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Abstract
Hidden Markov Models (HMMs) provide a simple framework to model the

generative process of some types of sequential of data. We consider the challeng-
ing problem of estimating the parameters of an HMM incrementally by doing a
constant amount of computation per observation. We propose an online moment
matching algorithm for Bayesian learning of transition parameters of an HMM.
While moment matching suggests that learning is done approximately, we show
that the algorithm performs exact Bayesian learning for an implicit prior. The al-
gorithm exploits the fact that only the first, second and third order moments of
the prior need to be specified before any data is observed. After each observation,
moment matching implicitly specifies additional moments in the prior. Hence, the
algorithm specifies the moments of the prior incrementally as they become needed
in the computation. Therefore the overall computation is exact with respect to the
resulting prior. The algorithm performs a constant amount of computation per ob-
servation in contrast to other methods such as naive exact Bayesian learning where
the computation grows exponentially and Gibbs Sampling where an approximate
solution is obtained after multiple iterations. We demonstrate the performance of
the algorithm by comparing it to exact Bayesian Learning and Gibbs Sampling on
synthetic data as well as real data for HMMs that arise in activity recognition.

1 Introduction
Over the years, hidden Markov models (HMMs) have emerged as a popular frame-
work to model and reason about sequential data in many applications including ac-
tivity recognition, speech recognition and natural language processing. Nevertheless,
learning the parameters of an HMM remains challenging, especially in the absence of
labeled data and in online settings. Optimization techniques based on maximum likeli-
hood face a non-convex optimization problem and online learning restricts algorithms
to a constant amount of computation per observation.
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In this work, we propose an online Bayesian learning technique that performs mo-
ment matching. To our knowledge, this algorithm is the first exact online Bayesian
learning technique that can process each observation in a constant amount of time for
HMMs. Our approach exploits the fact that only the first, second and third order mo-
ments of the prior need to be specified before any data is observed. After each obser-
vation, moment matching implicitly specifies additional moments in the prior. Hence,
the algorithm specifies incrementally the moments of the prior as they become needed
in the computation and therefore the overall computation is exact with respect to the
resulting prior.

Delaying the implicit specification of the moments of the prior until they become
needed, allows us to set the moments in a way that ensures that computation remains
bounded at every step. In contrast, a naive implementation of exact Bayesian learn-
ing would require memory and computation that grows exponentially in the number of
states with respect to the amount of data observed so far to process each new observa-
tion.

The paper is structured as follows. Sec. 2 introduces HMMs and reviews exact
Bayesian learning. Sec. 4 describes our moment matching technique and proves that
under certain conditions the computation is exact with respect to an implicit prior.
Sec. 5 demonstrates our moment matching techniques with synthetic and real data from
HMMs that arise in activity recognition. Sec. 6 concludes and discusses future work.

2 Background

2.1 Hidden Markov Model
Consider a hidden Markov model (HMM) defined by a transition function Pr(Yt|Yt−1)
and an observation function Pr(Et|Yt) where Yt and Et denote the random variables
for the hidden state and the observation (evidence) respectively at time step t. In this
work, we assume that the state space is finite, while the observation space may be finite
or continuous. We also assume that the observation distribution is completely known.

This setting is useful in many domains, including activity recognition, speech recog-
nition, natural language processing. In activity recognition, activities are the hidden
states and sensor measurements are the observations. The observation distribution can
be estimated in isolation by asking participants to perform specific activities while
recording the sensor measurements. In contrast, the transition distribution cannot be
easily estimated in controlled experiments since sequences of activities must be per-
formed over a period of time that may range from hours to weeks. Also, the sequences
of activities should not be scripted, meaning that users should be free to perform ac-
tivities as they wish in order to generate natural sequences. Since the activities are
not scripted nor directly observable, then we are faced with an unsupervised learning
problem. It may also be desirable to learn the transition function as the activities are
performed, meaning that learning should be done in an online fashion. Since activities
tend to persist for a while before changing, the resulting HMMs are often known as
sticky HMMs [5] [4]. In subsequent sections we will describe the algorithm for learn-
ing the parameters of a generic transition function with respect to an implicit prior. We
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will also explain how we can adapt the algorithm to the sticky HMM case.

2.2 Online Unsupervised Learning
Online unsupervised learning for HMMs is quite challenging even for simple transi-
tion functions. Maximum likelihood leads to a non-convex optimization problem and
techniques such as Expectation Maximization (EM) may get trapped into local optima.
Bayesian learning sidesteps local optima issues by doing inference instead of optimiza-
tion. However, the posterior distribution may be difficult to represent tractably.

Let Θ be the parameters of the transition function and n be the total number of states
where Θ = {θ1, . . . , θn}, θy = {θy,1, θy,2, . . . , θy,n} and θy,y′ = Pr (Yt = y′|Yt−1 = y).
Starting off with a prior distribution over P0(Θ), we can use Baye’s theorem to recur-
sively compute a posterior P y

′

t+1(Θ) = Pr(Θ|Yt+1 = y′, e1:t+1) at time step t + 1
based on the posterior at time step t using:

P y
′

t+1(Θ) = ky
′

t+1

∑
y

P yt (Θ) Pr(Yt+1 = y′|Yt = y,Θ)cyt

Here, ky
′

t+1 is a normalization constant equal to 1/Pr (Yt+1 = y′|e1:t) and cyt =
Pr (Yt = y|e1:t). They can be calculated using:

ky
′

t+1 =
∑
y

cyt

∫
Θ

P yt (Θ)θy,y′dΘ (1)

cyt =
Pr (et|Yt = y) kyt∑
y Pr (et|Yt = y) kyt

(2)

To allow Bayesian learning from multiple sequences, we use the following equation
to calculate the posterior if t+ 1 is the start of a sequence

P y
′

t+1(Θ) = ky
′

t+1

∑
y

λ(y)θy,y′Pt(Θ) (3)

where Pt(Θ) = Pr (Θ|e1:t) =
∑
y c

y
tP

y
t (Θ) and λ(y) is a pre-specified distribu-

tion over y. We now describe how to do exact Bayesian learning for three different
parameterizations of the transition function.

2.2.1 Sticky HMM Parametrization

In sticky HMMs that arise in activity recognition problems, a person executes an ac-
tivity for a while until a change occurs. The probability that a state y persists or
”sticks” is given by Bernoulli parameter θy . In this model, θy,y′ = θy if y = y′ and
θy,y′ = (1−θy)/(n−1) otherwise. It is natural to represent the prior P0 (Θ) by a prod-
uct of Beta distributions P0 (Θ) =

∏n
i=1Beta (θy, αy,1, αy,2). The Beta distribution

is a conjugate prior for a Bernoulli likelihood. Beta (θi;αi) = kθ
αi,1−1
i (1− θi)αi,2−1

where k is the normalization constant and αi,j are the hyperparameters. The posterior
at time t+ 1 can be computed as:
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P y
′

t+1(Θ) = ky
′

t+1

∑
y

cytP
y
t (Θ)

[
δ(y, y′)θy + (1− δ(y, y′)) (1− θy)/(n− 1)

]
(4)

Here δ(y, y′) is a Kronecker delta that returns 1 when y = y′ and 0 otherwise.
We can further restrict the transition function to have a single Bernoulli parameter

denoting the probability of a state to persist. In that case, we replace θy by θ in Eq. ?? to
get the posterior for this model. Although this model with a single Bernoulli parameter
is restrictive, we will use it mostly to simplify the exposition of some concepts. Our
algorithms do not rely on this restriction since they can deal with arbitrary transition
distributions.

2.2.2 n-1 Multinomial Parameters per State

We model each θy as a multinomial random variable. It is natural to start with a prior
distribution P0 (Θ) represented as a product of Dirichlet distributions since Dirichlets
are conjugate priors for Multinomial likelihoods and are a generalization of Beta dis-
tributions. P0 (Θ) =

∏n
i=1Dir (θi;αi) and Dir (θi;αi) = k

∏
j θ

αi,j−1
i,j where k is

the normalization constant and αi,j are the hyperparameters. The posterior at t+ 1 can
be computed using:

P y
′

t+1(Θ) = ky
′

t+1

∑
y

P yt (Θ)θy,y′c
y
t (5)

The equations described above show that depending on the parametrization of the
transition function, when P yt is a mixture of products of Dirichlets / products of Betas
/ Betas, then P y

′

t+1 is also a mixture of products of Dirichlets / products of Betas /
Betas because each P yt is multiplied by a θy,y′ at every time step. Even if we start
with a single component in the prior, the posterior becomes a mixture because of the
summation over y. The number of components in the mixture may increase by a factor
of n at each time step. However, the degree of the polynomial in θi,j corresponding to
the mixture of components increases by 1. Hence, the posterior can be represented by
a polynomial with a number of terms that grows exponentially over n with the amount
of data. This allows us to do exact Bayesian learning, but not in an online fashion since
the amount of computation and memory to process each observation increases with the
amount of data. In Sec. 4, we propose a moment matching algorithm that ensures exact
computation with respect to an implicit prior while keeping the amount of computation
constant at each time step.

3 Related Work
Spectral learning algorithms also use moment matching to estimate the parameters
of an HMM [1]. In particular, Hsu [6] showed that an observable operator model
parametrization of an HMM can be learnt from a large number of short sequences

4



of observations. In contrast, we learn from a single sequence of observations. Some
spectral algorithms have been adapted to the single sequence case [2], but they yield ap-
proximate point estimates of the parameters for finite sequences, where as our approach
is exact and provides distributional information about the parameters. Our approach is
also related to expectation propagation (EP) [7] in the sense that we match the first
few moments of posteriors at each time step. However, EP is an iterative method that
yields an approximation, whereas our approach is not iterative and it is exact for an
implicit prior. On the other hand, our approach assumes that the transition function
is known whereas spectral learning techniques and EP make no such assumption. Se-
quential Monte Carlo (SMC) methods can also been used for Bayesian Learning. In
SMC, we approximate the parameters by sampling sequentially from a series of proba-
bility distributions of increasing dimensions. Doucet et. al. [3] have summarized many
convergence results for SMC methods that rely on the ability to get an infinite number
of samples at every time step. For any finite number of samples N, it can be proven
that the number of particles effectively used to sample from the distribution at time t
will effectively be reduced to 1. This is called the degeneracy problem and many SMC
methods suffer from it. Degeneracy of the sample set does not allow the algorithm to
be consistent. Markov chain Monte Carlo techniques such as Gibbs sampling are also
used extensively to do approximate Bayesian Learning of parameters. Since MCMC
techniques are iterative, they may require a large number of iterations to converge. In
addition, they do not lend itself easily to online learning since after each iteration it may
be necessary to resample all previous hidden states to ensure convergence. In contrast,
our algorithm learns from the data as it becomes available and does a constant amount
of work at each iteration.

4 Moment Matching
We will now describe a framework for calculating moments of the posterior at every
time step and then show how we can use them to derive an approximate Bayesian
learning algorithm.

4.1 Moments of a Distribution
We define the oth order moment of a multivariate distribution in X = (X1, . . . , Xn)
to be the expectation of a monomial in the Xi’s of degree o. For example, X1X

2
3 is a

monomial of degree 3, and
∫
X
X1X

2
3 Pr(X)dX is a third order moment of Pr(X) that

corresponds to the expectation of this monomial. We will denote by Mi1,i2,...,io(P )
the oth order moment of P where the expectation is with respect to the monomial∏o
j=1Xij . For example, M1,2,1(P ) =

∫
X
X1X2X1 Pr(X)dX . We will also denote

byMIo(P ) an oth order moment where Io = (i1, i2, ..., io) is a string of o indices. The
set of oth order moments of a distribution P is denoted by Mo (P ) and its cardinality
by |Mo|. It is easy to see that the first order moments of a distribution Mi (P ) are
equivalent to its means. Using Eq. 1, the oth moment of the posterior at time t+ 1 can
be calculated as
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MIo(P y
′

t+1) =ky
′

t+1

∑
y

cyt

∫
Θ

θi1 ...θioP
y
t (Θ)θy,y′dΘ (6)

If a new sequence starts at time t+ 1 the posterior can be calculated using

MIo

(
P y

′

t+1

)
= ky

′

t+1

∑
y

λ(y)MIo,(y,y′) (Pt) (7)

where Io, (y, y′) denotes a string of o + 1 indices such that the last index (y, y′)
refers to parameter θ(y, y

′). It is clear from these equations that the oth order moments
at time t + 1 can be calculated using the o + 1th order moments at time t since the
length of Io, (y, y′) is o+ 1. This will become a fundamental building block when we
prove that our moment matching algorithm is exact with respect to an implicit prior.
Also ky

′

t+1 denotes the following normalization constant.

ky
′

t+1 =
∑
y

cytM(y,y′) (P yt ) (8)

When we consider a transition function parameterized by a single Bernoulli vari-
able θ, we will use a different notation for moments. Since there is a single parameter
θ, the string of indices i1, ..., io is cumbersome and all indices are necessarily the same.
Instead of using a string of indices i1, ..., io to specify a momentMi1,...,io , we will sim-
ply indicate the order o of the momentMo since it is clear that the monomial used in the
expectation is θo. In this case the oth order moment of the posterior can be calculated
as follows:

Mo

(
P y

′

t+1

)
= ky

′

t+1

∑
y

cyt

[
δ(y, y′)Mo+1 (P yt ) + (1− δ(y, y′)) 1−Mo+1 (P yt )

n− 1

]
(9)

4.2 Parameter Learning by Moment Matching
As we have mentioned before, the number of mixture components in the posterior
grows with time. In order to avoid this, we propose an algorithm that computes the
posteriors P yt (Θ) exactly at each time step and to project them onto a single product
of Dirichlets before computing the next posteriors. This projection ensures that the
mixture does not get arbitrarily large.

There are several ways of approximating a mixture of products of Dirichlets by
a single product term. While one could approximate the mixture by sampling from
it or by retaining the mixture component with the largest mixture probability, these
approximations may be severe. Since the hyperparameters of a Dirichlet distribution
can be determined by its first order moments and a subset of second order moments,
we can approximate the mixture by computing its first and second order moments and
then replacing the mixture by a single product of Dirichlets that has the same first and
second order moments. Let Mi(DirProd) be the first order moments of a product of
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Dirichlets where i is the index of θy,y′ . LetMj,j(DirProd) be a second order moment
of a product of Dirichlets where j is the index for θy,1:

Mi(DirProd) =

∫
Θ

θy,y′
n∏
l=1

Dir(θl;αl)dΘ

= αy,y′/αy,0 (10)

Mj,j(DirProd) =

∫
Θ

(θy,1)
2
n∏
l=1

Dir(θl;αl)dΘ

=
αy,1
αy,0

αy,1 + 1

αy,0 + 1
(11)

Here αy,0 =
∑n
y′=1 αy,y′ . We will use this notation in the rest of the paper. Using

Eqs 10 and 11 we can set up a system of equations by matching the moments of a
product of Dirichlets to those calculated by using Eq. 6. For each Dirichlet Dir(θy)
in the product of Eq. 10 we get n equations in n variables where the variables are
αy,y′ . However, since

∑n
y′=1 θy,y′ = 1, the last equation becomes redundant. Eq. 11

yields the last equation of the system of equations. We will call the set of moments
that allow us to do the update at the next time step the sufficient set of moments. The
choice of j in Eq. 11 is arbitrary. In fact, we can choose any second order moment
to solve the system of equations. Choosing j in this way allows us to determine the
hyperparameters as follows:

αy,y′ = Mi(Mi −Mj,j)/((Mj,j − (Mi)
2
)) (12)

Using these equations, the process of computing posteriors where we fit a single
product of Dirichlets to a mixture of such products is equivalent to computing mo-
ments only at each iteration. This approach takes a constant amount of computation at
each iteration because the number of mixture components remains bounded, however
inference is approximate. The algorithm is described in Alg. 1

Algorithm 1 approximateMomentMatching
1: for t = 1 to T do
2: For each y′, for each i, compute Mi(P

y′

t+1) according to Eq. 6 where i indexes
θy,y′

3: For each y′, for each j compute Mj,j(P
y′

t+1) according to Eq. 6 where j indexes
θy,1

4: For each y′, compute cy
′

t+1 according to Eq. 2

5: For each y′, for each i, j, compute Mi,j(P
y′

t+1) from Mi(P
y′

t+1) according to
Eq. 13

6: For each y′, compute Mi,j,k(P y
′

t+1) from Mi,j(P
y′

t+1) according to Eq. 13
7: end for

Lines 2 and 3 allow us to calculate moments of the posterior at time t+ 1. Lines 5
and 6 allow us to match the moments to a single product of Dirichlets. Other second
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order and third order moments of P yt+1 can be calculated recursively using the values
of αi,j using

MIo,(y,y′)(DirProd) = MIo(DirProd)
αy,y′ + ny,y′

αy,0 + n(y,0)
(13)

where io indexes θy,y′ and ny,y′ is the number of times index io is repeated in string
I .

Although Eq. 13 allows us to calculate an infinite number of moments for the pos-
terior at time t + 1, only the first, second and some of the third order moments are
necessary to compute the moments necessary for moment matching at the next time
step. We can call this the sufficient set of moments. This last observation suggests
something really interesting about the posterior at each time step. As long as we use
any distribution Qyt with the same sufficient moments as P yt , then the first and second
order moments of P y

′

t+1 and Qy
′

t+1 will be the same.

4.2.1 Sticky HMM

We can restrict the moment matching scheme described above to approximate the pos-
terior in a sticky HMM. Here we approximate a mixture of products of Betas by a
single product term using moment matching as follows:

My(BetaProd) = αy,1/αy,0 (14)

My,y(BetaProd) =
αy,1
αy,0

αy,1 + 1

αy,0 + 1
(15)

The hyperparameters can be calculated using:

αy,1 = My (My −My,y) /((My,y − (My)
2
))

αy,2 = (1−My) (My −My,y) /((My,y − (My)
2
))

MIo,y(BetaProd) = MIo(BetaProd)
αy,1 + ny,1
αy,0 + n(y,0)

where ny,j is the number of times index io is repeated in I .
For a single Bernoulli parameter model, the equations become

M1(Beta) = α1/α0 (16)

M2(Beta) =
α1

α0

α1 + 1

α0 + 1
(17)

α0 = α1 + α2. The hyperparameters can be estimated using:

α1 = M1 (M1 −M2) /((M2 − (M1)
2
))

α2 = (1−M1) (M1 −M2) /((M2 − (M1)
2
))

Mo+1(Beta) = M0(Beta)
α1 + n1

α0 + n(0)
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For the single Bernoulli parameter model, the sufficient set of moments at every
time step is the first three moments since we can calculate the first two moments at
time step t+ 1 using the first three moments at time step t.

4.3 Exact Inference
Does there exist a prior such that if we did exact computation using this prior, it would
lead to the same sequence of first order moments at every time step t? To investigate
this question, let us use Eq. 9 to calculate moments for a model with a single parameter
and two states at time step 1.

M3(P 1
1 )/k1

1 = c10M4(P 1
0 ) + c20

(
M3(P 2

0 )−M4(P 2
0 )
)

M3(P 2
1 )/k2

1 = c10
(
M3(P 1

0 )−M4(P 1
0 )
)

+ c20M4(P 2
0 )

We did not specify M4 at time 0, therefore, we can use this system of equations
to calculate it. As M3(P0) is already selected, then selecting M4(P0) implicitly deter-
minesM3(P y1 ). This suggests that approximating the posterior P y1 at time step 1 with a
single Beta distribution using Alg 1 implicitly determines the 4th moment of the prior
P0. Similarly, selecting the third moment of P y2 implicitly determines the 5th moment
of P0. However, there are two posteriors P yt at each step t, one for each hidden state y,
so the third moment of each posterior may yield different values for Mt+3(P0).

We can resolve this conflict in two ways. Instead of starting with a single prior
P0(θ) that is independent of y, we could assume that we start with two priors P y0 (θ),
one for each hidden state y. This is weird, but technically fine. Since we have two
posteriors at each time step t > 0 that depend on the hidden state y, one could argue
that the priors at time step 0 are really the posteriors of a previous experiment and
therefore naturally yield two priors. Then, Eq. 9 can be used to define a system of
linear equations that relate the oth and o + 1th moments of the priors P y0 to the oth

moments of the posteriors P y1 and hence we get a system of linear equations in 2
unknowns and 2 equations. More generally, we can solve a similar system of linear
equations to determine the t + 2th moment of the priors based on the third moments
of the posteriors up to time step t. Note that we are not suggesting to solve all these
linear systems of equations, but we are simply pointing out that a solution to those
linear systems implicitly determines the priors. However, the solution to these systems
of linear equations may not yield positive moments. This means that there may exists
two functions for which exact inference yields the same results, but these functions
may not be valid priors as they may be negative in some parts of the domain.

In order to address this problem we use the following observation. At any time t+1
summing the unnormalized posterior for all states give us∑

y′

ky
′

t+1

(
P y

′

t+1(Θ)
)

=
∑
y′

cy
′

t

(
P y

′

t (Θ)
)

(18)

We can see that the oth moment of the L.H.S of the equation is equal to the oth moment
on the R.H.S. Using this observation we propose a modification to our algorithm. We
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calculate first and second order moments for each posterior P y
′

t+1 from t = 1 to T − 1

as before. Let St+1 =
∑
y′ c

y′

t

(
P y

′

t

)
. Then we can calculate moments for the nth

posterior using

knt+1P
n
t+1(Θ) = St+1(Θ)−

n−1∑
y′=1

ky
′

t+1P
y′

t+1(Θ) (19)

knt+1MI

(
Pnt+1

)
= MI (St+1)−

n−1∑
y′=1

ky
′

t+1MI

(
P y

′

t+1

)
This alternative procedure is described in Alg. 2.

Algorithm 2 exactMomentMatching
1: for t = 1 to T do
2: For each y′, and each i compute Mi(P

y′

t+1) according to Eq. 6 where i indexes
θy,y′

3: For each y′, for each j compute Mj,j(P
y′

t+1) according to Eq. 6 where j indexes
θy,1

4: For each y′, compute cy
′

t+1 according to Eq. 2

5: For each y′ ∈ 1, . . . , n− 1, for each i, j, compute Mi,j(P
y′

t+1) from Mi(P
y′

t+1)
according to Eq. 13

6: For y′ = n, for each i, j, compute Mi,j(P
y′

t+1) from Mi(P
y′

t+1) according to
Eq. 19

7: For each y′ ∈ 1, . . . , n− 1, compute Mi,j,k(P y
′

t+1) from Mi,j(P
y′

t+1) according
to Eq. 13

8: For y′ = n, compute Mi,j,k(P y
′

t+1) from Mi,j(P
y′

t+1) according to Eq. 19
9: end for

4.3.1 Constructing the Prior

Now we will describe a method to construct a prior Q0 at time step 0 such that if we
started from Q0 instead of P0, then the sufficient set of moments (first order moments
and some of the second order moments) of the posterior Qt+1 computed at time step
t+ 1 using exact inference will yield the same moments that we acquire by computing
Pt+1 using moment matching. Note that we only compute enough moments of the
posterior at every time t that allow us to compute the moments of the posterior at time
step t+1. Effectively, all the remaining moments of the posterior at t are ”unspecified”.
When we do a Bayes update and then do moment matching, we can set up a system of
equations that allows us to ”set” these unspecified moments. The following system of
equations will allow us to calculate the o+ 1th order moments of the posterior at time
step t using the oth order moments of the posterior at time step t+ 1:
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MIo

(
P y

′

t+1

)
= ky

′

t+1

∑
y

cytMIo,(y,y′) (P yt ) ∀Io

where y′ ∈ 1, . . . , n− 1∑
y′

ky
′

t+1MIo+1

(
P y

′

t

)
=
∑
y′

cy
′

t MIo+1

(
P y

′

t−1

)
∀Io+1

In this system of equations MIo+1
(P y

′

t ) and MIo,(y,y′)(P
y
t ) are the variables. The

rest of the terms are known. The last equation ensures that the system of equations is
consistent at every previous time step. Note that the number of oth order moments |Mo|
is smaller than the number of o+ 1th order moments |Mo+1|. These equations give us
a system in (n− 1)|Mo|+ |Mo+1| equations in n× |Mo+1| variables. It is easy to see
that this system is underdetermined and may have infinitely many solutions. Note that
MIo,(y,y′)(P

y
t ) are the only variables that show up in the first set of equations. In fact,

MIo,(y,y′)(P
y′′

t ) are free for all y′′ 6= y. Therefore, we can use the free variables to set
the constrained variables such that both equations are satisfied. This means that we can
solve this system of equation at every time step. Solving t − 2 such systems will give
us the tth order moments at time step 3.

At time step 2 we only have one set of equations

MIo

(
P y

′

2

)
= ky

′

1

∑
y

cytMIo,(y,y′) (P y1 )

The moments at time 0 can be calculated using

′∑
y

ky
′

t+1MIo+1

(
P y

′

1

)
= MIo+1

(P0)

Theorem 1. The moment matching procedure described in Alg. 2 performs exact in-
ference with respect to an implicit prior.

Proof. In the previous section, we have described an algorithm that allows us to set the
moments of the prior recursively. Each time we select second order moments at time
t + 1, we set 3rd order moments at time t, which allows us to set 4th order moments
at time t − 1 and so on until we can set t + 1th order moments of the implicit prior at
time step 0. This way we can construct a function Q0 whose moments are equal to the
implicit prior at time 0. Solving the t systems of equations is in fact the exact reverse
of doing exact inference. Therefore, if we start with Q0 and do exact inference, the
first order and some second order moments of the posterior Qt+1 will be the same as
those of Pt+1 computed by moment matching.

This means that there is a function with suitable moments such that exact inference
yields the same results as Alg. 2. We can show that this function is a valid prior since
it is necessarily positive and it integrates to 1. The implicit prior necessarily integrates
to 1 since we can select M0(P0) to be 1 when we specify the first few moments of
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the prior. Setting M0(P0) to 1 is compatible with the systems of linear equations that
determine the remaining moments of P0.

We prove by contradiction that the implicit prior must be positive. Suppose that the
function corresponding to the moments of P0 obtained by solving the linear systems of
equations is negative in some part of the domain. As argued above, we can obtain P 1

t

from P0 by exact inference according to Bayes’ theorem:

P 1
t (θ) ∝ P0(θ) Pr(Yt = 1, e1:t|θ)

Since P0 is assumed to be negative in some part of the domain and the likelihood
Pr(Yt = 1, e1:t|θ) is necessarily positive, the posterior P 1

t must be negative in some
part of the domain. This leads to a contradiction since we can always set P 1

t to be a
product of Dirichlet distributions, which is necessarily positive.

One may object that a prior must be fully specified before any data is observed oth-
erwise it is not a prior. Although Alg. 2 implicitly determines the moments of the prior
in an incremental fashion as the data is observed. All moments are determined before
they are used in any computation. So even though some moments are defined after
we have observed some data, these moments do not impact the likelihood of the data
observed so far. The right way to think about this process is that we partially specify a
prior and then lazily wait until a moment is needed in the inference to specify it. Wait-
ing till a moment is needed allows us to set it in a way that ensures that computation
remains bounded at each time step, therefore facilitating online learning.

5 Experiments
In this section, we evaluate our moment matching techniques on synthetic data and
a real world problem i.e. recognition of behaviours performed by older adults while
using their walker.

5.1 Synthetic Data
We evaluate our moment matching algorithms on synthetic HMMs of n states and
n observations where the observation function is known and the transition function
is unknown. The observation distributions are parameterized as follows: Pr(Et =
e|Yt = y) = γ when e = y and (1− γ)/(1− n) otherwise. The higher γ is, the more
informative are the observations and when γ = 1/n, the observations are sampled
uniformly and are uninformative.

Let θt be the true underlying parameter calculated by counting the number of tran-
sitions till time t. We denote by θ̄t, the expected value of the parameter corresponding
to the first moment of the posterior at each time step t calculated using moment match-
ing. We want to report an estimate of Err =

∫
θ

∑
i(θi − θ̄)2P (θ)dθ. We sample 20

sequences and report the mean and standard deviation of the error over time.
In case of a single Bernoulli parameter, the naive exact Bayesian learning approach

computes a mixture of Betas that corresponds to a polynomial with an increasing de-
gree, requiring memory and time that grows linearly with the amount of data at each

12



Figure 1: Evolution of ErrBeta and ErrExact over time for 2-state HMMs with θ =
0.75 and γ = 0.8. Comparison between exact Bayesian learning and our moment
matching algorithms.

step. We compare our moment matching algorithm for that model to exact Bayesian
learning. θ̂t is the expected value of the parameter corresponding to the first moment of
the posterior calculated using exact naive Bayesian learning. We generate 20 sequences
of length 100,000. Fig. 1 compares the error achieved by our moment matching algo-
rithm vs. the error for exact Bayesian learning.

We report results for Alg. 1 and 2. It turns out that even though those two algorithms
are different, their results are nearly the same and therefore there is only one visible
curve. The two algorithms differ in the choice of the implicit prior(s). However, the
first 3 moments of their priors are the same. Only the higher moments may differ. The
results suggest that those higher moments are implicitly chosen in almost the same way
since the resulting curves are indistinguishable. This makes sense since both algorithms
differ only in the choice of the third moment of one P yt and hence we are showing only
one curve. Both exact Bayesian learning and moment matching converge at a similar
rate to the true underlying θ, thereby supporting our claims in the previous section.
Moment matching took 9 seconds to process all 10,000 observations where as exact
Bayesian learning took 271 seconds.
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Figure 2: Evolution of ErrDir over time for 4-state HMMs

We also report the results of Alg. 2 for a product of Dirichlets for a 4-state HMM in
Fig. 2. Here we use 10 sequences of length 20,000. The transition function of the HMM
has been generated randomly. We did not compare to exact Naive Bayesian learning
since the computational complexity grows exponentially with the length of sequence,
which is intractable. Instead, we compare our results to Gibbs Sampling since Gibbs
samping is also exact in the limit. However, Gibbs sampling does not run in an online
fashion since the amount of computation increases as the sequence of observations
increases. It must resample all previous hidden states multiple times (500 times in our
experiments) for each new observation. Gibbs sampling took 17 minutes to process the
last observation where as our moment matching technique took only 0.005 seconds per
observation (including the last observation). The results of both algorithms are similar
(differences are not statistically significant).

5.2 Activity Recognition for Walker users
Rollating walkers are popular mobility aids used by older adults to improve balance
control. There is a need to automatically recognize the activities performed by walker
users to better understand activity patterns, mobility issues and the context in which
falls are more likely to happen. We have access to a walker equipped with various
sensors including three accelerometers that record the acceleration across the x, y and

14



Figure 3: The evolution of error over time. The error converges close to the true value
at around time 16,000

z axis, load-cells in each leg of the walker to measure the vertical forces and a wheel
encoder to record the distance traveled. We have previously discussed that the class
of sticky HMMs serves as a good model for such activity recognition tasks. Here,
we assume that each of the 12 states (corresponding to 12 different activities) have
the some probability θy of persisting and the same probability (1 − θy)/(n − 1) of
switching to another state. We learned Θ using the exact moment matching procedure
described in Alg. 2. Fig. 3 shows that the error goes down over time and the algorithm
is able to converge close to the true value of θ obtained by handlabeling the activities
at each time step.

6 Conclusion and Future Work
In this work we described moment matching techniques for Bayesian learning of the
transition parameters of HMMs. To our knowledge this is the first time that an exact
Bayesian learning algorithm is derived while ensuring a constant amount of computa-
tion at each time step, which facilitates online learning. The approach delays the spec-
ification of the moments of the prior until they are needed in the computation, which
allows us to choose them in a way that keeps the amount of computation bounded. In
the future we plan to extend this work to allow for learning the observation function as
well.
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