Latency Amplification: Characterizing the Impact of Web Page Content on
Load Times

Technical Report CS-TR-2013-11
Cheriton School of Computer Science
University of Waterloo

February 1, 2013

Citélin Avram
University of Waterloo

Abstract

Web users like sites that load quickly. Longer web page
load times translate to reduced user satisfaction and loss
of revenue and mindshare. The time required to load a
given web page is difficult to predict because it is a com-
plex function of many factors, such as the latencies asso-
ciated with the network requests used to retrieve that con-
tent from remote servers. However, one of the most im-
portant factors is the page content, including the scripts,
images, style sheets and other objects that are present on
the page. In this paper we propose a simple metric for
characterizing the content of a web page in terms of its
impact on page loading times. This metric, called the la-
tency amplification factor (LAF), characterizes the con-
tent of a web page in terms of how it affects the page
load time. The LAF of a web page can be estimated
quickly and easily, and we describe a lightweight method
for doing so. In addition, we propose an extended version
of the basic LAF metric, called CLAF, that relates page
load time to underlying request latencies in the presence
of content delivery networks. We estimated LAFs for
a variety of popular web sites, and found that they var-
ied substantially. To validate our approach for estimating
LAFs, we compared estimated LAFs against measured
LAFs and found that our methodology, though simple,
gave reasonably accurate estimates.

1 Introduction

The web has had a tremendous impact on many parts of
our daily lives. It has enabled us to have instant access
to vast amounts of information. By virtually connecting
all of us together, it has changed not only how we com-
municate, work, and purchase goods and services, but
also the pace at which we do these things. A perhaps
unsurprising result of this increased pace is that, unlike
traditional customers at bricks-and-mortar stores, many
web users expect to have near instant access to online

Kenneth Salem
University of Waterloo

Bernard Wong
University of Waterloo

services. Several recent studies [6, 8] have found that
even a small increase in web page load times can sub-
stantially increase the likelihood that a customer would
switch to a competing service or store. Therefore, re-
ducing web page load time is critically important to the
success of any web-based company, and it is important
to understand what contributes to this time.

There are many factors that affect load times. These
factors include, for example, the HTML and Javascript
parsing and processing time within the browser and the
network latency between clients and servers. However,
one of the most important factors affecting page load
time is the richness and complexity of the page content.
Loading and rendering a single modern web page may
require that the client download tens or hundreds of ob-
jects from multiple servers: these objects may include
scripts, style sheets, images, and many other types of
content. Furthermore, the structure of modern web pages
often introduces object loading dependencies, where cer-
tain objects are only retrieved after another object has
been retrieved and, if the object is HTML or Javacript,
parsed and/or executed. Therefore, object loading depen-
dencies introduce additional network round-trip delays,
which can dominate the page load time.

Given the importance of page load times to user sat-
isfaction and the strong impact of page content on load
times, it is important to be able to understand and char-
acterize that content. In this paper, we take a step in this
direction by proposing a simple content metric - a means
of characterizing the content of a web page and the im-
pact of that content on page load times. One possible
approach to this task would be to use some kind of “syn-
tactic” metric, such as a count of the number of compo-
nent objects on the page. However, since our real interest
lies in the effect of page content on the page load time,
the metric that we propose - which we call the latency
amplification factor (LAF), is behavioral rather than syn-
tactic.

The LAF for a web page can be interpreted as the an-

CS-TR-2013-11

swer to a simple hypothetical question: if the individual
request latencies between the client and the servers that
hold the web page content were to increase by a constant
factor, by what factor would the total load time for the
web page increase? In other words, the LAF of a page
is a measure of the sensitivity of a page’s load time to
changes in underlying request latencies for the objects
on that page. A simple, small, plain HTML page that did
not have any component objects would have a LAF of 1.
More complex pages, with many interdependent objects,
will have higher LAFs. A key feature of this metric is
that it is simple and easy to compute.

This paper makes several contributions. First, we in-
troduce the LAF metric, which captures the relation-
ship between network latency and web page load time
as a single number. Second, we present a lightweight
methodology for estimating the LAF for a given web
page. Our methodology estimates the LAF using a page
retrieval log that can be generated easily by off-the-shelf
browsers, and we’ve used it to measure the LAFs for a
variety of a pages from popular web sites. Third, we
have validated the LAFs we estimated. To validate the
LAFs, we compare them to measured increases in page
load time as we systematically inject a controlled amount
of synthetic latency between the downloading client and
the content servers. Finally, we consider a extended ver-
sion of the LAF metric, which we refer to as core LAF, or
CLAF. This metric distinguishes objects retrieved from
content delivery networks (CDNs) from those fetched
from non-CDN, or core, servers. CLAF is an estimate
of the sensitivity of page load time to changes in the
retrieval times of core objects (only). By comparing a
page’s LAF and CLAF, we can characterize how effec-
tive the CDN is at reducing the page’s load time.

The rest of the paper is structured as follows. Section 2
provides some background, and illustrates the complex-
ity of loading a web page with rich content. Section 3
introduces the LAF metric, and explains how we esti-
mate the LAF of a given web page. We have used this
methodology to estimate LAFs for a variety of popular
web sites, and we present these results in Section 4. Sec-
tion 5 presents the results of an empirical validation that
compares LAFs estimated using our methodology with
measured LAFs. In Section 6 we show a simple method
for generalizing the LAF metric to account for effects of
content delivery networks (CDNs). Section 7 summa-
rizes related work, and Section 8 concludes.

2 Web Latency

Modern web pages are rich and complex. Each HTML,
Javascript, and CSS object on a website may reference
tens or hundreds of other objects. Thus, a browser load-
ing a web page will have to issue many server requests

to retrieve those objects. Furthermore, the presence of
inter-object references, or dependencies, means that the
browser must retrieve and parse the parent object, at least
partially, before it can determine the objects that the par-
ent refers to and issue requests for those objects.

We will use a very simple example web page to illus-
trate this process. The web page displays a single user-
clickable button over a background image. As the button
is clicked by the user, the background rotates through a
sequence of three possible images.

Loading a web page generally begins with the user ini-
tiating a page load by clicking a link or manually enter-
ing an URL. The browser then retrieves the requested
web page. In this example, the user requests the page
http://www.example.com/example.html, the con-
tents of which are shown in Figure 1. We will assume
that browser has previously resolved the example.com
domain name, and so can immediately fetch the re-
quested web page from the remote server.

<html lang="en">
<head>
<link rel="stylesheet" href="example.css"/>
<script src="http://code.jquery.com\
/jquery-git.js"></script>
<script src="http://code.jquery.com\
/ui/jquery-ui-git.js"></script>
<script src="example.js"></script>
</head>
<body>
<button>Change Background</button>
</body>
</html>

Figure 1: The web page example.html

Once the user’s browser downloads and parses the root
object (example.html), it will be able to identify that it
includes references to a CSS stylesheet and three differ-
ent script files. (Some modern browsers, such as Fire-
fox and Chrome, may start parsing the root object on the
fly, before the object has been fully downloaded.) As
the browser parses the page, it begins rendering differ-
ent parts of it. In addition, if the browser encounters
references to other objects, such as example.css and
example. js, it can issue asynchronous requests to re-
trieve those objects. Note that the browser must down-
load and parse at least part of example.html before it
can recognize the dependencies on other objects.

The stylesheet (example.css) is shown in Figure 2.
It is responsible for loading a background image for the
web page. The stylesheet is dependent on an image file
(fruits-01. jpg), which the browser must retrieve by
issuing another asynchronous request. This example also
illustrates that the various objects on which the root page
(example.html) depends may come from a variety of

CS-TR-2013-11

different servers.

body {
background-image:url (*http://www.free\
-pictures-photos.com/fruits/fruits-01.jpg’);
background-repeat :no-repeat;

}

Figure 2: The stylesheet example.css

The root web page also references the three script files.
The first two (jQuery and jQueryUI) are well known
JavaScript libraries that are used by many website devel-
opers. The third script, example. js, which is shown
in Figure 3, makes use of those libraries. It attaches an
event listener to the button on the page, so that clicking
the button will cause the background image to change.

var bgNumber = 0;
$(function() {
$("button")

.button()

.click(function(event) {
bgNumber = (bgNumber + 1) % 3;
$("body") .css("background-image",

"url(http://wuw.free-pictures-" +
"photos.com/fruits/fruits-0" +
(bgNumber + 1) + ".jpg)");

B

b;

Figure 3: The script example. js

In this paper, we are primarily interested in the load
time of a web page. We define this to include the time
to load the root web page as well as any additional ob-
jects on which the root object depends, either directly or
indirectly. It is not uncommon for complex web pages to
request additional objects after the page load time. This
may occur, for example, in response to additional user
actions, or timers in background scripts. In our example,
such a request would occur when the user uses the button
on the web page to cycle to the next background image.
Nevertheless, we consider a web page’s load time to be
the time from the initial user request for the root page un-
til the time when all of its dependent objects have been
fully retrieved, as the page is fully ready to use by the
user once this occurs.

As the richness and complexity of a web page in-
creases, we expect that the load time for that page will
also increase. Even our very simple example requires
fetching CSS, script, and image files before the page can
be considered to be loaded. As we will see, popular web
pages may be significantly more complex than our ex-
ample, with many more objects and longer dependency
chains.

3 Latency Expansion

Our objective is to arrive at a metric to characterize the
content of a web page in terms of its effect on the page’s
loading time. Previous work, such as WebProphet [7],
has focused on building models that can predict the ab-
solute load time for a web page, taking the page content
(and many other factors) into account. In contrast to such
relatively complex models, our characterization cannot,
by itself, be used to predict absolute page load times.
Rather, we characterize web page content by consider-
ing how much the page structure magnifies the request
latencies of the individual components that make up the
page. As was introduced in Section 1, we call this the
latency amplification factor (LAF) for the page.

The following simple thought experiment gives some
intuition for the LAF. Suppose that a browser loads a web
page P, and the load time for P is p(0) Now suppose that
the browser loads the same page again, but this time the
retrieval latency for every component of the page is in-
creased by a constant amount ¢. Suppose that the mea-
sured page load time for this second experiment is 7, ().
The latency amplification factor (LAF) for P is:

lp(a) — lP(O)
o

(D

The numerator in this expression (tp(ct) — 1,(0)) in-
dicates the amount by which the page load time in-
creased, while the denominator (¢) indicates the amount
by which the component latencies increased. For a sim-
ple web page with a single component, the latency am-
plification factor will be 1. For more complex pages that
contain multiple dependent components, we expect to
see amplification factors greater than one. The larger the
LAF for page P, the more a change in underlying latency
will affect the page load time experienced by the user.

In the remainder of this section, we present our
methodology for estimating the LAF of a web page. This
process requires two steps; First, we produce a depen-
dency graph for the page. The dependency graph rep-
resents the structure of the page contents, i.e., its com-
ponents, and the relationships among those components.
The second step of our methodology is to analyze the
page’s dependency graph to estimate the page’s LAF.

3.1 Dependency Graph

As was illustrated by the example in Section 2, load-
ing a web page involves loading multiple objects, po-
tentially from multiple servers. If clients could load all
of these object concurrently, page load time would de-
pend only on the time required to load the slowest ob-
ject. Although modern browsers can and do load mul-
tiple objects concurrently and asynchronously, resource

CS-TR-2013-11

limits and browser settings, such as the maximum num-
ber of threads per page load, restrict the amount of con-
currency. More importantly, the structure of the web
page content itself may fundamentally limit the amount
of concurrency. For example, consider the simple web
page (example.html) in Figure 1. In that example, the
objects example.css, jquery-git.js, and example.js cannot
be retrieved until the browser has retrieved and parsed
(at least the first part of) example.html. Similarly, the
browser cannot retrieve fruits-01.jpg until it has retrieved
example.css. We refer to such dependencies, which arise
from the structure of web page content, as structural de-
pendencies.

example.com
Jexample.html
Size = 322 bytes

example.com
Jexample.css
Size = 129 bytes

code.jquery.com
/iquery-git.js
Size = 267,395 bytes

code.jquery.com
Juifjquery-ui-git.js
Size = 432,706 bytes

example.com
/example.js
Size = 307 bytes

free-pictures-photos.com
[fruits/fruits-01.jpg
Size = 2,021,452 bytes

Figure 4: Dependency Graph for example.html from
Section 2

We use a dependency graph to represent the structural
dependencies of a given web page. A page’s depen-
dency graph contains one node for each retrievable ob-
ject referred to, either directly or indirectly, by the given
page. There is a directed edge V| — V; in the dependency
graph if the object V; refers to the object V,. Dependency
graphs are rooted directed graphs, with the root node rep-
resenting the web page which the dependency graph rep-
resents. Figure 4 illustrates the dependency graph for the
web page from Figure 1. Each node in the dependency
graph is annotated with two attributes. The first is the
size (in bytes) of the object represented by that node. The
second is the site from which that object will be down-
loaded.

3.2 Producing Dependency Graphs

A number of different techniques can be used to generate
a dependency graph for a given web page. One option,
which we will refer to as the white box approach, is to
analyze the web page content, along with the content of
any dependent objects, to extract object references. This
approach will correctly identify static references to ob-

jects. However, it requires the ability to parse and extract
object references from all types of commonly used web
objects. In our simple example, a white box approach
must be able to parse HTML, JavaScript, and CSS ob-
jects. The main disadvantage of this approach is that,
since it is based on static analysis, it will fail to detect
dynamically-generated object references, which is very
common especially within JavaScript objects.

Li et al [7] propose a dynamic, black box approach,
embodied in their WebProphet system, to generate a de-
pendency graph similar to the graph that we use. Their
technique builds the dependency graph for a page by
inspecting a log of object retrievals generated by the
browser as it loads the page. Each log entry identifies
a retrieved object, and provides some information about
the timing of the retrieval, such as the retrieval request
time and the request response time. To infer dependen-
cies among the objects, WebProphet retrieves the page
multiple times. On each retrieval, WebProphet uses a
proxy-based technique to add artificial latency to the re-
trieval time of a target object from the trace. WebProphet
then identifies other objects (in addition to the target)
whose retrieval times are delayed, and infers that those
objects are dependent on the target. In order to generate
a close approximation of the entire dependency graph,
WebProphet must repeat the latency injection process for
a variety of latency injection targets, with multiple la-
tency injections required for each target. This approach
is also highly sensitive to latency fluctuations between
measurements.

For our work, we instead use a lightweight black box
approach to construct the dependency graph for a page.
Like WebProphet, we use a browser to retrieve the web
page for which we wish to construct the dependency
graph, and then inspect the browser-generated request
log. The log contains one entry for each object retrieved,
with each entry containing the following information:

o the object’s URL.
o the object’s total size, in bytes.

o the request time, i.e., the time (relative to the begin-
ning of the trace) at which the request for the object
was sent by the browser.

o the wait delay, which is length of the interval be-
tween the request time and the receipt of the first
byte of the object at the browser.

In particular, we use logs in the standard HTTP Archive
(HAR) [11] format, which contains the necessary infor-
mation and which can be generated natively by common
browsers such as Chrome and Firefox.

We create dependency graphs with one node for each
object referred to in the log, annotating each node with

CS-TR-2013-11

the object’s size and site (extracted from the URL). We
assume that object V;, is dependent on object V;, and cre-
ate the corresponding directed edge from V; to V; in the
graph, if and only if V,’s request time is after the end of
the wait delay for V.

Clearly, this simple method of creating the depen-
dency graph will identify all actual dependencies, both
static and dynamic. However, it will also identify false
dependencies, i.e., dependencies that do not reflect the
structure of the web page. For example, an edge from
V1 to V, may exist in the graph simply because object V;
was loaded after object Vi, and not because of an actual
structural dependency between V; and V,. On the other
hand, this lightweight approach is considerably simpler
than the black box approach used by WebProphet. That
approach requires multiple page retrieval iterations and a
means of injecting synthetic latency into object request
times. In contrast, this simpler approach requires only a
browser-generated retrieval log, which, in addition to be-
ing easier to collect, also facilitates performing multiple
measurements to limit the impact of latency fluctuations.

3.3 Estimating the LAF

Latency amplification occurs because the browser must
make multiple sequential round trips to retrieve objects.
If the browser must make k network round trips to some
site to retrieve content and the request latency for that site
increases by an amount ¢, then the time the browser re-
quires to retrieve all data from that site will increase by a
factor ka - an amplification by k of change in request la-
tency. Thus, to estimate a LAF from a dependency graph,
we want to estimate how many sequential round trips are
implied by that graph.

A very basic way to estimate the number of round trips
implied by a dependency graph is to assume (conserva-
tively) that any objects that can be retrieved concurrently
will be retrieved concurrently. Furthermore, as a starting
point we can assume that retrieving each object in the
graph involves one network round trip. Under these sim-
plifying assumptions, if there is a path of length k from
root to leaf in the graph then the client will require at
least k sequential round trips. Since the client is assumed
to retrieve the objects along different paths in parallel,
the LAF (the number of sequential round trips) would
simply be the length of longest root-to-leaf path in the
dependency graph.

Although this basic approach would give a simple ap-
proximation of the LAF, it fails to take into account a
variety of relevant factors, such as the sizes of the ob-
jects, the properties of the TCP connections over which
the object requests are issued, and the behavior of mod-
ern browsers. To estimate the LAF from the dependency
graph, we therefore enhance the basic procedure to take

these factors into account. Specifically, our LAF estima-
tion procedure takes the following into account:

Object Size: The number of network requests required
to retrieve an object depends on the size of the ob-
ject — larger objects may require multiple round
trips.

TCP Characteristics: The number of requests required
to retrieve an object depends on the TCP window
size, which is governed by TCP’s congestion proto-
col. In addition, there is a fixed overhead associated
with the TCP handshake required to establish a con-
nection between the client and a site.

Connection Reuse: If the browser needs to retrieve
multiple objects from the same site, it can use a sin-
gle TCP connection to retrieve those objects, rather
than establishing a new TCP connection for each re-
quested object.

Our algorithm for estimating the LAF from a given
dependency graph can be outlined as follows:

1. Estimate the number of round trips required to
retrieve each individual node in the dependency
graph.

2. For each distinct root-to-leaf path in the graph,
count the total number of round-trips required along
that path by summing the individual round trip
counts for the nodes along the path.

3. Choose the maximum round-trip count over all root-
to-leaf paths in the graph, and report that as the
LAF.

To estimate the number of round trips required for
each node, we use a simple model of the client’s browser.
Specifically, we assume that the browser will initiate the
request to retrieve a node as soon as that node’s predeces-
sors have been retrieved, and that there is no limit on the
number of concurrent requests that the browser may have
outstanding. These assumptions will of course lead to in-
accuracies in our model. However, they also ensure that
the model is browser and machine independent, which
is critical as most large-scale websites have very diverse
clients. The number of round trips required to retrieve the
object depends on the size of the object and on the state
of the TCP connection (specifically, on the TCP window
size) at the time the object is retrieved.

Consider a node in the graph with size s bytes, and
suppose that the TCP window size for the connection
used to retrieve the node is of size wg,, bytes when re-
trieval starts. The value of s for each node can be found in
the dependency graph, and we will explain shortly how

CS-TR-2013-11

Wyart 18 determined. We estimate r, the number of round
trips required to retrieve this node, as:

ol) B

The factor of log, in this expression arises from the fact
that the TCP window size doubles with each round trip
until the object has been completely retrieved. Thus, if
s < wgar, the object will be retrieved in a single round
trip (r = 1). If s > wgqypy, then r > 1 as more than one
round trip will be needed. We can also define wfinjgn,
which indicates what the TCP connection’s window size
will be after the node has been retrieved. If s < wgqy,
then no window size doubling will occur and w g5, Will
be the same as wy,,;. Otherwise, the window size will
double one or more times during the retrieval of the node.
Thus, the final window size can be determined using the
following expression.

W finish = 2! Wstart 3

where r is the round trip count for the node, as defined
by Equation 2. This model assumes that objects are rel-
atively small, and that most users will finish retrieving
their objects before reaching their actual maximum win-
dow size.

The value of wg,,; for a node depends on which TCP
connection is used to retrieve the object. The simple
browser model that we use to estimate the LAF assumes
that the browser will retrieve objects in parallel whenever
possible, and that it will reuse existing TCP connections,
which it can do whenever there are multiple sequential
retrievals from the same site. Thus, a node’s wg,,, Will
depend on whether that node has any ancestors in the de-
pendency graph that are retrieved from the same site. We
consider two cases. If there are no such ancestors, then
we set Wyqr = 4440 bytes, which corresponds to TCP’s
default initial window size for new connections. On the
other hand, if there are one or more such ancestors, then
the browser will have one or more TCP connections al-
ready open to the target site. In this case, we conserva-
tively set the node’s w4+ to the maximum w ;,;5, among
all of its same-site ancestors. This effectively assumes
that the browser will choose the connection over which
it has already retrieved the most data so far. This is a
conservative choice because choosing the largest w fi;gn
results in the smallest possible estimate for the number
of round trips (Equation 2) for the current node, which in
turn gives the smallest possible estimated LAF.

4 LAF Examples

We have focused on a set of ten popular web pages for
testing, as summarized in Figure 5. Most of our choices

appear among the top ten most visited web sites in the
Alexa top 500 global sites ranking [1]. Our set includes
a variety of different types of sites, including search en-
gines, web portals, a social network, and e-commerce,
news, and media delivery sites.

For each web page shown in Figure 5, we used the
PhantomJS [12] web browser to retrieve the page while
capturing a request log. This headless browser uses
the WebKit layout engine, which also powers popular
browsers such as Safari and Chrome. In all cases, the
web client was located at the University of Waterloo,
in Canada. Using these logs, we generate dependency
graphs and then estimate the LAF for each page, as de-
scribed in Section 3. We repeated this process 20 times
for each web page, resulting in 20 estimated LAFs per
page. For each web page in our test set, Figure 6 shows
a boxplot representing the minimum, lower quartile, me-
dian, upper quartile and maximum values among the 20
LAF estimates for that page, along with the mean LAF
computed over the 20 runs.

70.0 é é

60.0
50.0
40.0
&
30.0 ?
& P
20.0 & —m
2
10.0
- [=]
0.0
s23ie89838cE
c 8 o g =z E ®m = 3
Emm@om '9->':’gi)
< ® © =2 = O w
w 2 > o
'_
>

Figure 6: Boxplot of LAF estimates for various web
pages.

In this experiment, we observed a wide range of LAFs
from a low of 6 to a high of 75. Not surprisingly, the
search engines (Google and Baidu), with their simple
pages, had the lowest LAFs. At the other end of the spec-
trum were GMail (webmail) and MSNBC (news page),
which had LAFs an order of magnitude higher than those
of the search engines. Previous work [2] has suggested

CS-TR-2013-11

| Page

Description

Amazon
http:
//www.amazon.com/

We used the public front page (no user has been logged in) of the popular shopping
site. The web page includes a search box, product suggestions with images, and
advertisements.

Facebook
https://www.
facebook.com/

We used the main timeline page of a logged-in user. The page contains several
updates, comments and notifications from the user’s friends, lists of applications,
groups, pages and favorites, advertisements and many images. It also contains a
chat application.

GMail
https://mail.
google.com/mail

We have measured the page showing the inbox of a logged-in user. The inbox
contained 3500 e-mails out of which the first 100 are displayed. The account has
been customized to include a theme with a large background image that changes
based on the time of day. Other items on the page include a chat application, a
calendar application displaying upcoming meetings and the weather, and several
custom folders, two of which contain e-mail from different e-mail accounts being
synchronized via the IMAP protocol.

Google
http:
//www . google. com/

The main page of the popular search engine. This page is relatively sparse, with a
logo, a textbox, and a few buttons and links. Google will redirect the browser to the
localized version of the website, which in our case is https://www.google.ca/

Baidu
http:
//www.baidu.com/

The main page of the popular Chinese search engine, which is served from Beijing.
Like Google’s main page, Baidu’s main page is relatively sparse.

MSNBC
http:
//www.nbcnews.com

A recent study [2] found that news websites load a significantly higher number of
objects than others. We chose this page as a representative of such sites. It includes
links and news highlights, followed by a large number of news sections, as well as
many images and advertisements. This is the only website in our test set that is not
among the top 10 in Alexa’s global top sites ranking [1].

Wikipedia
http:
//en.wikipedia.
org/wiki/
Computer_science

We used a specific article — the English version of the article on computer science
— rather than the main landing page. The article includes a large number of images,
some of which are GIF animations.

Yahoo
http:
//www .yahoo.com/

We used the main Yahoo portal, which includes news, links, images, interactive
widgets and advertisements.

QQ
http:
//www.qq.com/

A popular Chinese portal site that is similar to Yahoo.

YouTube
http://www.
youtube.com/

We used the main landing page for this video site, both for an anonymous user and
with a logged-in user account. In both cases, the page presents a list of video clips
to watch, links, and a banner advertisement. For the anonymous user, the video
recommendations are general, while a logged-in user sees customized recommen-
dations, his/her avatar, and additional account-related information.

Figure 5: Tested web pages.

CS-TR-2013-11

that news web pages often load objects from a large num-
ber of hosts. This was certainly true for the MSNBC
front page, which has references to objects from almost
60 distinct hosts. The other websites we tested typically
only reference about 10 hosts, and the search engines ref-
erence only 3. The large number of hosts translates to a
lot of separate TCP connections, which, together with
small initial congestion window size values, account for
the large LAF value for the MSNBC page. In contrast
to MSNBC, GMail’s high LAF value is due to its high
structural complexity, which is manifested as a very long
critical path in its dependency graph.

The remaining sites we tested are between these ex-
tremes, with LAFs from just under 20 to just over 30.
These LAFs, though much lower than those of GMail
and MSNBC, are still very significant. For example, with
a LAF near 30, a 30 ms change in network latency results
in an almost 1 second change in user-perceived page load
time, which is a substantial amount.

Figure 6 also shows that, with the possible exception
of the GMail test, we did not see a wide variation among
the 20 different LAFs that we estimated for each web
page. Each LAF was generated using a different retrieval
log, and we expect that different retrieval logs (for the
same page) should include different request timing infor-
mation because of natural variations in the request times
and wait delays across the different runs. Nonetheless,
such variations had only a small effect on the LAF esti-
mates.

5 LAF Model Validation

In order to validate our LAF estimation methodology
against empirical data, we measured web page load-
ing times while manipulating the latency between our
browser and the webservers. By comparing such mea-
surements against baseline measurements with no added
latency, we can determine the actual LAF of a web page.
We then compare these measurements to the estimates
made using the methodology from Section 3.

Suppose that zp(0) is the measured baseline page load
time for a web page P, with no added latency. Similarly,
suppose that 7p() is the page load time for P if we in-
troduce an additional latency o//2 to each incoming and
outgoing network packet between the browser and the
webservers, for a total additional round trip latency of o.
The measured LAF for P can then be calculated using
Equation 1.

To introduce network latency, we used the network
traffic control tool (tc), which has been included in the
Linux kernel since version 2.2. Since tc is only capable
of manipulating outgoing traffic, we adopted a technique
described by Nussbaum and Richard [10] to allow us to
add latency to both incoming and outgoing traffic. Their

technique makes use of a dummy network device, the
ifb (intermediate functional block) device, to manipu-
late incoming traffic. All incoming traffic is redirected
through the ifb device, and tc is used to add latency to
outgoing traffic on both the physical network device and
the ifb device. All of our measurements, including the
baselines, were taken using this setup. For the baseline
measurements, incoming traffic was routed through the
ifb device, but no latency was added in either direction.

Figure 7 shows a comparison of measured and esti-
mated LAFs, with o« = 100ms. for the measured LAFs.
We repeated each page load measurement 20 times. For
each web page we measured, the figure shows the mean
estimated LAF, the mean measured LAF, and a 90% con-
fidence interval around the measured LAF. The mean es-
timated LAFs are the same as those that were presented
in Figure 6.

@ Measured LAF

140 l

X Estimated LAF

120
100
80
(79
< K
60
40 ®
&
X X
X X
20 7% I
® []
0
cC 5 X = 0 O g ®© o v =
Rt S83vsoges
oM o wn o O =
£ g6 s =£>3 @
=
>

Figure 7: Mean measured and estimated LAF for dif-
ferent web pages. Error bars show the 90% confidence
interval around the measured mean.

For most of our test pages the estimated LAF was rea-
sonably close to the measured value, which suggests that
our estimation methodology is capturing the important
factors that contribute to page load times. For several
sites, including Baidu, QQ, MSNBC and GMail, there
was significant variance in measured page load times,
resulting in relatively large confidence intervals around
the mean measured LAF. For Baidu and QQ, both of
which include a substantial amount of content served

CS-TR-2013-11

from China, this is due to the relatively long network path
from those servers to our measurement point in Canada.
MSNBC'’s content is served from closer sites, but as we
have previously noted, that page includes content from
a large number of servers, delays to any one of which
can affect our measured page load times. GMail, which
had an extremely large confidence interval, was the most
problematic site from our test set. GMail uses a single
long request to download a substantial amount of data in
the background to the client. Although the GMail web
page is usable well before these data are fully down-
loaded, our measured page load time includes the time
for this request, which varies substantially from run to
run. In addition to the substantial variance it introduces
into our measured LAF, such requests also highlight a
challenge for our LAF estimation methodology. In esti-
mating the LAF, we include all objects on which the root
page depends. However, the page may be usable well
before all of those objects have been retrieved.

To measure the LAFs shown in Figure 7, we added
100 ms. of latency to each network round trip. Figure 8
generalizes this comparison by measuring LAFs for test
web pages as we vary the amount of added latency from
50ms to 400ms. For each test site, Figure 8 shows the
mean measured latency (with a 90% confidence interval),
as well as our LAF estimate. Because of the high vari-
ance in latency measurements for Baidu, GMail, and QQ
(as shown in Figure 7), have not included those sites in
Figure 8, focusing instead on the test sites for which we
can obtain accurate LAF measurements.

Figure 8 shows that, unlike our LAF estimates, mea-
sured LAFs are not independent of the amount of added
latency. This is not surprising, as our procedure for es-
timating the LAF is based on a highly simplified model
of browser and network behavior. The LAF is a sim-
ple measure of the impact of rich web page content on
page load times. Our results suggest that for most sites
(Facebook is an exception), measured LAFs decline as
the amount of added latency increases, and appear to
gradually level off. This suggests that the page load
time penalty is not perfectly proportional to the amount
of added request latency, as hypothesized by our simple
LAF model. Rather, the page load time penalty is pro-
portional to added request latency only when the request
latencies are relatively large.

6 Accounting for CDNs

We estimate a page’s LAF by asking what would hap-
pen to the page load time if all of the objects on which a
page depends took longer to retrieve. However, in some
cases, we may wish to focus only on certain objects, and
ask how sensitive the page’s load time is to the retrieval
time of those objects. For example, many web service

providers make use of content delivery networks (CDN5s)
to cache static page content at the edge of the network,
closer to end users. For a web page from such a provider,
we may wish to characterize only that part of the page
that is not served by the CDN.

It is very easy to modify our methodology to answer
such questions. In the remainder of this section, we
show how to estimate the core latency amplification fac-
tor (CLAF) of a page. The CLAF is similar to the LAF,
but it only considers the effect of page content that is not
served by CDNs. A page’s LAF can be interpreted as an
estimate of the number of sequential network round trips
that will be required to load that page, while its CLAF
can be interpreted as an estimate of the number of se-
quential network round trips to core (non-CDN) servers.
Comparing the LAF and CLAF of a page provides a mea-
sure of the CDN’s effectiveness for that page.

To estimate the CLAF, we need to be able to iden-
tify which objects are served from CDNs and which are
not. After generating the dependency graph for a web
page as described in Section 3.2, we add an additional
graph post-processing step that tags each node accord-
ing to whether or not it is served from a CDN. We use
a simple pattern matching test to determine whether an
object is served from a CDN: we query the DNS name
servers (using dig) for information about the host part
of an object’s URL and look for certain key words in the
answer section of the DNS reply. For our example in Fig-
ure 1, we would use dig example.com. If the answer
section contains any reference to well known CDNs such
as “akamai” or “cloudfront” or if it simply contains the
character sequence “cdn”, we assume the host is indeed a
CDN. Otherwise, we consider it a core host. The method
is by no means comprehensive, but it provides a simple
approach to approximate the impact of CDNs on the am-
plification factor.

Once the nodes have been tagged, we use a slight mod-
ification of the LAF estimation algorithm described in
Section 3.3 to analyze the graph and estimate the page’s
CLAF. CLAF estimation is identical to LAF estimation
except that the number of network round trips for CDN
nodes is taken to be zero. Round trip counts for non-
CDN nodes are estimated using Equation 2 as is the case
when estimating the LAF.

Figure 9 shows both the CLAF and LAF for several
sites. The five sites presented are the only ones that we
have identified as using CDNs using our basic approach.
For example, although we know that the websites under
Google’s administration (Google, GMail and YouTube)
make use of CDNSs, our pattern matching approach is un-
able to identify the servers responsible for these services.

As expected, Figure 9 shows that CLAF values are
consistently lower then the LAF. For websites like Ama-
zon and Facebook, the reduction is significant; for both

CS-TR-2013-11

Amazon Facebook
25 35
" 30 T — =
25
15 20
w w —@— Measured LAF
3 s 1s
10 = Estimated LAF
10
5
5
0 0
50ms 100ms 200ms 400ms 50ms 100ms 200ms 400ms
Added RTT Added RTT
Google MSNBC Wikipedia
12 160 25
10 140 . I
120 1
8
100 15
E30 5 80 3
10
4 60 T
40 5
2 20
0 0 0
50ms 100ms ~ 200ms 400ms 50ms 100ms 200ms 400ms 50ms 100ms ~ 200ms 400ms
Added RTT Added RTT Added RTT
Yahoo YouTube YouTube (Logged In)
25 25 60
20 F 20 50
40
15 15
o o w
3 s 530
10 10
20
5 5 10
0 0 0
50ms 100ms 200ms 400ms 50ms 100ms 200ms 400ms 50ms 100ms 200ms 400ms
Added RTT Added RTT Added RTT

Figure 8: Measured LAF as a function of added latency

websites, all but one host are CDN nodes. With MSNBC
and QQ, a one third to one half of the hosts have been
identified as CDNs, so the reduction is more moderate.
For these two sites however, even the lower CLAF val-
ues are still quite high.

In the case of Yahoo, our methodology identified only
2 CDN hosts out of the 12 hosts it uses. However nei-
ther of the associated nodes were on a critical path when
calculating the LAF, so their omission from the CLAF
calculation did not affect the final value. It is however
possible that, in this case, there are other CDN hosts we
have not been able to identify with our approach.

7 Related Work

Butkiewicz et al [2] have presented a detailed analysis
of the complexity of modern web pages. This analysis,
which included more than 1700 web sites, considers how
web page features, such as the number of objects fetched,
the types of content fetched, and the number of sources
from which content is fetched, are related to the time re-
quired to render the page. This analysis also introduces
a regression-based model that can be used to predict the
rendering time of a page given values for key page fea-
tures of the page content. The model we present in this
paper is complementary to this work. While our models
are sensitive to the content of the page, they predict the

CS-TR-2013-11

B Mean CLAF Mean LAF

70.00
60.00
50.00
40.00
30.00
20.00
10.00

Amazon Facebook MSNBC QQ

%
%
/
/
.
/
/
.
.
/
/
%
%
%
%
_

ZA

Figure 9: LAF and CLAF for Different Web Pages

impact of individual request latencies on the page load-
ing time.

Because of the importance of web performance, a va-
riety of tools and techniques are available for web per-
formance analysis. For on the server side, there are tools
available to help with performance analysis and server
stress testing. These include commercial solutions, such
as those offered by Neustar [9] or HP’s Performance
Center [5], as well as open-source projects like Bench-
lab [3]. These tools allow for the definition and execution
application-specific, controllable, synthetic workloads so
that servers can be tested under a variety of realistic load
conditions.

For measuring client-side page load times, Rajamony
and Elnozahy [13] present a technique that embeds mea-
surement JavaScript directly in a downloaded web page.
After measuring client side latencies, the embedded
JavaScript then uploads measurements to a centralized
repository. This approach can be employed by a web
service provider to measure client-perceived page laten-
cies for its web pages without any need for direct client
involvement. A disadvantage of the approach is that it
changes the behavior of the web page because of the in-
troduction of the embeded Javascript. Wei and Xu [15]
describe an alternative technique for estimating client-
perceived page load latencies. Their technique relies on
the ability to monitor network traffic into and out of a
web service. Because it only inspects SSL headers, this
approach is non-intrusive: no changes are required in the
web service or on the client side, and there is no need to
inject measurement code into the web page content. In
contrast to these approaches, our trace-based approach

is browser-specific and does require the client’s involve-
ment for trace collection. However, it does not require
any changes to web page contents. Unlike the technique
proposed by Wei and Xu, our client-centric approach can
easily account for all of the latencies that clients experi-
ence when loading pages that include objects from multi-
ple sources. Furthermore, we can directly measure client
latencies, rather than inferring them from network packet
observations.

Both of the previous techniques seek to measure
client-perceived page download times. In contrast, the
objective of the WebProphet system [7] is to predict
the load time of a web page under hypothetical condi-
tions. WebProphet models a page using a graph, with
edges representing dependencies among the objects on
the page. To infer dependencies, WebProphet retrieves
the page while adding latency to the download of specific
objects. By identifying which other objects’ latencies
change as a result of these injections, WebProphet can
infer that dependencies exist. Ultimately, WebProphet
produces a very rich model of web page load time, with
many input parameters. To make “what if” predictions
about page load times, WebProphet uses its model to
simulate the loading of the web page under hypothetical
conditions. With this approach, WebProphet can predict
the effects of browser configuration changes, changes in
the retrieval latency of individual objects or groups of ob-
jects, changes in network-level characteristics such as the
time required for DNS resolution. In contrast, the tech-
nique proposed here produces a much simpler model that
is intended only to relate page load time to latencies of
the requests for the objects on the page. Our model can-
not, for example, be used to predict the effect of a change
in browser configuration on page load time. Although
WebProphet’s model is considerably richer, this richness
comes with a price: its models are larger, more expen-
sive to build, and more expensive to use than the models
proposed here. We are trying to answer a narrower but
important question using a model that is simple and easy
to use.

In addition to WebProphet, which, like our work, fo-
cuses on client-centric what-if latency analysis, there
are also techniques for performing what-if performance
analyses on the server side. The “What-If Scenario Eval-
uator” (WISE) [14] takes a machine learning approach
to model the effects of changes in a web service’s de-
ployment configuration. For example, WISE was used to
predict the effect on users’ page load times when a CDN
node serving those users was moved. WISE requires an
extensive collection of monitoring data which it can use
to infer dependencies among system parameters of inter-
est, such as client response times and CDN node loca-
tions. Chen et al [4] focus on the effect of changes in
the inter-tier latencies in a multi-tier service architecture.

CS-TR-2013-11

They propose a metric called the link gradient to capture
the effect of the latency between two tiers on the overall
performance of the system.

8 Conclusion

Although user satisfaction depends strongly on the load
time of a web page, there is no simple way to characterize
the relationship between the content of a page and its
load time. We have proposed a simple metric, the LAF,
to address this problem. This metric is easy to estimate
and to interpret. We have estimated LAFs for some of the
world’s most popular websites. Some are surprisingly
high, indicating the small changes in network latencies
can lead to large increases in page load times.

We validated our procedure for estimating LAFs by
measuring LAFs and comparing those measurements to
our estimates. In most cases, our LAF estimations were
reasonably accurate. Finally, we have considered an
enhanced metric called CLAF that can distinguish web
page content loaded from CDNs from other content.
Comparing the LAF and CLAF for a web page gives a
way of quantifying CDN effectiveness for that page.

References

[1] ALEXA. Global top sites list.
topsites/global.

http://www.alexa.com/

[2] BUTKIEWICZ, M., MADHYASTHA, H. V., AND SEKAR, V. Un-
derstanding website complexity: measurements, metrics, and im-
plications. In Internet Measurement Conference (2011), P. Thiran

and W. Willinger, Eds., ACM, pp. 313-328.

CECCHET, E., UDAYABHANU, V., Wo0D, T., AND SHENOY,
P. Benchlab: an open testbed for realistic benchmarking of web
applications. In Proceedings of the 2nd USENIX conference on
Web application development (Berkeley, CA, USA, 2011), We-
bApps’11, USENIX Association, pp. 4—4.

—

[3

=

[4] CHEN, S., JosHI, K. R., HILTUNEN, M. A., SANDERS, W. H.,
AND SCHLICHTING, R. D. Link gradients: Predicting the im-
pact of network latency on multitier applications. In INFOCOM

(2009), IEEE, pp. 2258-2266.

=

[5S] HP. Hp performance center. http://www8.hp.com/us/en/
software-solutions/software.html?compURI=1172026.

[6

=

KoHAVI, R., AND LONGBOTHAM, R. Online experiments:
Lessons learned. Computer 40, 9 (sept. 2007), 103 —105.

[7] L1, Z., ZHANG, M., ZHU, Z., CHEN, Y., GREENBERG, A. G.,
AND WANG, Y.-M. Webprophet: Automating performance pre-
diction for web services. In NSDI (2010), USENIX Association,
pp. 143-158.

[8] MAYER, M. What google knows. In Proceedings of the Third
Annual Web 2.0 Summit (San Francisco, CA, USA, November

2006).

[9] NEUSTAR. Benefits of external load testing: Iden-
tify bottlenecks and improve customer experience.
Tech. rep. available online at http://www.neustar.

biz/enterprise/resources/web-performance/
benefits-of-external-load-testing#.UQlpnWQqa4V.

[10] NUSSBAUM, L., AND RICHARD, O. A comparative study of
network link emulators. In SpringSim (2009), G. A. Wainer, C. A.
Shaffer, R. M. McGraw, and M. J. Chinni, Eds., SCS/ACM.

[11] ODVARKO, J. Http archive specification version 1.2. http://
www.softwareishard.com/blog/har-12-spec/.

[12] PHANTOMIS. http://phantomjs.org/.

[13] RAJAMONY, R., AND ELNOZAHY, E. M. Measuring client-
perceived response time on the www. In USITS (2001), USENIX.

[14] TARIQ, M. M. B., ZEITOUN, A., VALANCIUS, V., FEAM-
STER, N., AND AMMAR, M. H. Answering what-if deploy-
ment and configuration questions with WISE. In SIGCOMM
(2008), V. Bahl, D. Wetherall, S. Savage, and I. Stoica, Eds.,
ACM, pp. 99-110.

[15] WEL J., AND XU, C.-Z. Measuring client-perceived pageview
response time of internet services. IEEE Trans. Parallel Distrib.
Syst. 22,5 (2011), 773-785.

CS-TR-2013-11

