andM∗(QB)KD
(which is easily verified by using the algebraic equivalence
shown by Schmidt et al. [26]).

• According to the standard interpretation [24], it holds that
JM∗(QA)andM∗(QB)KD = JM∗(QA)KD ./ JM∗(QB)KD.

• Then, according to the definition of join (./) in the standard
formalization [24], there must exist two solution mappings
µA and µB such that µA ∈ JM∗(QA)KD, µB ∈ JM∗(QB)KD,
µ = µA ∪ µB and µA ∼ µB .

• Due to the inductive hypothesis, it also holds that µA ∈
JQAK∗G.

• Furthermore, since QB consists of a single edge, the base
case of Theorem 7 suggests that µB ∈ JQBK∗G.

• Then, according to Lemma 4, there exists an RDF graph
G′ = GA ∪GB such that G′ µ-matches QA ⊕QB .

• Since both GA and GB are subgraphs of G and G′ = GA ∪
GB , G′ is also a subgraph of G.

• By Definition 9(1), µ ∈ JQA ⊕QBK∗G, which is a contradic-
tion.

• Consequently, by proof-by-contradiction, statement I2 holds.

Now, we are ready to extend our proof to the other steps in
Definition 9.

Theorem 8. Given any RDF graph G, whose edges corre-
spond to a set of triples D, for any query expression Q ∈ S∗
it holds that JQK∗G = JM∗(Q)KD.

Proof of Theorem 8. We prove Theorem 8 by induction on
the number of and, union, opt and filter operations in a query
expression Q ∈ S∗. In the base case, we show that

• If Q1 and Q2 are two CPGs, then

JQ1 andQ2K∗G = JM∗(Q1 andQ2)KD, (13)

JQ1 unionQ2K∗G = JM∗(Q1 unionQ2)KD and (14)

JQ1 optQ2K∗G = JM∗(Q1 optQ2)KD; and if (15)

• If Q1 is a CPG and F is a filter expression, then

JQ1 filterF K∗G = JM∗(Q1 filterF )KD. (16)

In the inductive step, we assume JQ1K∗G = JM∗(Q1)KD and JQ2K∗G =
JM∗(Q2)KD hold for Q1, Q2 ∈ S∗, where Q1 and Q2 contain less
than or equal to n number of and, union, opt and filter oper-
ations. Then, we prove Equations 13–16 are true for this general
case as well.
Base case: We will show the proof steps for Equation 13, but
omit the others as they are very similar.

A. According to Definition 9, the left hand side of Equation 13
becomes

JQ1 andQ2K∗G = JQ1K∗G ./ JQ2K∗G.

B. Since Q1 and Q2 are CPGs, Theorem 7 suggests that

JQ1K∗G = JM∗(Q1)KD and

JQ2K∗G = JM∗(Q2)KD.

C. Therefore,

JQ1 andQ2K∗G = JM∗(Q1)KD ./ JM∗(Q2)KD.

D. According to Definition 20,

M∗(Q1 andQ2) = M∗(Q1)andM∗(Q2).

E. Then, based on the standard formalism [24], the right hand
side of Equation 13 becomes

JM∗(Q1 andQ2)KD = JM∗(Q1)KD ./ JM∗(Q2)KD.

F. Hence,

JQ1 andQ2K∗G = JM∗(Q1 andQ2)KD,

which proves Equation 13 for the base case.

Inductive step: The proof of the inductive step is very similar
to that of the base case except for Step (B) above, which needs
to be adjusted as follows:

• Based on the inductive hypothesis,

JQ1K∗G = JM∗(Q1)KD and

JQ2K∗G = JM∗(Q2)KD.
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scale factor = 1
triples 105257
distinct subjects 5597
distinct predicates 85
distinct objects 13258
URIs 5947
literals 14286
distinct literals 8018

Table 5: Characteristics of the WSDTS test dataset.

C. DETAILS OF WSDTS
WSDTS consists of two components: the data generator and

the query generator. The WSDTS data generator allows users to
define their own dataset through a dataset description language.
This way, users can control (i) which entities to include in their
dataset, (ii) how coherent each entity is (for details please refer to
a research paper by Duan et al. [11]), (iii) how different entities
are associated, (iv) the probability that an entity of type X is
associated with an entity of type Y, and (v) the cardinality of
such associations.

Using these features, we designed the WSDTS test dataset (see
the associated dataset description model 8). By executing the
data generator with different scale factors, it is possible generate
test datasets with different sizes. Table 5 lists the properties of
the dataset at scale factor = 1.

An important characteristic that distinguishes the WSDTS test
dataset from existing benchmarks is that instances of the same
entity do not necessarily have the same set of attributes. Ta-
ble 6 lists all the different entities used in WSDTS. Take the
Product entity for instance. Product instances may be associ-
ated with different Product Categories (e.g., Book, Movie, Clas-
sical Music Concert, etc.), but depending on which category a
product belongs to, it will have a different set of attributes. For
example, products that belong to the category “Classical Mu-
sic Concert” have the attributes mo:opus, mo:movement, ws-
dbm:composer, mo:performer (in addition to the attributes that
is common to every product), whereas products that belong to the
category “Book” have the attributes sorg:isbn, sorg:bookEdition
and sorg:numberOfPages. Furthermore, even within a single prod-
uct category, not all instances share the same set of attributes.
For example, while sorg:isbn is a required attribute for a book,
sorg:bookEdition (Pr = 0.5) and sorg:numberOfPages (Pr =
0.25) are optional attributes, where Pr indicates the probability
that an instance will be generated with that attribute. It must be
also noted that some attributes are correlated, which means that
either all or none of the correlated attributes will be present in an
instance (the pgroup construct in the WSDTS dataset descrip-
tion language allows the grouping of such correlated attributes).
For a complete list of probabilities, please refer to Tables 7 and
8.

In short, we designed the WSDTS test dataset such that

• some entities are more structured (meaning that they con-
tain few optional attributes) while the others are less struc-
tured;

• entities are associated in complex ways that mimic the real
types of distributions on the Web;

• cardinalities of these associations are varied.

At this point, you may be wondering how these differentiating
aspects of WSDTS affect system evaluation, and why they are
important at all. The answer is trivial: by relying on a more
diverse dataset as such (which is typical for data on the Web),
we were able to generate test queries that focus on much wider
aspects of query evaluation, which cannot be easily captured by
other benchmarks. Consider the two SPARQL query templates
C3 and S7 (Appendix D). C3 is a star query that retrieves cer-
tain information about users such as the products they like, their

8https://cs.uwaterloo.ca/~galuc/wsdts/
wsdts-data-model.txt

Entity Type Instance Count
[per scale factor if applicable]

wsdbm:Purchase 1500
wsdbm:User 1000
wsdbm:Offer 900
wsdbm:Topic* 250
wsdbm:Product 250
wsdbm:City* 240
wsdbm:SubGenre* 145
wsdbm:Website 50
wsdbm:Language* 25
wsdbm:Country* 25
wsdbm:Genre* 21
wsdbm:ProductCategory* 15
wsdbm:Retailer 12
wsdbm:AgeGroup* 9
wsdbm:Role* 3
wsdbm:Gender* 2

Table 6: Entities generated according to WSDTS data de-
scription model. Entities marked with an asterisk * do not
scale.

friends and some demographics information. On our website 9,
for each triple pattern in the query template, we also display its
selectivity (the reported selectivities are estimations based on the
probability distributions specified in the WSDTS dataset descrip-
tion model). Note that while individually triple patterns in C3
are not that selective, this query as a whole, is very selective.
Now, consider S7, which (as a whole) is also very selective, but
unlike C3, its selectivity is largely due to only a single triple pat-
tern. It turns out that different systems behave very differently
for these queries. Systems like RDF-3x [21], which (i) decom-
pose queries into triple patterns, (ii) find a suitable ordering of
the join operations and then (iii) execute the joins in that order,
perform very well on queries like S7 because the first triple pat-
tern they execute is very selective. On the other hand, they do
not do as well on queries like C3 because the decomposed evalu-
ation produces many irrelevant intermediate tuples. In contrast,
gStore [34] treats the star-shaped query as a whole and it can pin-
point the relevant vertices in the RDF graph without performing
joins; hence, it is much more efficient in executing C3.

Based on the above observations, in WSDTS we tried to gen-
erate as diverse a test workload as possible. WSDTS test work-
loads consist of queries in four categories, namely, linear queries
(L), star queries (S), snowflake-shaped queries (F) and complex
queries (C) with a total of 20 query templates. These query tem-
plates were randomly selected from a pool of queries generated
by performing a random walk on the dataset description model
(which can be represented as a graph), while making sure that
(i) the selected queries sufficiently represent each category, (ii) the
selectivities of the queries within each category vary, and (iii) in
some queries selectivity originates from a single (or few) triple
patterns while in the others, it originates as a combination of
multiple somewhat less selective triple patterns.

9https://cs.uwaterloo.ca/~galuc/wsdts/

18

https://cs.uwaterloo.ca/~galuc/wsdts/wsdts-data-model.txt
https://cs.uwaterloo.ca/~galuc/wsdts/wsdts-data-model.txt
https://cs.uwaterloo.ca/~galuc/wsdts/


Table 7: Probability that a randomly picked instance of a given entity (based on a normal/uniform/Zipfian distribution) has
a given attribute such that instance appears as the subject and attribute appears as the predicate of a triple.

Subject[@TypeRestriction] Predicate Pr (normal) Pr (uniform) Pr (Zipfian) Cardinality
wsdbm:City gn:parentCountry 1 1 1 1
wsdbm:Offer gr:includes 1 1 1 1
wsdbm:Offer gr:price 1 1 1 1
wsdbm:Offer gr:serialNumber 1 1 1 1
wsdbm:Offer gr:validFrom 0.4 0.4 0.5 1
wsdbm:Offer gr:validThrough 0.4 0.4 0.4 1
wsdbm:Offer sorg:eligibleQuantity 1 1 1 1
wsdbm:Offer sorg:eligibleRegion 0.5 0.5 0.5 4
wsdbm:Offer sorg:priceValidUntil 0.2 0.2 0.2 1

wsdbm:Product foaf:homepage 0.2 0.3 0.3 1
wsdbm:Product og:tag 0.6 0.6 0.7 9.8
wsdbm:Product og:title 1 1 1 1
wsdbm:Product rdf:type 1 1 1 1
wsdbm:Product rev:hasReview 0.2 0.2 0.2 32.8
wsdbm:Product sorg:caption 0.2 0.2 0.1 1
wsdbm:Product sorg:contentRating 0.4 0.4 0.3 1
wsdbm:Product sorg:contentSize 0.1 0.1 0 1
wsdbm:Product sorg:description 0.6 0.6 0.7 1
wsdbm:Product sorg:expires 0.1 0.1 0.1 1
wsdbm:Product sorg:keywords 0.3 0.3 0.4 1
wsdbm:Product sorg:text 0.3 0.3 0.3 1
wsdbm:Product wsdbm:hasGenre 1 1 1 2.4

wsdbm:Product@wsdbm:ProductCategory0 foaf:homepage 0 0.1 0.5 0
wsdbm:Product@wsdbm:ProductCategory0 mo:conductor 0.6 0.3 0.1 1
wsdbm:Product@wsdbm:ProductCategory0 mo:movement 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory0 mo:opus 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory0 mo:performed in 0.2 0.5 0.7 1
wsdbm:Product@wsdbm:ProductCategory0 mo:performer 0.5 0.7 0.9 1
wsdbm:Product@wsdbm:ProductCategory0 og:tag 0.2 0.2 0.3 11
wsdbm:Product@wsdbm:ProductCategory0 og:title 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory0 rdf:type 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory0 rev:hasReview 0.1 0.1 0.6 21.3
wsdbm:Product@wsdbm:ProductCategory0 sorg:caption 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory0 sorg:contentRating 0.5 0.6 0.3 1
wsdbm:Product@wsdbm:ProductCategory0 sorg:contentSize 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory0 sorg:description 0.6 0.3 0.6 1
wsdbm:Product@wsdbm:ProductCategory0 sorg:expires 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory0 sorg:keywords 0.4 0.6 0.3 1
wsdbm:Product@wsdbm:ProductCategory0 sorg:text 0.2 0.5 0.7 1
wsdbm:Product@wsdbm:ProductCategory0 wsdbm:composer 1 0.9 0.5 1
wsdbm:Product@wsdbm:ProductCategory0 wsdbm:hasGenre 1 1 1 2.6
wsdbm:Product@wsdbm:ProductCategory1 foaf:homepage 0.1 0.2 0.4 1
wsdbm:Product@wsdbm:ProductCategory1 mo:artist 0.9 0.9 0.7 1
wsdbm:Product@wsdbm:ProductCategory1 mo:producer 0.5 0.4 0.3 1
wsdbm:Product@wsdbm:ProductCategory1 mo:record number 0.8 0.7 0.9 1
wsdbm:Product@wsdbm:ProductCategory1 mo:release 0.7 0.4 0.3 1
wsdbm:Product@wsdbm:ProductCategory1 og:tag 0.4 0.5 0.7 11.4
wsdbm:Product@wsdbm:ProductCategory1 og:title 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory1 rdf:type 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory1 rev:hasReview 0.3 0.2 0.1 18.9
wsdbm:Product@wsdbm:ProductCategory1 sorg:caption 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory1 sorg:contentRating 0.4 0.4 0.4 1
wsdbm:Product@wsdbm:ProductCategory1 sorg:contentSize 0.1 0.2 0.1 1
wsdbm:Product@wsdbm:ProductCategory1 sorg:description 0.4 0.5 0.7 1
wsdbm:Product@wsdbm:ProductCategory1 sorg:expires 0.2 0.1 0.1 1
wsdbm:Product@wsdbm:ProductCategory1 sorg:keywords 0.3 0.3 0.2 1
wsdbm:Product@wsdbm:ProductCategory1 sorg:text 0 0.1 0.3 1
wsdbm:Product@wsdbm:ProductCategory1 wsdbm:hasGenre 1 1 1 2.5
wsdbm:Product@wsdbm:ProductCategory2 foaf:homepage 0.2 0.2 0.1 1
wsdbm:Product@wsdbm:ProductCategory2 og:tag 0.5 0.6 0.7 10.1
wsdbm:Product@wsdbm:ProductCategory2 og:title 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory2 rdf:type 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory2 rev:hasReview 0.1 0.1 0.1 40.3
wsdbm:Product@wsdbm:ProductCategory2 sorg:actor 0.8 0.8 0.9 11.5
wsdbm:Product@wsdbm:ProductCategory2 sorg:award 0.1 0.1 0 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:caption 0.3 0.3 0.1 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:contentRating 0.3 0.4 0.2 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:contentSize 0.1 0 0 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:description 0.8 0.8 1 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:director 0.8 0.8 0.6 1
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wsdbm:Product@wsdbm:ProductCategory2 sorg:duration 0.4 0.4 0.3 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:expires 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory2 sorg:keywords 0.2 0.2 0.4 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:language 0.3 0.2 0.2 1.6
wsdbm:Product@wsdbm:ProductCategory2 sorg:producer 0.4 0.4 0.6 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:text 0.1 0.2 0.1 1
wsdbm:Product@wsdbm:ProductCategory2 sorg:trailer 0.1 0.1 0.1 2
wsdbm:Product@wsdbm:ProductCategory2 wsdbm:hasGenre 1 1 1 2.1
wsdbm:Product@wsdbm:ProductCategory3 foaf:homepage 0.4 0.4 0.5 1
wsdbm:Product@wsdbm:ProductCategory3 og:tag 0.7 0.7 0.8 11.7
wsdbm:Product@wsdbm:ProductCategory3 og:title 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory3 rdf:type 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory3 rev:hasReview 0.1 0.1 0.1 39.5
wsdbm:Product@wsdbm:ProductCategory3 sorg:author 0.7 0.7 0.8 1.9
wsdbm:Product@wsdbm:ProductCategory3 sorg:bookEdition 0.4 0.4 0.2 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:caption 0.1 0.1 0.3 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:contentRating 0.5 0.7 0.8 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:contentSize 0 0.1 0 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:description 0.4 0.3 0.3 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:editor 0.4 0.4 0.4 2.4
wsdbm:Product@wsdbm:ProductCategory3 sorg:expires 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory3 sorg:isbn 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:keywords 0.3 0.3 0.3 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:language 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory3 sorg:numberOfPages 0.5 0.5 0.5 1
wsdbm:Product@wsdbm:ProductCategory3 sorg:text 0.4 0.5 0.3 1
wsdbm:Product@wsdbm:ProductCategory3 wsdbm:hasGenre 1 1 1 2.4
wsdbm:Product@wsdbm:ProductCategory4 foaf:homepage 0.4 0.5 0.4 1
wsdbm:Product@wsdbm:ProductCategory4 og:tag 0.5 0.5 0.8 12.7
wsdbm:Product@wsdbm:ProductCategory4 og:title 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory4 rdf:type 1 1 1 1
wsdbm:Product@wsdbm:ProductCategory4 rev:hasReview 0 0.1 0.1 6.3
wsdbm:Product@wsdbm:ProductCategory4 sorg:author 0.8 0.8 0.9 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:caption 0.2 0.2 0.2 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:contentRating 0.1 0.1 0.1 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:contentSize 0 0 0 0
wsdbm:Product@wsdbm:ProductCategory4 sorg:datePublished 0.6 0.5 0.8 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:description 0.8 0.7 0.6 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:editor 0.2 0.1 0 1.3
wsdbm:Product@wsdbm:ProductCategory4 sorg:expires 0.1 0.1 0 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:keywords 0.1 0.1 0.2 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:printColumn 0 0.2 0.1 0.7
wsdbm:Product@wsdbm:ProductCategory4 sorg:printEdition 0 0.1 0.1 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:printPage 0.3 0.3 0.1 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:printSection 0.3 0.4 0.1 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:publisher 1 0.8 0.5 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:text 0.2 0.4 0.3 1
wsdbm:Product@wsdbm:ProductCategory4 sorg:wordCount 0.1 0.1 0 1
wsdbm:Product@wsdbm:ProductCategory4 wsdbm:hasGenre 1 1 1 2.1

wsdbm:ProductCategory rdf:type 0 0 0 0
wsdbm:Purchase gr:price 1 1 1 1
wsdbm:Purchase wsdbm:purchaseDate 1 1 1 1
wsdbm:Purchase wsdbm:purchaseFor 1 1 1 1
wsdbm:Retailer gr:description 1 1 1 1
wsdbm:Retailer gr:name 1 1 1 1
wsdbm:Retailer gr:offers 1 1 1 90.3
wsdbm:Retailer sorg:aggregateRating 0.4 0.6 0.7 1
wsdbm:Retailer sorg:contactPoint 1 0.9 1 1
wsdbm:Retailer sorg:email 0.8 0.9 1 1
wsdbm:Retailer sorg:employee 0 0.1 0 3
wsdbm:Retailer sorg:faxNumber 0 0.1 0 1
wsdbm:Retailer sorg:legalName 0 0 0 0
wsdbm:Retailer sorg:openingHours 0.8 0.8 0.9 1
wsdbm:Retailer sorg:paymentAccepted 0.6 0.6 0.5 1
wsdbm:Retailer sorg:telephone 0.8 0.8 0.8 1
wsdbm:Review rev:rating 1 1 1 1
wsdbm:Review rev:reviewer 1 1 1 1
wsdbm:Review rev:text 0.7 0.7 0.6 1
wsdbm:Review rev:title 0.3 0.3 0.3 1
wsdbm:Review rev:totalVotes 0.1 0 0.1 1

wsdbm:SubGenre og:tag 1 0.9 1 3
wsdbm:SubGenre rdf:type 1 1 1 1

wsdbm:User dc:Location 0.4 0.4 0.4 1
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wsdbm:User foaf:age 0.5 0.5 0.5 1
wsdbm:User foaf:familyName 0.7 0.7 0.6 1
wsdbm:User foaf:givenName 0.7 0.7 0.6 1
wsdbm:User foaf:homepage 0.1 0 0 1
wsdbm:User rdf:type 1 1 1 1.1
wsdbm:User sorg:birthDate 0.2 0.2 0.3 1
wsdbm:User sorg:email 0.9 0.9 0.7 1
wsdbm:User sorg:jobTitle 0.1 0.1 0 1
wsdbm:User sorg:nationality 0.2 0.2 0.2 1
wsdbm:User sorg:telephone 0 0 0.1 1
wsdbm:User wsdbm:follows 0.8 0.8 0.8 40.7
wsdbm:User wsdbm:friendOf 0.4 0.4 0.6 106.7
wsdbm:User wsdbm:gender 0.6 0.6 0.7 1
wsdbm:User wsdbm:likes 0.3 0.3 0.2 5.3
wsdbm:User wsdbm:subscribes 0.2 0.2 0.1 7
wsdbm:User wsdbm:userId 1 1 1 1

wsdbm:User@wsdbm:Role0 dc:Location 0.4 0.3 0.3 1
wsdbm:User@wsdbm:Role0 foaf:age 0.5 0.5 0.4 1
wsdbm:User@wsdbm:Role0 foaf:familyName 0.7 0.7 0.7 1
wsdbm:User@wsdbm:Role0 foaf:givenName 0.7 0.7 0.7 1
wsdbm:User@wsdbm:Role0 foaf:homepage 0 0 0 1
wsdbm:User@wsdbm:Role0 rdf:type 1 1 1 1.1
wsdbm:User@wsdbm:Role0 sorg:birthDate 0.2 0.2 0.3 1
wsdbm:User@wsdbm:Role0 sorg:email 0.9 0.9 0.8 1
wsdbm:User@wsdbm:Role0 sorg:jobTitle 0.1 0 0.1 1
wsdbm:User@wsdbm:Role0 sorg:nationality 0.2 0.2 0.1 1
wsdbm:User@wsdbm:Role0 sorg:telephone 0 0 0 1
wsdbm:User@wsdbm:Role0 wsdbm:follows 0.8 0.8 0.8 42.9
wsdbm:User@wsdbm:Role0 wsdbm:friendOf 0.4 0.4 0.5 105.5
wsdbm:User@wsdbm:Role0 wsdbm:gender 0.6 0.6 0.7 1
wsdbm:User@wsdbm:Role0 wsdbm:likes 0.3 0.2 0.2 5.1
wsdbm:User@wsdbm:Role0 wsdbm:makesPurchase 0.3 0.3 0.4 9.9
wsdbm:User@wsdbm:Role0 wsdbm:subscribes 0.2 0.2 0.1 6.9
wsdbm:User@wsdbm:Role0 wsdbm:userId 1 1 1 1
wsdbm:User@wsdbm:Role1 dc:Location 0.4 0.4 0.5 1
wsdbm:User@wsdbm:Role1 foaf:age 0.4 0.4 0.5 1
wsdbm:User@wsdbm:Role1 foaf:familyName 0.7 0.7 0.6 1
wsdbm:User@wsdbm:Role1 foaf:givenName 0.7 0.7 0.6 1
wsdbm:User@wsdbm:Role1 foaf:homepage 0.1 0.1 0 1
wsdbm:User@wsdbm:Role1 rdf:type 1 1 1 1.2
wsdbm:User@wsdbm:Role1 sorg:birthDate 0.2 0.2 0.1 1
wsdbm:User@wsdbm:Role1 sorg:email 0.9 0.9 0.8 1
wsdbm:User@wsdbm:Role1 sorg:jobTitle 0.1 0.1 0.2 1
wsdbm:User@wsdbm:Role1 sorg:nationality 0.2 0.2 0.2 1
wsdbm:User@wsdbm:Role1 sorg:telephone 0.1 0.1 0 1
wsdbm:User@wsdbm:Role1 wsdbm:follows 0.8 0.8 0.7 40.3
wsdbm:User@wsdbm:Role1 wsdbm:friendOf 0.4 0.4 0.5 107.6
wsdbm:User@wsdbm:Role1 wsdbm:gender 0.7 0.6 0.4 1
wsdbm:User@wsdbm:Role1 wsdbm:likes 0.3 0.3 0.2 6.9
wsdbm:User@wsdbm:Role1 wsdbm:subscribes 0.2 0.2 0.2 6.8
wsdbm:User@wsdbm:Role1 wsdbm:userId 1 1 1 1
wsdbm:User@wsdbm:Role2 dc:Location 0.4 0.4 0.4 1
wsdbm:User@wsdbm:Role2 foaf:age 0.5 0.5 0.4 1
wsdbm:User@wsdbm:Role2 foaf:familyName 0.7 0.7 0.8 1
wsdbm:User@wsdbm:Role2 foaf:givenName 0.7 0.7 0.8 1
wsdbm:User@wsdbm:Role2 foaf:homepage 0.1 0.1 0.2 1
wsdbm:User@wsdbm:Role2 rdf:type 1 1 1 1.2
wsdbm:User@wsdbm:Role2 sorg:birthDate 0.2 0.2 0.2 1
wsdbm:User@wsdbm:Role2 sorg:email 0.9 0.9 0.9 1
wsdbm:User@wsdbm:Role2 sorg:jobTitle 0.1 0.1 0 1
wsdbm:User@wsdbm:Role2 sorg:nationality 0.2 0.2 0.1 1
wsdbm:User@wsdbm:Role2 sorg:telephone 0.1 0.1 0.1 1
wsdbm:User@wsdbm:Role2 wsdbm:follows 0.8 0.8 0.8 39.1
wsdbm:User@wsdbm:Role2 wsdbm:friendOf 0.4 0.4 0.3 101.8
wsdbm:User@wsdbm:Role2 wsdbm:gender 0.7 0.6 0.4 1
wsdbm:User@wsdbm:Role2 wsdbm:likes 0.3 0.3 0.1 4.6
wsdbm:User@wsdbm:Role2 wsdbm:subscribes 0.2 0.2 0.1 7.5
wsdbm:User@wsdbm:Role2 wsdbm:userId 1 1 1 1

wsdbm:Website sorg:url 1 1 1 1
wsdbm:Website wsdbm:hits 1 1 1 1
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Table 8: Probability that a randomly picked instance of a given entity (based on a normal/uniform/Zipfian distribution) has
a given attribute such that instance appears as the object and attribute appears as the predicate of a triple.

Object[@TypeRestriction] Predicate Pr (normal) Pr (uniform) Pr (Zipfian) Cardinality
wsdbm:AgeGroup foaf:age 1 1 1 90

wsdbm:City dc:Location 0.4 0.5 0.8 1.7
wsdbm:City mo:performed in 0 0 0 1

wsdbm:Country gn:parentCountry 1 1 1 5.7
wsdbm:Country sorg:eligibleRegion 1 1 1 51.9
wsdbm:Country sorg:nationality 0.9 0.9 1 4.8
wsdbm:Gender wsdbm:gender 1 1 1 436.5
wsdbm:Genre rdf:type 1 1 1 6.4

wsdbm:Language sorg:language 0 0.2 0.6 1.5
wsdbm:Offer gr:offers 0.6 0.6 0.9 1.6

wsdbm:Product gr:includes 1 1 1 3.8
wsdbm:Product wsdbm:likes 1 1 1 4.3
wsdbm:Product wsdbm:purchaseFor 0.9 0.8 1 3

wsdbm:Product@wsdbm:ProductCategory0 gr:includes 1 1 1 2.5
wsdbm:Product@wsdbm:ProductCategory0 wsdbm:likes 1 1 1 4.4
wsdbm:Product@wsdbm:ProductCategory0 wsdbm:purchaseFor 1 1 1 2.2
wsdbm:Product@wsdbm:ProductCategory1 gr:includes 0.8 0.9 0.9 3.6
wsdbm:Product@wsdbm:ProductCategory1 wsdbm:likes 1 1 1 5.3
wsdbm:Product@wsdbm:ProductCategory1 wsdbm:purchaseFor 0.6 0.7 0.8 7.9
wsdbm:Product@wsdbm:ProductCategory2 gr:includes 1 0.9 1 5.2
wsdbm:Product@wsdbm:ProductCategory2 wsdbm:likes 0.8 1 1 3.9
wsdbm:Product@wsdbm:ProductCategory2 wsdbm:purchaseFor 0.8 0.9 0.9 4.9
wsdbm:Product@wsdbm:ProductCategory3 gr:includes 1 1 1 3.5
wsdbm:Product@wsdbm:ProductCategory3 wsdbm:likes 1 1 1 4
wsdbm:Product@wsdbm:ProductCategory3 wsdbm:purchaseFor 0.5 0.8 0.9 4.5
wsdbm:Product@wsdbm:ProductCategory4 gr:includes 1 1 1 4.5
wsdbm:Product@wsdbm:ProductCategory4 wsdbm:likes 1 1 1 8.5
wsdbm:Product@wsdbm:ProductCategory4 wsdbm:purchaseFor 0.9 0.9 0.9 18.4

wsdbm:Purchase wsdbm:makesPurchase 1 1 1 1
wsdbm:Review rev:hasReview 1 1 1 1

wsdbm:Role rdf:type 1 1 1 257.6
wsdbm:SubGenre wsdbm:hasGenre 1 0.8 0.5 7

wsdbm:Topic og:tag 1 1 1 7.8
wsdbm:User sorg:author 0 0 0 1.1
wsdbm:User sorg:contactPoint 0 0 0 1
wsdbm:User sorg:editor 0 0 0 1
wsdbm:User sorg:employee 0 0 0 1

wsdbm:User@wsdbm:Role0 sorg:author 0 0 0 1
wsdbm:User@wsdbm:Role0 sorg:contactPoint 0 0 0 1
wsdbm:User@wsdbm:Role0 sorg:editor 0 0 0 1
wsdbm:User@wsdbm:Role0 sorg:employee 0 0 0 1
wsdbm:User@wsdbm:Role1 rev:reviewer 1 1 1 5.4
wsdbm:User@wsdbm:Role1 sorg:author 0 0 0 1
wsdbm:User@wsdbm:Role1 sorg:contactPoint 0 0 0 1
wsdbm:User@wsdbm:Role1 sorg:editor 0 0 0 1
wsdbm:User@wsdbm:Role1 sorg:employee 0 0 0 0
wsdbm:User@wsdbm:Role2 mo:artist 0 0 0.3 1.3
wsdbm:User@wsdbm:Role2 mo:conductor 0 0 0 0
wsdbm:User@wsdbm:Role2 sorg:actor 0.5 0.5 0.7 1.5
wsdbm:User@wsdbm:Role2 sorg:author 0.1 0.1 0.1 1.2
wsdbm:User@wsdbm:Role2 sorg:contactPoint 0 0 0 1
wsdbm:User@wsdbm:Role2 sorg:director 0 0.1 0.4 1
wsdbm:User@wsdbm:Role2 sorg:editor 0.1 0.1 0 1
wsdbm:User@wsdbm:Role2 sorg:employee 0 0 0 0

wsdbm:Website foaf:homepage 1 1 1 2.6
wsdbm:Website sorg:trailer 0 0.1 0.1 1
wsdbm:Website wsdbm:subscribes 1 1 1 27
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D. WSDTS QUERY TEMPLATES
L1
#mapping v1 wsdbm:Website uniform
SELECT ?v0 ?v2 ?v3 WHERE {

?v0 wsdbm:subscribes %v1% .
?v2 sorg:caption ?v3 .
?v0 wsdbm:likes ?v2 .

}

L2
#mapping v0 wsdbm:City uniform
SELECT ?v1 ?v2 WHERE {

%v0% gn:parentCountry ?v1 .
?v2 wsdbm:likes wsdbm:Product0 .
?v2 sorg:nationality ?v1 .

}

L3
#mapping v2 wsdbm:Website uniform
SELECT ?v0 ?v1 WHERE {

?v0 wsdbm:likes ?v1 .
?v0 wsdbm:subscribes %v2% .

}

L4
#mapping v1 wsdbm:Topic uniform
SELECT ?v0 ?v2 WHERE {

?v0 og:tag %v1% .
?v0 sorg:caption ?v2 .

}

L5
#mapping v2 wsdbm:City uniform
SELECT ?v0 ?v1 ?v3 WHERE {

?v0 sorg:jobTitle ?v1 .
%v2% gn:parentCountry ?v3 .
?v0 sorg:nationality ?v3 .

}

S1
#mapping v2 wsdbm:Retailer uniform
SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 ?v9 WHERE {

?v0 gr:includes ?v1 .
%v2% gr:offers ?v0 .
?v0 gr:price ?v3 .
?v0 gr:serialNumber ?v4 .
?v0 gr:validFrom ?v5 .
?v0 gr:validThrough ?v6 .
?v0 sorg:eligibleQuantity ?v7 .
?v0 sorg:eligibleRegion ?v8 .
?v0 sorg:priceValidUntil ?v9 .

}

S2
#mapping v2 wsdbm:Country uniform
SELECT ?v0 ?v1 ?v3 WHERE {

?v0 dc:Location ?v1 .
?v0 sorg:nationality %v2% .
?v0 wsdbm:gender ?v3 .
?v0 rdf:type wsdbm:Role2 .

}

S3
#mapping v1 wsdbm:ProductCategory uniform
SELECT ?v0 ?v2 ?v3 ?v4 WHERE {

?v0 rdf:type %v1% .
?v0 sorg:caption ?v2 .
?v0 wsdbm:hasGenre ?v3 .
?v0 sorg:publisher ?v4 .

}

S4
#mapping v1 wsdbm:AgeGroup uniform

SELECT ?v0 ?v2 ?v3 WHERE {
?v0 foaf:age %v1% .
?v0 foaf:familyName ?v2 .
?v3 mo:artist ?v0 .
?v0 sorg:nationality wsdbm:Country1 .

}

S5
#mapping v1 wsdbm:ProductCategory uniform
SELECT ?v0 ?v2 ?v3 WHERE {

?v0 rdf:type %v1% .
?v0 sorg:description ?v2 .
?v0 sorg:keywords ?v3 .
?v0 sorg:language wsdbm:Language0 .

}

S6
#mapping v3 wsdbm:SubGenre uniform
SELECT ?v0 ?v1 ?v2 WHERE {

?v0 mo:conductor ?v1 .
?v0 rdf:type ?v2 .
?v0 wsdbm:hasGenre %v3% .

}

S7
#mapping v3 wsdbm:User uniform
SELECT ?v0 ?v1 ?v2 WHERE {

?v0 rdf:type ?v1 .
?v0 sorg:text ?v2 .
%v3% wsdbm:likes ?v0 .

}

F1
#mapping v1 wsdbm:Topic uniform
SELECT ?v0 ?v2 ?v3 ?v4 ?v5 WHERE {

?v0 og:tag %v1% .
?v0 rdf:type ?v2 .
?v3 sorg:trailer ?v4 .
?v3 sorg:keywords ?v5 .
?v3 wsdbm:hasGenre ?v0 .
?v3 rdf:type wsdbm:ProductCategory2 .

}

F2
#mapping v8 wsdbm:SubGenre uniform
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7 WHERE {

?v0 foaf:homepage ?v1 .
?v0 og:title ?v2 .
?v0 rdf:type ?v3 .
?v0 sorg:caption ?v4 .
?v0 sorg:description ?v5 .
?v1 sorg:url ?v6 .
?v1 wsdbm:hits ?v7 .
?v0 wsdbm:hasGenre %v8% .

}

F3
#mapping v3 wsdbm:SubGenre uniform
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 WHERE {

?v0 sorg:contentRating ?v1 .
?v0 sorg:contentSize ?v2 .
?v0 wsdbm:hasGenre %v3% .
?v4 wsdbm:makesPurchase ?v5 .
?v5 wsdbm:purchaseDate ?v6 .
?v5 wsdbm:purchaseFor ?v0 .

}

F4
#mapping v3 wsdbm:Topic uniform
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7 ?v8 WHERE {

?v0 foaf:homepage ?v1 .
?v2 gr:includes ?v0 .
?v0 og:tag %v3% .
?v0 sorg:description ?v4 .
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?v0 sorg:contentSize ?v8 .
?v1 sorg:url ?v5 .
?v1 wsdbm:hits ?v6 .
?v1 sorg:language wsdbm:Language0 .
?v7 wsdbm:likes ?v0 .

}

F5
#mapping v2 wsdbm:Retailer uniform
SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 WHERE {

?v0 gr:includes ?v1 .
%v2% gr:offers ?v0 .
?v0 gr:price ?v3 .
?v0 gr:validThrough ?v4 .
?v1 og:title ?v5 .
?v1 rdf:type ?v6 .

}

C1
SELECT ?v0 ?v4 ?v6 ?v7 WHERE {

?v0 sorg:caption ?v1 .
?v0 sorg:text ?v2 .
?v0 sorg:contentRating ?v3 .
?v0 rev:hasReview ?v4 .
?v4 rev:title ?v5 .
?v4 rev:reviewer ?v6 .
?v7 sorg:actor ?v6 .
?v7 sorg:language ?v8 .

}

C2
SELECT ?v0 ?v3 ?v4 ?v8 WHERE {

?v0 sorg:legalName ?v1 .
?v0 gr:offers ?v2 .
?v2 sorg:eligibleRegion wsbm:Country5 .
?v2 gr:includes ?v3 .
?v4 sorg:jobTitle ?v5 .
?v4 foaf:homepage ?v6 .
?v4 wsdbm:makesPurchase ?v7 .
?v7 wsdbm:purchaseFor ?v3 .
?v3 rev:hasReview ?v8 .
?v8 rev:totalVotes ?v9 .

}

C3
SELECT ?v0 WHERE {

?v0 wsdbm:likes ?v1 .
?v0 wsdbm:friendOf ?v2 .
?v0 dc:Location ?v3 .
?v0 foaf:age ?v4 .
?v0 wsdbm:gender ?v5 .
?v0 foaf:givenName ?v6 .

}
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