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Abstract

Recent research in Network Virtualization has focused on the Internet ossification problem [1] whereby multiple independent
virtual networks (VN) [1] that exhibit a high degree of autonomy share physical resources and can provide services with varying
degrees of quality. Thus, the Network field has taken evolutionary steps on re-thinking the design and architectural principles of VN
[2] [3]. However, to the best of our knowledge, there has been little investigation into the autonomic behavior of such architectures
[4][5]. This paper describes an attempt to use Multiagent System (MAS) principles to design an autonomic and self-adaptive model
for virtual network provisioning (VNP) that fills a gap in the current Internet architecture. In addition, we provide an analysis of the
requirements of self-adaptive provisioning for designing a reliable autonomic model that is able to self-organize its own resources,
with no external control, in order to cope with environment changes. Such behavior will be required as the next generation Internet
evolves. Through our evaluation, we demonstrate that the model achieves its main purpose of efficiently self-organizing the VN,
since it is able to anticipate critical scenarios and trigger corresponding adaptive plans.

Keywords: Multiagent System, Self-Organization, Context-Awareness, Virtual Network Provisioning

1. Introduction

Network Virtualization (NV) has recently received substantial attention from the academic community. Because
of NVs characteristics, such as the ability to share a single resource among multiple virtual networks (VNs) and the
capability of self-management in the face of network degradation, NVs proponents have presented NV as a promising
approach to reducing the complexity of managing networks and virtual resources [2][3].

Thus, it appears that NV represents a key concept in tackling current Internet structural problems, mainly owing
to the fact that NV supports the creation of multiple and flexible VNs using a single physical infrastructure. In such
a system, there is no interference when running multiple concurrent VNs and each VN is capable of managing itself
and its own resources in the face of interference from the surrounding environment. In other words, VN is a new
architectural concept in which each VN runs its own protocols, services and technologies[6], and responds to users’
requests just as any traditional network architecture. In addition VN supports autonomic self-management through
adaptation plans which allow the efficient distribution of physical resources among VNs virtual devices.

The virtual network provisioning or adaptive maintenance system aims to deal with dynamic changes caused by
variations in the physical and virtual networks with a view to producing efficient use of physical resources and a high
level of service. These changes are related to failures, mobility, migration and maintenance needs.

Many studies in the Network field [6] have applied Multiagent systems (MAS) and Self-* approaches to support
solutions to Network Virtualization management. This paper extends our previous work [7] and discusses management
issues that arise in a VN infrastructure from a MAS perspective.
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Figure 1: VN Architecture and the agent control loop

We intend to deal with the additional complexity of this new VN concept by enabling autonomic and self-
management behavior through Multiagent system and Self-* paradigms. Thus, the main goal of this paper is to
fill in the gap that virtualization studies exhibit by covering design principles, from the autonomic computing per-
spective [8], in terms of autonomic distribution, means of communication, degree of intelligence and independence.
Furthermore, we aim to explore self-organization with VN by combining it with Network research to enable proper
management of such systems beyond offering a higher degree of autonomy and intelligence.

Thus, depending on the Network condition (link health/resource availability), the proposed model anticipates a
future critical scenario and triggers specific adaptive plans to keep the VN running based on predefined requirements.
Critical scenarios refer to link/router degradation and the adaptive plans refer to management solutions for routers and
links.

To this end, we designed and evaluated a distributed, autonomic and self-organizing system strongly based on
MAS and Self-Organizing approaches to ensure distributed negotiation and synchronization between the substrate
(physical) nodes and virtual resources. The virtual and physical nodes embed autonomous and intelligent agents,
which will exchange messages and cooperate with each other to carry out distributed VN management. We apply such
concepts (MAS and Self-*) to enable communication between the physical and virtual agents to provide performance
and scalability of the distributed and autonomic VN manager over traditional approaches.

As our proof-of-concept, we implemented and validated, through testbed experiments, a Virtual Network Provi-
sioning System (VNPS) wherein the VNPS can act upon a critical scenario and re-organize the VN. We showed that,
in the case of physical router degradation, our model is able to anticipate a possible future failure. Such a failure
because of the lack of physical resources, triggers the adaptive live migration of virtual routers and executes the adap-
tive plan in a matter of seconds. This adaptation involves the exchange of eight messages in a Network, as shown
in Figure 1. We also show that for larger networks with increased complexity, our model is still efficient, executing
adaptive plans by exchanging a small number of messages, which increases almost linearly. We then show, through
the VNPS validation, a scalable and robust way to evaluate the effectiveness of the self-organizing system, as well as
to self-configure its virtual resources in critical scenarios.

2. Related Work

To the best of our knowledge, there are few studies on adaptive provisioning of instantiated VNs to cope with
dynamic changes in service demands and resource availability from the MAS perspective [9] [10]. Many approaches
to solving the VN provisioning problem in the Network community have dealt with virtual node live migration to a
distinct host. There are also a few projects dealing with VN management in general from a MAS perspective.

The authors of [11] proposed an autonomic system called Violin, which manages a virtual environment, composed
of virtual nodes capable of live migration across a multi-domain physical infrastructure. Similarly, our previous work
[7], proposed an initial adaptive virtual resource provisioning, which brings substrate node agents to cope with failures
and severe performance degradation in network virtualization. Such proposals as just described are highly detailed in
terms of Network architecture and functionality; but, we noticed there is a lack of information regarding autonomic
behavior, MAS and Self-* capabilities.

[9] proposes a distributed self-organizing model based on MAS properties to manage the substrate network re-
sources in the case of failures and link degradation. This paper highlights Self-* properties and briefly describes
how the autonomic entities communicate and cooperate to maintain the virtual network’s stability and high levels of
functionality. Furthermore, there is also the Autonomic Networks field, which deals with Self-* paradigms applied
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on autonomic networks, such as described in [4] and [12]. In [4], the authors propose four self-organizing paradigms
to be applied in autonomic networks, while the authors of [12] describe a survey covering all possible self-organizing
and self-aware properties in VNs; they also give an overview of knowledge retrieval and sharing.

We also note that these approaches have treated the VN provisioning challenge from a semi-decentralized way, in
which the autonomic entities are only spread over substrate nodes. In fact some of the autonomic entities are even
centralized[11]. In contrast, the self-organizing model proposed in this paper addresses the management of network
resources by taking advantage of the total distribution of the autonomic entities throughout the network, including
virtual networks, and their components rather than only physical routers.

3. Approaching Self-Adaptation

The VNPS itself involves operations such as instantiating, deleting, monitoring, and migrating virtual network
elements (routers and links), and setting resource-allocation parameters, in a totally independent and decentralized
way, in order to cope with dynamic changes in service demands and resource availability. Such functions make the
proposed solution a suitable model for creating and managing multiple VNs and, as a consequence, for supporting the
pluralist approach of the Future Internet [13]. This solution is capable of creating multiple customized VNs and at the
same time it exhibits flexible management and real-time control.

Our adaptive model is based on a distributed algorithm, which embeds an autonomic agent inside every virtual
and physical node throughout the substrate and virtual network. Such agents are responsible for monitoring the local
environment, capturing local information, reasoning about measured data, and cooperating with each other in order to
exchange their local knowledge and feedback. Thus, each agent represents an autonomic entity capable of inferring
the local and global network state and, as a consequence, supports the core of the self-adaptive model. This core
model triggers adaptation plans depending on the surrounding environment.

The adaptive agent leads to the VN emerging as a self-organizing entity. The agent is in charge of handling local
behavior to enable proper control and management of the virtual network, its components and the network flows. Thus,
this control and management maintains the efficient use of physical resources for network virtualization. Assuming
that the VN has already been provided, our adaptive model includes the following features: (i) self-adaptive behavior;
(ii) resource and context-awareness; and (iii) knowledge acquisition/sharing. As a consequence of these features
acting in combination, autonomic decision-making occurs and this triggers different adaptive plans to eliminate VN
degradation as well as coping with scarce physical resources. Next, we briefly discuss such inherent features.

3.1. Enabling Self-Adaptation

Network management is autonomic when the network system can make decisions on its own using high-level
policies. A VNPS is considered to be autonomic when it exhibits Self-* proprieties such as self-organizing, self-
awareness and self-configurability. Thus, it is necessary to identify some intrinsic characteristics of the system that
favor self-adaptive behavior, such as means of communication and degree of autonomy. After such properties are
identified, the VNPS is designed by applying self-adaptive models or paradigms.

In this section, we address the following key questions related to a networks self-adaptive properties: (i) What
principles do self-adaptive systems and autonomic VN provisioning have in common? and (ii) What are the design
paradigms needed to build a generic self-adaptive system that can be applied in VNMS? For complex network man-
agement, we need to design rules and apply models, bearing these questions in mind so as to facilitate interactions
between virtual and physical devices.

The first question, forms the basis of most self-organizing systems, in that we must distribute the responsibility of
management among all the individual devices spread over the network such that each agent contributes to collective
emergent behavior, instead of having a single entity in charge of the overall organization. To this end, we have
designed local rules and assigned local properties that automatically lead to the emergence of a global goal: network
stability. Therefore, we have reduced the global goal to corresponding distributed local goals, in which entities have
their own goals as well as interacting locally with their neighbors to build local views of the environment.

Another advantage to such an approach is that by distributing responsibilities among entities spread over the
network we enable local monitoring and local organization, which leads to local consequences. This distribution
certainly made our model more stable and robust with respect to changes in the environment. Local changes represent
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local consequences at single points of the network, and local failures are not reflected in the whole system and can
be handled locally. An application of this concept in our model is illustrated in the rules (Norms) applied to each
autonomic agent. These rules are: (i) maintain the usage of the link at most at a determined threshold; (ii) maintain a
balanced link usage; and (iii) keep local knowledge current.

The second property that we highlight, which relates our problem to self-organization [4], is the exploitation of
implicit coordination. In explicit coordination, direct message exchanges are used to coordinate resources, which
is a typical characteristic of centralized systems. In our model, which uses implicit coordination, self-organization,
context and global knowledge are inferred from the local environment and from relations with neighbors. In this case
each autonomic agent observes the neighborhood and based on such observations, draws conclusions about the state
of the network and reacts accordingly. To implement this concept, our model provides a message exchange schema
only within the cluster to which it belongs. Specifically this means that an agent only exchanges messages in its own
neighborhood. All knowledge beyond the cluster is acquired by inferring from such locally exchanged messages or
from further messages exchanged through different clusters.

An example where we applied implicit coordination is in the detection of adaptation event functionality. Basically,
each agent frequently exchanges messages with its neighbors in order to update its local knowledge. However, if a
physical or virtual router decides to enter into a self-adaptation state, it stops exchanging update request messages in
order to save resources. As each agent expects a message from all its neighbors, if a message is missed the neighbors
conclude the router in question might be involved in an adaptive event. Neighbors first check whether the router is up
and running, by checking if the link is up; then they infer whether the router is involved in an adaptation task or is no
longer responding.

The third property applied to our autonomic model is related to obtaining and keeping local network state infor-
mation. The author of [4] believes that to achieve a higher level of self-organization, it is necessary to minimize the
amount of long-lived state information, in which long-lived state means any necessary information about the network
state, either global or local. At run time, the VN and its devices (virtual and physical) need to store some information
about the network itself. For instance, each autonomic agent needs to store information about the physical and virtual
topology, as well as the current ip tables and its direct neighbors. We applied the concept of localized interactions,
and implicit coordination and as a consequence we also promoted less state information maintenance. By uniting
these approaches, we can take advantage of minimizing long-lived state information. We primarily use the knowledge
discovery mechanism concept, in which each agent is able to exchange messages to request an update. If a requested
piece of information is not available at the neighborhood level, the request is then recursively passed on to subsequent
neighbors.

3.1.1. Control Loop

The ability of the autonomic agents to react to changes in the network is provided by the adaptation of the Control
Loop concept, defined by IBM for autonomic computing [14]. This concept is comprised of an autonomic manager
responsible for managing one or more elements. As our solution is fully decentralized and there are no centralized
entities to handle notification of environmental changes, each autonomic agent has to monitor and analyze its local
environment continuously and act based on local variations. To achieve a high degree of autonomy, the core of our
self-organizing model supports five main functions: (1) monitor the physical/virtual router; (2) analyze the router
performance; (3) plan and make decisions; (4) check norms, to verify that they are applied; and (5) execute a set
of appropriate adaptive plans. Such tasks comprise a machine state, where there exists distinct transitions between
the functions depending on the state of the autonomic agent. Together with a knowledge base, which maintains the
necessary information about the entities, its operations and the environment, these functions are referred to as a control
loop.

1. Monitoring

The monitoring function relates to the collection of information including supervising, monitoring and storing
the necessary measurements from network links and the physical and virtual resources that are of significance to the
self-properties of the underlying network. Because of characteristics enabled in our model, the use of a systematic
collection of predetermined parameters has been avoided. Instead, we applied a dynamic approach that relies on
continuous adjustment of such operations in order to balance the need for monitoring the view of the network state
and the related overhead. To this end, we enable the ability to decide, during the lifetime of the VN, which network
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components shall be monitored, how to tune monitor parameters, how often to execute monitoring tasks and how long
to collect such data.

The monitoring function can be characterized as dynamic since it acts differently depending on the network state;
i.e., it receives measurement data from a list of collectors residing in the virtual/physical router, as well as obtaining
measurements by directly sending explicit messages to its neighbors. The periodicity of the each monitors run and how
long they execute their monitoring tasks are also dynamically determined by the networks condition. This approach
decreases additional traffic overhead when the network has high resource usage, and enables deeper monitoring when
a router has available resources. In this sense, the monitoring tasks are self-tuned, and depend essentially on the state
of the network in every cluster. We describe how we treat self-tuning in the following topics.

2. Analyzing

Another component of the control loop is autonomic analysis. It translates the acquired data into local knowledge
in order to determine the description of the performance of the underlying network and to check whether the network
state is in agreement with the quality of service and required policies. In addition, it also anticipates future critical sce-
narios and detects events, such as either virtual link overload or physical resource scarcity. In other words, autonomic
analysis is the key to activating decision-making in case adaptation is required. In this research, the analysis relies
on a set of specific concepts: (i) History-based prediction, in which we define a time window to take into account
the history of each autonomic agent rather than only its current state; and (ii) online anticipation. This latter concept
is related to the fact that our environment presents a highly dynamic behavior, in which it is not expected to exhibit
periodicity over the VN life-time. Thus, we need to provide a way of continuously predicting system behavior using
up-to-date knowledge.

In order to maintain efficient use of the physical resources, in which the VN provisioning maximizes the balanced
distribution of physical resources among virtual devices, we have introduced a metric to categorize link usage. This
metric on resource usage can differ depending on how the resource has been requested. For instance, a link with high
and stable usage might trigger a different scenario than a link with medium usage but with increasingly more requests.

3. Decision Making

When it is anticipated that critical scenarios may occur, the decision-making function plans for and might trigger
the execution of system solutions. Such solutions refer to adaptive operations to re-configure the virtual network
topology as well as the balancing of physical resource usage among virtual devices. The core of our self-organizing
model makes decisions based on the knowledge retrieved by the Monitor and computed by the Analyzer, as well as
from the knowledge exchanged between neighboring nodes. Such decisions depend essentially on the virtual network
state, the local knowledge and the prescribed norms, and are based on the choice of previously designed adaptation
plans. These plans could include: (i) activating the creation or the deletion of a virtual node; (ii) fine-tuning the
amount of virtual resources allocated to a specific virtual node; (iii) migrating a virtual node to a different physical
node; and (iv) balancing virtual links.

The key concept behind the decision-making function is that it enables self-organization of its own resources
according to the variation of both the substrate (physical) or virtual network. The self-organization occurs through an
examination of internal knowledge to decide when, where and how to perform an adaptive plan. To achieve such a
degree of autonomy and execute different adaptive plans upon different network scenarios, decision-making functions
continuously monitor, analyze and fine-tune the physical/virtual components and lead the system into a more stable
and reliable network.

The decision-making function was designed to trigger adaptive plans in response to either external or internal
events. The former represents, conditions such as virtual router overload as well as link degradation, while the latter,
is related to events in the substrate node, such as lack of physical resources. Such mechanisms are the reverse of
what we see when we compare it with traditional approaches where the goals of planned adaptations are related to
enhancing the performance of the system, typically for non-critical scenarios.

4. Norm Checking
The last function of the control loop besides the executor itself is the checking of pre-specified norms. Norm
checking refers to the task of verifying whether the conditions of the network and the virtual and physical routers

match the set of norms designed for the system. Such norm sets are related to the ability to provide the virtual devices
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with controlled autonomy, by restricting their behavior to prevent malfunctions and undesirable behavior as well as
a way to maintain a dynamic control loop. In this case the control loop components and behavioral parameters can
be tuned, at run time, over the VN’s lifetime. Refer to Self-Tuning for further details on Norms and how they are
checked.

3.2. Resource and context awareness

The author of [12] believes that building a knowledge process to acquire/share knowledge as a built-in reason-
ing mechanism is a key concept to achieving autonomic management to describe better the precise model of the
management system. Following such a belief and aiming to enable cooperation with some self-organizing character-
istics already highlighted in this paper, we have added the concept of context-awareness, knowledge discovery and a
knowledge-sharing process in an attempt to increase our system’s degree of intelligence. Like [12], we also believe
that the ability of the autonomic entities to infer the local and global state certainly increases the effectiveness of the
decision-making process, as it also is highly related to some paradigms applied to our model, such as minimizing state
information and implicit coordination.

Thus, we enabled self-awareness through: (i) knowledge representation, which can be characterized as behavioral,
structural and adaptive, all represented by ontologies; and (ii) knowledge acquisition/sharing, in accordance with self-
organizing paradigms. In the latter each entity is able to infer local conditions through observations and message
exchanges in its neighborhood.

1. Knowledge Representation

Behavioral Knowledge refers to domain knowledge, in which it represents the different behaviors of the system,
its properties, its environmental conditions, and its relationships as well as the representation of the description of each
behavior pattern that our model exhibits. An example of behavioral knowledge applied in our system is the relation
between norms and the consequence of accepting or declining a specific norm.

Structural Knowledge like behavioral knowledge, is also related to domain knowledge. The difference is that
structural knowledge represents a description of the physical network itself, the virtual network and its components.
An example of such knowledge is, for instance, the physical machine resources available and the network topology,
as well as the possible resource capability of each virtual device.

Adaptive Knowledge describes the adaptive plans, the conditions in which each adaptive plan occurs and the
consequences of such adaptation. It also describes how an agent must behave when it faces an execution of an
adaptive plan in the neighborhood. We can represent all rules, conditions and solutions related to each adaptive plan
through adaptive knowledge.

2. Knowledge Acquisition

A goal of this model is to reduce dependence on pre-embedded knowledge, as it disturbs the robustness of our
model because of the constant need for synchronization among distributed agents. By avoiding duplicates, and the
need of frequent synchronization, the proposed model eliminates any explicit knowledge base. At the moment both
the physical and the virtual networks are provided, each virtual and physical router is built with the description of its
own network setup, and its direct neighbors. Every router must be aware of its neighbors to be able to configure data
flows.

After the VN has been defined, the discovery knowledge method runs inside each entity so that each agent is able
to listen to the environment and come to a conclusion about the local state. For instance, after the knowledge discovery
method has run, the agent knows the virtual topology and the local traffic flows. If frequent keep-alive messages are
absent an agent might predict the status of this particular neighbor, which could be participating in an adaptive plan.
This knowledge discovery mechanism is an attempt to decrease the message exchange volume, which saves resources
in the event of critical scenarios.

Another way of acquiring knowledge is by passing messages through the neighborhood, thus enabling the in-
ference of the global state or a topology change. The process of sharing knowledge consists basically of sharing
data recursively among neighbors, in order to let the different neighbor levels know about all peculiar aspects of the
network over all the physical/virtual routers.
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3.3. Enabling Self-tuning through Norms

Self-tuning is a feature of norms and how they are used by the system. It refers to our model’s ability to modify
a set of its own parameters dynamically at run time over the VN’s lifetime, in order to enable minor adaptation
operations. For instance, it can dynamically adapt the control loop’s run rate, or even monitor the environment for
longer than the normal analysis functionality. Moreover, it is in charge of executing small changes in local parameters
to discover a better setup for the autonomic agent.

Furthermore, the norms concept provides each virtual device with a controlled autonomy. By restricting a vir-
tual devices behavior to prevent malfunctions and undesirable behavior, the model also gains a certain degree of
dynamism and programmability, since it self-tunes its local parameters according to current network loads at that
specific location. Thus, norms and self-tuning are responsible for leading to a more dynamic behavior, in which the
core of the self-organizing control loop is able to self-adapt, by fine tuning some of its local parameters in response to
environment variations.

As stated before, the autonomic control loop is composed of a norm checker. This component is responsible for
checking all pre-determined norms, and applying their respective actions whenever they are accepted. In this sense,
the control loop itself is also in charge of controlling the acceptance/refusal of a specific norm. For each possibility,
there are the following consequences: (i) for norm acceptance, the norm checker carries out the norm action upon the
agent and its environment or (ii) if a norm is refused, the agent’s reputation is decreased and self-tuning comes into
play. We highlight that "reputation” is a way to classify network agents; hence, one of an agent’s goals is to maintain
a high reputation.

1. Self-tuning by collaboration norm

Norm #1: Always collaborate with an adaptation plan, by responding to all support requests. Reward N#1: Increase
the agents cooperation reputation. Punishment N#1: Decrease the agents cooperation reputation and execute self-
tuning in order to decrease the time the management functions (control loop components) take to execute the control
loops actions, so that more time is available to respond to requests.

The application of this norm is ideal in cases in which the running time of the control loop functions is higher
when compared to the loops idle time, which leads to a lesser availability to respond to other requests. We believe
that one reason for an agent not to respond to a request may be because the agent has been busy, because of its highly
distributed nature.

4. Experimental Evaluation

In this section, we provide the environment details as well as the initial experimental results to evaluate the
efficiency of the proposed model and its adaptive plans.

To the best of our knowledge, few studies in the literature have gone further in this direction, by exploring Self-*
capabilities of such VN management. Because of some similarity to our research, we use [9] as a baseline for our
performance analysis. As the authors evaluated their solution by measuring the number of message exchanges that
may occur in the system, by varying the number of substrate nodes of the network, we also evaluated our proposed
model in the same manner. To validate the model’s feasibility and scalability, we attempt to test it in a real environ-
ment, using a real small physical network composed of six machines. After observing the behavior of such a model
on a real network, we validate it by running simulations for larger networks. We also note that the paper focuses on
the appropriate choice of an autonomic plan to manage virtual routers and physical resources efficiently by allowing
them to re-organize constantly, rather than only in a migration mode.

To this end, we initially set up a VN infrastructure, as depicted in Figure 2, on top of a physical topology. To take
advantage of customized virtual machines with different setups, we have used XEN [13] as a virtualized operating
system provider to perform the roles of multiple independent virtual machines on a shared substrate.

Through these initial experiments we were able to answer key research questions that serve two purposes namely
to: (i) state if the solution is efficient and what contributes to this efficiency; and, (ii) determine if the proposed solution
is scalable.

First, we assessed the efficiency of the model, measuring the delay of communication together with the total
amount of time incurred to adapt the VN when a virtual or physical device performs poorly or is overloaded. Next,
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Figure 3: Message exchanging analysis

we evaluated the performance of the model by tracking the total number of messages exchanged among embedded
agents during the execution of the adaptive plan.

To address the first question, because of a lack of physical equipment to validate our model in a larger network, we
simulated a larger virtual environment composed of the same environment setup as the initial experiment, applying the
pattern of the proposed model to get an initial estimate of how the proposed model would behave in larger and more
realistic networks. This simulation sought to answer the same question as (i) but for larger environments. We were
able to validate all the different modules and aspects of our approach, such as self-organizing paradigms, knowledge
sharing and self-tuning, covering every concept of our solution separately. Then, we extended our validation by
evaluating the model, considering all features together, simulating a larger network and running the same scenarios
once we validated the model, considering the individual components.

In order to cover all features in our proposed solution, we evaluated the main critical scenario that could occur in
a VN environment: a physical router overload.

4.1. Migration scenario

During the lifetime of the VN, because of the dynamism of the surrounding environment, a physical router, P;,
may host multiple virtual routers, Vj;. Pa; and Va;; are the agents assigned to the physical router and its virtual router
respectively. As we are not able to control such an arrangement of the resultant VN, when a physical node, P;, becomes
overloaded or exhibits a poor quality of service (affected node), its agent Pa;, the agents from the neighborhood
(cluster), and the virtual agents, Vajj, of virtual routers hosted in the physical router P;, are able to detect such a critical
event through regular message exchanges. From the moment Pa; triggers an adaptive plan, adaptation algorithms run
inside each agent from the same cluster in order to execute the adaptive plan collaboratively. Only agents from the
same cluster are allowed to collaborate in order to determine alternative hosts to which the virtual routers, their agents
and their services will be migrated. Basically, each neighbor of the affected router selects pre-candidates, and then the
agent of the affected node determines the final candidate host.

To evaluate this scenario, we first set up a virtual environment, as depicted in Figure 2, with a user’s data flow
coming from V,, passing through Vy and arriving at V.. In addition, in order to force a link degradation, we set
up a traffic generator, which sends a large amount of traffic to the Py, the physical host of Vy,. We expect that after
a short period the agent responsible for the affected machine, Pay, through its adaptive functionality would trigger
the Adaptive Live Migration plan, as it needs to guarantee that the user’s request would not experience a request
degradation.
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Assuming the experiment topology, right after the Pay, decides to migrate its guest Vi, along with its agents, links
and services, Pa, would have two choices for a destination host, either Py or P.. It was such a decision that was
evaluated in this first scenario. In this first scenario the nature of the network topology seems to be simple, and since
the adaptive live migration plans count on two possible destination hosts, they enable us to test each aspect of our
proposed model (Self-organizing, Self-tuning and Knowledge Process). Our aim was to separate each aspect and test
this scenario by changing the environment and the local setup conditions to evaluate each feature individually.

4.1.1. A Message Exchange Analysis

Even before an adaptive plan is triggered, all agents from a cluster exchange messages in order to update and share
knowledge among such agents. We strongly believe that this process enables the provisioning itself to be a lower cost
method of message exchange. When the network appears stable, messages are exchanged frequently to update the
knowledge of all devices. Once a critical scenario has been detected, the agents of the cluster in which the affected
node belongs halt all other secondary activities, including update requests. Then, they collaborate with each other to
select a best match as a destination host. At this moment, since the network might be unstable and vulnerable because
of some overloaded links, the message exchange should cost as little in link capacity as possible. Being aware of this
special case, we have evaluated the adaptive live migration plan, at first with no differences among agents, in which
each agent has the same set up and tuning. As result, to migrate the V,, from P}, to either Py or P, takes less than
six seconds after detection of the critical scenario until the virtual router is fully migrated and the total number of
messages exchanged is eight.

Since the live migration module exhibits a certain pattern while executing the adaptive plan, we strongly believe
this pattern provides a good template to be applied in simulations of larger networks. In order to measure an initial
estimate of the number of message exchanges in our approach for larger environments, we simulated the same behavior
of the real experiment in a virtual environment to determine the number of messages that are exchanged, while our
approach executes the adaptation itself. The results are depicted in Figure 3, in which live migration is triggered
from a link coming from R, to Ry. Assuming a link from R, to Ry, and with R enira1 as the affected node, we have to
consider: (a) a one router radius, (from Renyra to either R, or Ry), where eight messages were exchanged; (b) a two
router radius, where fourteen messages were exchanged; and (c) a three router radius, where twenty messages were
needed. We highlight that, in example (a), for instance, if the topology contained more routers beyond the path R,
to Ry, i.e, more possible paths from R, to Ry, (Fig 2b) the number of messages would remain the same, eight. This
result shows that our proposed solution, even if the network becomes larger, still presents a constant or linear increase
depending on the topology.

4.1.2. A knowledge acquiring analysis

The authors of [12] have raised an issue related to the challenge involved in developing architectures that can
host autonomic solutions and coordinate the distributed interactions. In order to decrease the difficulty of maintaining
a fully distributed VN, since we believe that the distributed approach has advantages over traditional centralized
solutions, we have aggregated the concept of knowledge acquisition /sharing. This approach is also an attempt to
decrease the need for exchanging messages to update knowledge at the precise moment the knowledge is required but
rather upon the execution or participation of an adaptive plan.

To understand better the role of knowledge acquisition/sharing in our approach, we have addressed three different
experiments with the same adaptive live migration scenario. The main idea behind this set of experiments is to vary
the degree of knowledge discovery so as to determine the impact of such a feature at the global level of the proposed
model. The following variations have been covered: (i) knowledge inferring through environmental observations
with knowledge sharing; (ii) individual knowledge inferring without knowledge sharing; and (iii) no knowledge in-
ferring/sharing with a centralized approach. Like the first evaluation, we have also simulated the same experiment for
larger networks. Considering the topology of Figure 2b (R;j), the results are depicted in Figure 4.

4.1.3. A Self-tuning/Norms analysis

Self-tuning is a function highly related to how Norms are applied to the model. Self-tuning occurs whenever an
agent disobeys a specific norm, and the agents goal is to enable fine-tuning of its own parameters in order to self-adapt
based on its local environment. Because of the distributed nature of the environment, there are different clusters, with

different environmental conditions and needs and, as a consequence, a different setup would be required. As we are
9
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Figure 4: A knowledge and scalability Analysis

not able to control every single router on the network, we aim, through self-tuning, to tune each agent according to
variations in its local environment.

An important function of our model with respect to efficiency is autonomic planning and execution. Since every
agent frequently requires the operation of the Monitor and Analyzer functions to support an efficient triggering of
adaptive plans better, we have added the Self-tuning concept. Through Self-tuning we aim to increase the flexibility
of the control loop roles in either selecting a better match to support the adaptation task or by analyzing the current
network state differently. This concept is an important feature if we take into account that a unique agent has several
functions running concurrently, and its main purpose is to be able to express the time and the frequency of each task
run in terms of the need for such functionality. Therefore, the question that remains is: if we are dynamically changing
the tuning of each agent and its respective tasks, how can we safely guarantee that the tuning will lead to an efficient
setup?

If we can clearly recognize a good application of Self-tuning, in which an agent can improve its task allocations,
we still need to validate the consequences that would emerge from these experimental scenarios upon applying this
concept. In order to address this question, we have evaluated the previous scenario, varying some local aspects of the
individual virtual/physical agent, mainly regarding the initial control loop tuning. We started by running two tests: (a)
all adaptive agents of the environment have the same initial tuning; and (b) the physical router P4 runs its control loop
twice slower than the router P, even though all other specifications remain the same, which leads to an initial timeout
for the request response. Refer to the Table 1 for results.

Case  AP#l AP#2  AP#3 AP#4
a P, Py P, P,
b time out  time out Py Py

Table 1: Consecutive Adaptive Plans (AP) and its pre candidates selection

4.1.4. Scalability Analysis

In order to address the scalability question, we evaluated the scalability of the distributed live virtual router mi-
gration module in our real network and also by simulating that router in a larger network. Since the adaptation plan
follows a certain pattern, we used this pattern as a template in a virtual scenario, in which we applied the steps of
our candidate discovery and live migration plan in order to measure the number of messages exchanged. This mea-

surement was used to (a) confirm knowledge update, (b) select a good candidate and (c) realize the migration itself.
10
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Assuming that the VN’s knowledge is always updated, we transferred the experiment to a virtual plan, in order to
estimate the metrics for larger networks. In the virtual simulation, we set up a full mesh of substrate topologies with
different sizes, from 10 to 60 virtual nodes. Refer to Figure 4 for results.

5. Conclusions

In this paper we have described the design and validation of an autonomic model from the MAS perspective. We
analyzed the impact and the effectiveness of the self-organizing behavior that emerged from our proposed model, in
which it is able to control and manage virtual resources. The experimental results showed that it satisfies the model’s
main goal of automatically reconfiguring itself to meet quality requirements and to improve the network performance
whenever exposed to a critical scenario.

Through our system, we show that it is possible to design an autonomic VN manager by applying a MAS approach
together with Self-* capabilities in order to distribute the responsibility to maintain the VN operating in accordance
with its policies and requirements. Although our current work focused on the adaptive design, modeling and agent
communication, we believe that this general model will certainly support the development of more complex and
realistic network structures, which will be able to use adaptive plans according to the environment state. Besides
the simple nature of our experimental setup, we evaluated every component applied to our model, showing that they
added gains to the infrastructure as a whole, which leads to a linear solution with respect to message exchanges.

As for short-term future research, besides the evaluation of the proposed model in larger networks we intend to
address better the limitations of such an approach, the addition, from a MAS perspective, of the Reputation concept to
support the self-tuning and norms checking functionalities. Furthermore, based on a network analysis, we highlight the
need to specify proper boundaries to control the decision about the network state. In addition, we recently performed
an evaluation of other adaptive plans besides the adaptive live migration router, which will be used to enrich the
analysis of all aggregated paradigms of our model. As for adaptive plans, we highlight the balancing of virtual links
by deploying new virtual routers to the virtual topology as well as balancing links by using existing virtual routers
and replacement of virtual routers.
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