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Abstract—The core of temporal logic model checking is the reachability
problem, which is not expressible in first-order logic (FOL). Most model
checking algorithms, both for finite and infinite Kripke structures, contain
a loop that iterates to reach a fixed-point. As a result, reasoners
with input languages no more expressive than FOL have been used
iteratively for model checking rather than having the reasoner solve
the problem completely by itself. In this article, we present a method
for reducing model checking of finite and infinite Kripke structures that
are expressed in FOL to entailment checking in FOL for a fragment of
computational tree logic (CTL), which we call CTL-live. CTL-live includes
all the CTL connectives that are expressible in the mu-calculus using
the least fixed-point operator. These connectives are traditionally used
to express liveness properties. This reduction allows us to consider
model checking of CTL-live as a FOL theorem proving problem, and
to use directly FOL reasoning techniques for model checking without
the need of fixed-point operators, transitive-closure, or induction. We
prove that CTL-live is maximal in the sense that model checking of CTL
connectives that are not included in CTL-live is not reducible to semantic
entailment in FOL.

1 INTRODUCTION

Model checking is the problem of checking whether a
Kripke structure satisfies a temporal logic formula [1].
Model checking methods that use first-order reasoners
(tools with input languages no more expressive than
first-order logic (FOL), such SMT solvers [2]), can be
divided into two major categories: 1) bounded model
checking (e.g., [3]], [4]) and 2) unbounded model check-
ing (e.g., [5], [6]). Bounded methods check whether a
property holds for a certain length of execution path by
creating a formula consisting of the transition relation
iterated to the desired bound. Since the bound is finite,
the problem can be expressed in FOL, therefore, FOL rea-
soners can be used to solve the entire bounded (and

therefore incomplete) model checking problem at one
time. Unbounded methods call a FOL reasoner multiple
times iteratively to check whether a fixed-point has
been reached. These methods are mostly used for safety
properties; for infinite systems, termination (without
approximation) is guarantied only in the case where the
property is violated. FOL reasoners have not been used
to solve an entire unbounded model checking problem in
one call because model checking is a reachability query
about a graph (in this case a Kripke structure), which is
not expressible in FOL [7].

Our first contribution in this article is to show that
model checking of a fragment of computational tree logic
(CTL), which we call CTL-live, is reducible to semantic
entailment checking in FOL; in other words, model
checking CTL-live properties of a Kripke structure can
be done completely using deduction techniques of FOL.
Thus, some reachability queries can be answered using
an FOL reasoner even though they are traditionally
solved by transitive-closure, which is not expressible
in FOL. CTL-live includes all the CTL connectives that
are expressible in the mu-calculus using the least fixed-
point operator [1]. These connectives are traditionally
used to express liveness properties. Our result holds
for any Kripke structure expressible in FOL. Since FOL
entailment checking is recursively enumerable [8], [9],
our reduction can be used to generate automatically a
proof if a CTL-live property is satisfied by a Kripke
structure. This is the opposite of iterative unbounded
methods, such as [6], which guarantee termination only
if the property is not satisfied.

Model checking a CTL formula ¢ requires checking
whether the set of initial states of a Kripke structure



is included in the set of states that satisfy ¢. Semantic
entailment in FOL implicitly uses a universal quantifier
over interpretations, which is not a first-order quantifier.
The key insight in our approach is to use this implicit
non-first-order quantifier to express a set of states that
includes every state that satisfies ¢ and possibly more;
this set is sufficient to solve the model checking problem
for a CTL-live formula.

Our second contribution is that we show CTL-live is
maximal in the sense that model checking of CTL connec-
tives that are not included in CTL-live is not reducible
to semantic entailment in FOL. For the CTL connectives
not included in CTL-live, non-FOL reasoning techniques
are required.

The rest of this article is organized as follows: Section 2]
gives the definitions and notation used in this article;
Section [3| describes how we represent Kripke structures
in FOL. CTL-live and the reduction of its model checking
to semantic entailment in FOL is presented in Section
Section [5| shows the maximality of CTL-live. Section [6}
presents the related work, and Section [7] concludes the
article.

2 BACKGROUND

This section provides a standard summary of first-order
logic (FOL) and computational tree logic (CTL) useful for
understanding the remainder of our article. In this arti-
cle, we use superscripts for FOL elements and subscripts
for Kripke structures. Thus, the notation X* denotes the
value of X under interpretation K, and Xk is a set of
states in the Kripke structure K.

2.1 First-Order Logic

Formulae in FOL are built from logical connectives,
functional symbols, variables, and relational symbols [7]].
The set of logical connectives and their semantics in
FOL is fixed. The following is a standard set of logical
connectives for FOL: true (T), negation (—), disjunction
(V), conjunction (A), implication (—), iff (<), existential
quantifier (3J), universal quantifier (V), and equality (=).
The set of functional and relational symbols and their se-
mantics depends on the context and the constraints that
they must satisfy. Since for different problems different
sets of functional and relational symbols are used, we
have the following definition:

Definition 1: (Base) A base for FOL is a pair of sets,
B = (F,R), where F' and R are sets of functional and
relational symbols respectively.

Every functional and relational symbol has a corre-
sponding arity, which is the number of arguments that
is required by that symbol. Constants are considered
to be functional symbols with arity 0. A symbol X
with arity n, where n is nonzero, is denoted by X/n.
The arity of a relational symbol is nonzero. The set of

FOL formulae over base B = (F, R) is defined by the
following grammar:

o = T‘(tl,...,t") | t1 = to where ’I"/HGR,
= _\‘1)|(I)1\/(I)2|(I)1/\(I’2|(I)1—>(I)2|(I)1<—>(I)2
z= Fu:® | VYu: ® where v is a variable. (1)
t == wv where v is a variable,

m= f(ty,. ..

Equations|l|and [2|are the rules for constructing formulae
and terms respectively.

The semantics of a FOL formulae is defined using
interpretations. An interpretation defines the meaning of
a base by assigning values to variables, functional and
relational symbols. Using these values along with the
fixed semantics of FOL logical connectives, a formula
evaluates to true or false. Given a base B = (F, R), an
interpretation is a pair Z = (D,.%), where D is a non-
empty set, the domain of Z, and .7 is a mapping that
assigns:

,tn) where f € F and it is n-ary. (2)

1) to every variable v an element in D, vZ € D,

2) to every O-ary ¢ € F an element in D, ¢ € D,

3) to every functional symbol f € F' of arity n > 1 a

total function from D" to D, fX : D™ — D,
4) to every relational symbol 7/n € R a subset of D",
rf C D"

Definition 2: (Semantics of FOL) Let B = (F, R) be a
base for FOL and Z = (D, .Z) an interpretation for B. The
satisfiability relation over formulae and interpretations,
I, is defined by using structural induction on ® and t.
In the following, Z*=% is an interpretation over B that
is same as Z except that it maps the variable z to d.

TlEr(te,... tn) < rE(tf, ... t2) holds,
Tty =ty <= 7 is equal to tZ,
TIF—=® <= ZI- ® does not hold,
Tl ®1V Py <— TIIF®orZIF ®,,
ZIF3dx:® <= thereexistsade D
such that 7%= |- ®.
(f(tla"'atn))z = fI(t%77t%)

The FOL connectives that are mentioned in Definition [
form a complete fragment of FOL: the other connectives
can be written in terms of -, Vv, and 3; eg, Vz : @ is
equivalent to -(3z : =®).

Definition 3: (Semantic entailment) Suppose I' is a set
of FOL formulae and ® is an FOL formula: I" entails @,
denoted by I' = ®, iff every interpretation that satisfies
all the formulae in IT" also satisfies ®:

TE® «— VI:(V0el:Ik¥) =TIk

Semantic entailment checking for FOL is recursively
enumerable [8], [9]. This means that semantic entailment
checking for FOL is not computable, but there is proce-
dure that given I' and ® produces a proof in the case
where I' = ©.



2.2 Computational Tree Logic

Computational tree logic (CTL) is a temporal logic for
specifying properties over time [10]. The semantics of
CTL formulae is defined by using Kripke structures. A
Kripke structure is a directed labelled graph. The set
of vertexes and the set of edges of a Kripke structure
are often called the state space and the transition relation
respectively. The labels of each state show the local
properties of the state: what holds and what does not
hold in a state. In practice, different combinations of the
values of the variables that are used to define a system
represent the state space.

Definition 4: (Kripke structure) A Kripke structure is
a four tuple, K = (Sk, Ik, Nk, Px), where: Sk is a set of
states; Ixc, the set of initial states, is a non-empty subset of
Sk; Nk, the next-state relation, is a total binary relation
over Si; Px is a finite set of unary predicates over states.
Predicates represent the local properties of the states, and
are called labelling predicates.

The syntax of CTL is defined for a given set of labelling
predicates IP:

Y u= P‘—‘QO|<,01\/<,02|301/\(,92 where P c P
n= EX@| AXp | EFp | AFp | EGy | AGp

w= (plAUSOQ | (plEUCPQ (3)

A Kripke structure defines a set of infinite compu-
tation paths, where each path represents a trace of
execution. A computation path starting at state s € Sk is
a sequence of states, sg — s1 + ... such that s = sy and
for every i > 0, Ni(s;,si+1). CTL is a branching-time
temporal logic. A temporal connective of CTL consists of
two parts: a path and a state quantifier. A path quantifier
is either F, there exists a path, or A, for all paths. The
state quantifiers are X (next state), F' (eventually), G
(globally), and U (strong until). The satisfiability relation
for CTL, |=,, is used to give meaning to CTL formulae.
The notation K, s . ¢ denotes that the state s of the
Kripke structure K satisfies the CTL formula ¢ and
KC, s ¢ ¢ is used when K s |=. ¢ does not hold.

Definition 5: (Semantics of CTL) Let £ =
(S, I, N, Px) be a Kripke structure and ¢ a CTL
formula. The satisfiability relation for CTL, |=., is
defined by structural induction on ¢:

K,skE=. P <= P(s) holds, where P € Px
R — K,shcop
K, s Ecp1 Voo — K,skcpr V K sEcpa
K,sk=c EXp — 3¢ €S5:Ni(s,s)ANK, s =
K,s k. EGp <= there exists a path so — s1 — .
such that s; = s and
for all i's K, s; =c .
K,skE=cp1EUpy <= there exists a j and a path,

sg + S1 + ..., such that
s =50, K,sj Fc 2, and
foralli < j K,s; Ec o1.
The connectives that are mentioned in Definition [B] form
a complete fragment for CTL; e.g., ¢1 AU is equivalent

| Symbol | Purpose
S/1 CP representing the set of states
I/1 CP representing the set of initial states
N/2 CP representing the next-state relation
P/1 CP’s representing the labelling predicates

Fig. 1. Relational symbols required to specify Kripke
structures (CP is “characteristic predicate”)

to (- EU(—p1 A —p2)) A 7(EG—ys), and EFy is
equivalent to TEU g&ﬂ

The set of states of a Kripke structure K that satisfies
a CTL formula ¢ is denoted by [¢]k:

K, s = ‘P}

The Kripke structure K satisfies the CTL formula ¢,
denoted by K . ¢, iff for all s € Ix we have K, s =, ¢:

[plc = {s € Sk |

KEcp <= Ik Clolk

From the semantics of CTL, we can conclude that
if two Kripke structures agree on every component
except the labelling predicates, they have the same
properties with respect to the CTL formulae that can
be evaluated against both of them. A Kripke structure
Ki = (Sky,Ix,, Nk,,Pk,) is a substructure of Ky =
(Sks, I, Ny, P, ), denoted by Ky T KCy, iff the follow-
ing conditions hold:

Sk, = Sks 5 I, = I, » Nk, = Nk, 5 P, C Pk,

Theorem 1: Suppose K1 C Kq and ¢ is a CTL formula
over Pk, ; we have:

Kikcy = Kikcow
Proof: By using the semantics of CTL. O

3 KRIPKE STRUCTURES IN FOL

Modelling a Kripke structure in FOL requires a base
that has at least the relational symbols of Figure
FOL formulae over such a base can be used to define
the state space, the initial states, the next-state relation
and the labelling predicates. Every satisfying interpreta-
tion of the FOL formulae represents a Kripke structure.
The key observation here is that the relational symbols
themselves do not represent a Kripke structure. A sat-
isfying interpretation of the FOL formulae determines
the content of these relational symbols, and as a result,
represents a Kripke structure; the set of all the satisfying
interpretations forms a class of Kripke structures. We
call a set of formulae that represent a class of Kripke
structures a declarative model of a dynamic system (for
short, a declarative model) [11].

Definition 6: (Declarative model) A declarative model
D is a pair ® = (B,T'): B is a base that includes the

1. T is equivalent to P V —P for any labelling predicate P.



relational symbols in Figure|1} I is a set of FOL formulae
over B that includes the well-formedness constraints
in Definition [ such as “the set of initial states is not
empty” and “the next-state relation is total”. The Class
of Kripke structures represented by a declarative model
D is denoted by CK(D):

CK®)={K|V¥deTl: Ko} (4)

Inclusion of the well-formedness formulae in I' insures
that every member of CK(®), according to Definition
is a valid Kripke structure.

There are many reasons for a set of FOL formu-
lae to have more than one satisfying interpretation:
the use of uninterpreted functions (relations) can result
in more than one satisfying interpretation; moreover,
under-constraining a model makes it possible to have
non-isomorphic Kripke structures that are satisfying in-
terpretations.

Other work on modelling Kripke structures in a logic
no more expressive than FOL (e.g., [3], [6], [12]) has taken
the approach of directly modelling the constraints on
variables such as v and v’, where v’ represents the value
of v in the next state, rather than modelling the next-
state relation explicitly. In these approaches, the satis-
fying interpretations of the constraints are the possible
transitions of a unique next-state relation (and therefore,
unique Kripke structure). In our work, we take a more
general approach by modelling the next-state relation
explicitly; therefore, the set of satisfying interpretations
can include multiple Kripke structures.

In Definition |6} where CK (D) is a class of Kripke
structures, two model checking questions can be studied:
1) do all the Kripke structures in CK (®) satisfy the prop-
erty? 2) is there a Kripke structure in CK (®) that satisfies
the property? We define two model checking problems
for a class of Kripke structures that correspond to these
questions [11]:

Definition 7: (Universal model checking) The universal
model checking of a declarative model © and a CTL for-
mula ¢, denoted by ©® v ¢, is defined as checking
whether all the Kripke structures in CK (D) satisfy ¢:

DEvy < VKeCK®):KEcp

Definition 8: (Existential model checking) The exis-
tential model checking of the declarative model ® and a
CTL formula ¢, © =3 ¢, is defined as checking whether
there exists a Kripke structure in CK (D) that satisfies ¢:

IKeCK®): K e g

Figure 2| is a summary of the satisfiability notations
used in this article.

DEzp =

4 CTL MoDEL CHECKING IN FOL

In this section, we present the first contribution of our
work: identifying a fragment of CTL whose model check-
ing can be done directly using a FOL reasoner. First, we

[ Symbol | Meaning
Z I+ & | FOL satisfiability Definition [2
I' = @ | FOL entailment Definition |3
K E. ¢ | CTL model checking Definition [5
D Fv ¢ | Universal model checking Definition |7
© 3 ¢ | Existential model checking Definition |8
Fig. 2. Summary of satisfiability notations
Sk
[EF P]
[EF P|¥ l [EF P]
N e L/
'/ [EF Plc \
\ [EF P cy/
Fig.3.[EF Plx = () [EFPK
K/€CK ()

give the intuition behind our approach, then, we focus
on universal model checking. We also show how this
approach can be used for existential model checking by
studying the relation between these two model checking
questions.

4.1 Intuition

Suppose K is a Kripke structure, P € Pk is a labelling
predicate, and we are interested in checking whether KX
satisfies EF' P. From the encoding of CTL in the mu-
calculus, we know that the set of states that satisfy FF' P,
[EF P]k, is the smallest set such that its characteristic
predicate, [EF P], satisfies the following two FOL for-
mulae:

1) Vs:P(s)— [EF P](s)
2) Vs:(3s': Ni(s,s') A[EF P|(s')) — [EF P](s)
©)
Intuitively, the first constraint states that every state that
satisfies P, also satisfies EF P. The second constraint
states that if a state s has a next state that satisfies EF P,
then s also satisfies EF' P.

Adding [EF P] as a new labelling predicate to K
along with the two formulae in Equation [5| results in
a declarative model 2 that represents a class of Kripke
structures CK (). This class has the following property
depicted in Figure

[EF Pl = [EF P~

M

K’'€CK ()



Temporal part
P = | EXe | AXp
= ©1V o2 | @1 A2
n= P1EUps | 91 AU
Propositional part
™ L=

P| -7 |7 Vm
where P is a labelling predicate.

Fig. 4. CTL-live

The Kripke structure K satisfies EF' P iff the set of initial
states (Ix) is a subset of the states that satisfy EFF P.
Since [EF Pk is the smallest among the [EF P]X" for
every K' € CK (), checking whether Iy is a subset of
[EF Pk is equivalent to checking whether I is a subset
of [EF P1X" for every K’ € CK():

Ix C |[EF Plx < VK' € CK(Q): Ix C [EF P~

and since the formulae of Equation [5 do not have any
effect on the set of initial states, Ix = Ix for every K’ €
CK (2); therefore, we have:

Ix C[EF Pl <= VK' € CK() : Ixs C [EF P1¥ (6)

The universal quantifier in Equation [6is over interpreta-
tions, which is not available in FOL, but, it is implicitly
used in the definition of semantic entailment. Recall that
I' = @ iff every satisfying interpretation of I" satisfies ®.
Since C'K () is the set of all the satisfying interpretations
of A, we can conclude the following:

Ix C[EF Plx <= VK' € CK®l): Ix» C [EF PI¥
— AE=Vs:I(s)— [EF P](s)

Therefore, we reduced model checking of EF' to seman-
tic entailment in FOL.

What we have shown here is that even though the
constraints in Equation 5| do not precisely express the set
of states that satisfy £F P, they can be used to express
a set that includes every state that satisfies LF' P (and
possibly more). Since in model checking, it is important
to see whether the set of initial states is included in the
set of states that satisfy EF P, those constraints along
with the definition of entailment in FOL, which implic-
itly uses a universal quantifier over interpretations, can
be used to express the model checking problem for the
CTL connective EF.

The key idea behind this result is that the CTL connec-
tive EF can be expressed as the smallest set that satisfies
some FOL formulae. We can generalize this result for
other CTL connectives that have the same property: AF,
EU, and AU. In the mu-calculus, the semantics of these
connectives are expressed by means of the least fixed-
point operator.

4.2 Universal Model Checking

In this subsection, we present the fragment of CTL that
its model checking problem can be reduced to seman-
tic entailment in FOL. Figure [ presents the fragment

of CTL that can be model checked directly using an
FOL reasoneff] We call this fragment CTL-live, since it
contains the CTL connectives that are usually used to
express liveness properties. CTL-live’s grammar has two
parts: temporal and propositional. CTL-live disallows a
temporal connective to be in the scope of negation (—);
e.g., the CTL formula —=(P AU Q) is not allowed, but
((=P)AU Q) is allowed.

To model check a declarative model ©, and a CTL-live
formula ¢, we use functions called theory and axiom,
shown in Figure [5} to create a declarative model that is
an enriched version of ®. The function theory recurses
through the structure of ¢. For each logical connective of
CTL-live, the constraints that are added to © by theory
are defined by the (non-recursive) function axiom. For
every sub-formula ¢’ of ¢, axiom creates one or two
FOL formulae for each new labelling predicate, [¢'],
which are added to ®. The complexity of theory is
linear with respect to the size of ¢.

Recall that a declarative model is a set of constraints
that models Kripke structures and its satisfying inter-
pretations form a class of Kripke structures (Defini-
tion @ and Equation E]) For a declarative model 9,
every K € CK(®) is both a Kripke structure and an
interpretation. In essence, [¢]xc and [¢]* are both sets of
states; the content of [¢]x is determined by the semantics
of CTL and considering K as a Kripke structure, whereas,
the content of [¢]* is determined by the semantics of
FOL and considering K as a satisfying interpretation of
. In the following, we explore some properties of a
declarative model generated by the function theory.

First, we study the relationship between the class of
Kripke structures defined by the declarative model
® and theory(®,¢). The declarative model
theory (D, ) contains a labelling predicate and
some constraints for every sub-formula of ¢; as a result,
every Kripke structure in CK (theory (D,¢)) can be
converted to a Kripke structure in CK(®) by simply
dropping the extra labelling predicates that the function
theory adds to ®. This property is formalized in
Lemma [Tt

Lemma 1: Let © be a declarative model and ¢ a CTL-
live formula; for every K in CK(theory 0, <p)) there
exists a K’ in CK (D) that is a substructure of K, i.e.,
K'CK.

Proof: By the definition of theory. O
The second property that we investigate is the rela-
tionship between the set of states that satisfy a CTL-
live formula ¢, [¢], and the set of states defined by the
labelling predicate [¢]. If a CTL-live formula 7 is derived
from only the propositional part of Figure {4 the sets
[7]xc and [7]* for every K € CK(theory (D, )) are
equal. This is due to the fact that the constraints that are
defined by axiom for these connectives are necessary

2. Note that (EFy) and (AFy) are equivalent to (TEUy) and
(TAU ) respectively.



theory (D, ) :

case ¢ of

1P 7 -> D

2)0y  -> let ((F,R),I)=theory(D,¢) in ((F,RU{[¢]/1}), T U axiom(y))

3) ¥10¢s —> let ((F,Ry),I'1)=theory(®,¢;) and

<<F,R2),F2>:theory(©,1/)2) in <<F,R1 URU{[p]/1}), T1 U TI's U axiom(cp)>
axiom () :
case p of

1) P -> {Vs:P(s)«< [P](s) } where P is a labelling predicate
2) => {Vs: [p](s) & o[¥](s) }
v > {Vs: [p](s) ¢ [v1](s)V [¥2](s) }
i A > { Vst [p](s) < [¢1](s) A [2](s) }
5) EX1 > {Vs: Jo|(s) < (Is': N(s,8')A[¢] (s’)) }
6) AX1 > {Vs: [o|(s) < (Vs': N(s,8')— [¢] (s’)) }
7)1 EUYs  => {Vs:[ya](s) = [@](s), Vs:[ea](s)A(3s": N(s,8) ATo](s) = [¢](s) }
8) viAUYs  —>  {Vs:[P2](s) = [@](s), Vs:[¢al(s) A (Vs N(s,s") = [¢](s) = [#](s) }

Fig. 5. The definition of theory and axiom. O € {-, EX, AX}, 0 € {V,A, EU, AU} and ¢ is a CTL-live formula.

and sufficient to characterize the set of states that satisfy
m

Lemma 2: Let © be a declarative model and 7 a CTL-
live formula that is derived from only the propositional
part of Figure [ we have:

V K € CK (theory (D, ¢)) : [nlx = [x]*

Proof: Proof by structural induction on 7. In the
following cases, we assume K € CK (theory (D, p) ):

o Base case: suppose m = P. By the semantics of CTL
and the definition of axiom at Line 1, for every state
s we have:

s € [Plx <= Px(s) <= s e [P]*

therefore, [P]x = [P]*.

o Induction step: according to the structure of w, two
cases are distinguished having [m]x = [m]* and
[T2]kc = [m2]* as induction hypotheses:

1) suppose m = —my. By the semantics of CTL, and
the induction hypotheses, for every state s we
have:

s€ [k <= s¢ [mlc <= s ¢ [m]~
and by the definition of axiom at Line 2,
s ¢ [m]"*

therefore, [-m1|x = [~ ]%.
2) suppose ™ = m; V 2. By the semantics of CTL,
for every state s we have:

= sec[-m|<

S € [m Vmalk < s € [m]k Vs € [m)k
by the induction hypotheses,

s€[mlcVs€ [mlc < se[m]FVvse [m]F

and by the definition of axiom at Line 3,

sc[m*vse[m|* < sec[m V]~

therefore, [m1 V mo]xc = [m1 V m2]X.

U
A similar result to Lemma [2| can be proven for the CTL-
live formulae that are derived from the temporal part of
Figure [l The difference is that the set [p]x is a subset
of [p]* rather than being equal to it. The reason is
that the constraints that are added to ® by theory do
not completely characterize [p]x: these constraints are
necessary but they are not sufficient; as a result, the set
[©]* includes [p]x and possibly some other states.
Lemma 3: Let © be a declarative model and ¢ a CTL-
live. We have:

VK e CK(theory (’D,gp}) el C [gp]’c

Proof: Proof by structural induction on ¢. In the
following cases, we assume K € CK (theory (D, P)):
o Base case: suppose ¢ = m, where 7 is derived
from the propos1t10na1 part of Figure i According
to Lemma 2} [r]x = [7]%; as a result, [r]x C [7]¥.
o Induction step according to the structure of ¢, six
cases are distinguished having [¢1]c C [¢1]* and
[2]ic C [12]* as induction hypotheses:

1) suppose ¢ = 11 V 2. The proof of this case
is similar to Part 2 in the induction step of
Lemma 2

2) suppose ¢ = 11 A 2. The proof of this case
is similar to Part 2 in the induction step of
Lemma

3) suppose ¢ = EX1. By the semantics of CTL
for every s we have:

s € [EXv]x = 35’ : Nx(s,8') AN s’ € [Y]k

by the induction hypotheses,
3s' : Ni(s,8') N s € [Y]lx =

35" : Ni(s,8") A s' € [91F
and by the definition of axiom at Line 5,

35’ : N (s,8) N s’ € [Y)° = s € [EXy|F



therefore, [EX 1] C [EXy]*.

4) suppose ¢ = AX1). The proof of this part is
similar to Part 3.

5) suppose ¢ = 1 EUtq. If s € [tp1 EUYs]k, then,
with respect to the semantics of CTL, there
exists a j and a path, so — ...s; — ..., such
that so = s, s; € [k, and for all ¢ < j:
si € [¢1]k. This means that the state s can
reach another state s; in j number of steps,
where s; satisfies ¢»; we use induction on j, the
least number of steps required to get to a state
that satisfies 15, to prove that s € [¢1 EU PoF
holds. Suppose s € [y EUs]x:

— Base case: suppose j = 0; in this case,
the state s itself satisfies 1)3, which means
s € [¢o]k. Using the induction hypotheses
from the outer induction, we have s € [¢,]¥,
and according to the first constraint in the
definition of axiom at Line 7, we have
s € [Y1EUY,]%; therefore, if j = 0 then
s € [Y1 EUP, |~

- Induction step: suppose j = m + 1. The in-
duction hypotheses for this inner induction
is: if ' € [ EUo)k and s’ can reach a state
satisfying 1), in less than or equal to m steps,
then s’ € [¢; EU»]*. Since j # 0 for s and
Jj is the least number of steps required to get
to a state that satisfies 1, state s does not
satisfy v itself; as a result, there exists a state
next to s, s’, that satisfies 1)y EU5 and j for
that state is less than or equal to m:

3"+ N (s,8") As" € [Y1 EUs]x

according to the induction hypotheses of the
inner induction, we have:

35" : Nic(s, ') A s' € [P EU 1~

Since s € [Yp1EUs]c, and s & [, from
the semantics of CTL, we can conclude that
s € [¢1]. Using the induction hypotheses
of the outer induction ([¢1]x C [¥1]%), we
derive s € [¢1]*. According to the sec-
ond constraint in the definition of axiom
at Line 7, and the above property, we have:
s € [1EUYy|%; therefore if j = m + 1 then
s € [Y1 EUY K.

By putting the base case and the induction step

together, we have:

(1 EUtbs]ic C [t1 EUo 1%

6) suppose ¢ = 1)1 AU1),. The proof of this part is
similar to Part 5.
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Another way of proving Parts 5 and 6 in the induction

step of Lemma (3| is to consider that the set of states

satisfying 11 EUw2 and 11 AU, is the smallest set that

satisfies the constraints in Line 7 and 8 of axiom respec-
tively.

The next lemma relates every Kripke structure in
CK(D) to a Kripke structure in CK (theory (D, ¢)):

Lemma 4: Let © be a declarative model and ¢ a CTL-
live formula. For every K € CK (D) there exists K’ €
CK (theory (D, ¢)) such that:

Ic = I Alglc = []®

Proof: Suppose K € CK (D). Let K’ be an interpre-
tation with the same domain as K. For each symbol in
the base of ©, K’ has the same value as K, and for every
sub-formula ¢’ of ¢ (including ¢) K’ assigns [¢']x to [¢'],
thus [¢/]x = [¢'1¥". According to the semantics of CTL,
the constraints that are added for each sub-formula ¢’ of
@ by theory to D, are necessary constraints that the sets
[¢']ic satisfy; therefore, K’ is a satisfying interpretation of
C’K(theory (D,p) ):

K e C’K(theory D, gp))

U
In the next theorem, we present our first contribution by
putting together all the properties we have proven: uni-
versal model checking of a CTL-live formula is reducible
to semantic entailment checking in FOL:
Theorem 2: Let © be a declarative model and ¢ a CTL-
live formula; for universal model checking:

DEvy <= theory(®,¢) EVs:I(s) = [p](s)

Proof: Recall that the set of satisfying interpretations
of ® is CK (D) (Definition ). We need to prove two
statements: 1) ® =y ¢ implies theory (D, ) = Vs :
I(s) = [¢](s), and 2) ® [~y ¢ implies theory (D, ¢)
Vs I(s) = [](s).

o Case (1) assume D v . We need to show that ev-
ery satisfying interpretation of theory (D, ¢) also
satisfies Vs : I(s) — [¢](s):

VK € CK(theory (C‘D,(p)) I C [p)*

Using  Lemma for every K €
CK (theory (D, ¢)), there exists a K’ € CK(D)
such that it is a substructure of K. Since K’ € CK (D)
and D v ¢, we have:

K'lee
By Theorem
K'Ecp=KEc¢
and by the semantics of CTL,
KEco=Ix C ¢k
and by Lemma

Ix C [plk = Ik C [o]*



therefore,
VK € C’K(theory (0, (p)) I C |—gp-|’C

o Case (2) assume D [~y ¢. We need to show that there
exists an interpretation that satisfies theory (®, ¢),
but it does not satisfy Vs : I(s) = [¢](s):

3K € CK (theory (D, ¢)) : I Z [¢]©

Since © [~y ¢, there exists a Kripke structure K €
CK(®) that does not satisfy ¢:

KeCK(®) Nk & [¢lk

Since K € CK(D), according to Lemma [ there
exists a Kripke structure K’ € CK (theory (D, ¢))
that has the following property:

Ic = I A gl = []<

Using this property and I Z [¢]i, we have:

I €[]
therefore,

K e C’K(theory ®, 90)) I € Tol*

4.3 Existential Model Checking

To solve the existential model checking problem using
FOL reasoning, we study the relationship between ex-
istential and universal model checking, so that we can
use our result from Theorem 2] If a Kripke structure K
satisfies a CTL formula —y, we can conclude that K does
not satisfy ¢. However, the opposite is not true unless
the Kripke structure has only one initial state.

Lemma 5: Let K and ¢ be a Kripke structure and a
CTL formula respectively; we have:

’C':c_'QO g ’C%Cw

Proof: By the definition of satisfiability in CTL. [J
Theorem 3: Let ©® and ¢ be a declarative model and a
CTL-formula respectively, we have:

DEs~ = DHvep

Proof: By the semantics of CTL, Definitions [7] and
and Lemma (Bl O
Lemma [5f is not an “iff” property since the semantics
of CTL does not imply that a Kripke structure has to
satisfy a CTL formula or its negation. Suppose ¢ is a
CTL formula and K a Kripke structure that has two
initial states sy and s;; where s satisfies ¢ and s;, does
not. It is easy to see that X neither satisfies ¢ nor —;
as a result, in general, the other direction of Lemma
does not hold. By not allowing a Kripke structure to
have more than one initial state, we can prove the other
direction of Lemma 5

Lemma 6: Let KC be a Kripke structure that has only one
initial state, |Ix| = 1, and ¢ a CTL formula; we have:

K.~ <— KEk.@

Proof: By using the semantics of CTL. O

By using the result of Lemma [f} we can prove the
following corollary:

Corollary 1: Let ® be a declarative model such that

every Kripke structure K € CK(®) has exactly one

initial state, |Ixc| = 1 and ¢ a CTL-live formula; we have:

DEgp <= DKy <= theory@®,¢) o

5 MAXIMALITY OF CTL-LIVE

Theorem [2| shows that model checking CTL-live is re-
ducible to semantic entailment in FOL. The logical con-
nectives that are not included in CTL-live are EG, AG,
and — over temporal connectives. To show model check-
ing of these three connectives is not reducible to FOL
entailment, we reduce the complement of the halting
problem on an empty tape for a deterministic Turing
machines (DTM) to universal model checking of EG
and AG. The complement of the halting problem is not
recursively enumerable but FOL semantic entailment is;
therefore, universal model checking of EG and AG can-
not be reduced to FOL entailment checking, otherwise,
this problem would be recursively enumerable. We call
this result the maximality of CTL-live.

In the following, we assume a DTM M = (Q,4) is a
pair where Q = {qo,...,¢s} is a finite set of states, the
tape alphabet is {b,0} and 0, the transition function, is a
total function from Q x {b,0} to Q x {b,0} x {L, R}. For
example, the transition §(gy, 0) = (g2, b, L) means that if
the DTM M is at state g9 and the tape head is scanning
0, in the next step, M goes to the state ¢», writes b on
the tape and moves the head to the Left.

A DTM M = (Q, ) starts in the state go. We consider
M to have halted if it reaches state ¢,,. The tape is one
way infinite. In the initial state, the head tape is on the
left most square of the tape, and every square on the
tape is blank (b).

The idea behind reducing the complement of the halt-
ing problem on an empty tape for a DTM to universal
model checking of EG or AG is that the set of all
the configurations of a DTM can be considered as the
state space for a Kripke structure and the transition
relation of this Kripke structure can be derived from
the transition function of the DTM. Since the underlying
DTM is deterministic, this Kripke structure has only one
computation path, and therefore, satisfying EG and AG
would be equivalent.The Globaly part of £G and AG
can be used to state that no state along the path is a
halting state.

Lemma 7: Let M = (Q, §) be a DTM; the complement of
the halting problem on an empty tape for M is reducible
to universal model checking of an EG formula.

Proof: To prove this lemma, we create a declarative
model ® from M such that © universally satisfies an



EG formula iff M does not halt on an empty tape. To
encode M as a declarative model © = (B,T), we use
the following base B = (F, R):

o« F=H{0, inc/1, dec/1, Q/1, H/1},

e R=1{b/2, I/1, N/2, halt/1}

The constant 0 represents number zero. The functional
symbols inc/1 and dec/1 are used to model increment
and decrement operations on natural numbers. We can
refer to a certain natural number by applying inc to 0;
e.g.,, number 2 is represented as inc(inc(0)), for short
inc?(0). In this lemma and the following, natural num-
bers are short forms of their representations using this
base; e.g., in the formula Q(¢) = 2, the symbol 2 is a
short form of inc?(0).

The natural numbers are used to represent configura-
tions of M: the position of the tape head, the current
state of M, and to point to different squares of the tape.
The binary relation symbol b(t,4) represents whether at
step ¢ the i™" square is blank or 0. The functional symbol
Q(t) = i represents that the state of M at step ¢ is
¢i, and the functional symbol H(t) = i represents that
the tape head of M at step ¢ is on the i" square. The
relational symbols I and N are used to model the Kripke
structures, and halt is a relational symbol to represent
whether a state is a halting state.

In the declarative model ® = (B
I' consist of 5 parts:

I'), the constraints in

1) Constraints for encoding an “acceptable” semantics
for 0 inc, and dec:

. znc();«éO

. Vz i sinc(i) = inc(i’) - i =1
Vi:i#0—>(5|z sine(i') = 1)
dec(0) =0

Vi : dec(inc(i)) =1

Vi i # 0 — inc(dec(i)) =i

2) Constraint stating that at each step of computation
at most one position of the tape can be changed:

Vt,i: H(t) #i— (b(t, i) <> b(inc(t), 1))

3) Constraints for encoding the initial configuration
of M:
e Q(0) =0: at step 0, M is at state gq,
e H(0) =0: at step 0, the tape head of M is at
position 0,
o Vi:b(0,%) : at step 0, every position of the tape
is blank.

4) Constraints for encoding the transition function 9:
for every pair of Q x {b,0} we have a formula that
mimics the computation of M. For example, the
formula that simulates 6(gy,0) = (g2,b, L) is
Vi, i Q) =9A-b(t, i) NH(t)=1—

Qinc(t)) = 2 A b(inc(t),i) A H(inc(t)) = dec(i)
and the formula that simulates 6(gg,b) = (¢7,0, R)
is
Vi, i Q(t) =6 A
Qinc(t)) =

b(t HAH(E) =i —

A =b(ine(t), i) A H(inc(t)) = inc(i)

5) Constraints for the initial state, transition relation,
and halting state of the corresponding Kripke struc-
ture. We use natural numbers as the state space of
a Kripke structure. The configuration of M at state
(step) t is represented by Q(t), H(t), and b(¢,.):

o Vt:I(t) <> t=0:initial state,
o Vi, t': N(t,t') <> t' = inc(t) : transition relation,
o Vit : halt(t) <+ Q(t) = n : halting states.

We claim that the following holds:

D v EG-halt <= M does not halt on an empty tape.

We need to prove two statements: 1) ® =y EG-halt
implies M does not halt on an empty tape, and 2) M
does not halt on an empty tape implies © =y EG-halt.

o Case (1) © =y EG-halt means that every Kripke
structure in CK (D) satisfies EG—halt. The standard
interpretation of natural numbers, which satisfies
® corresponds to the computation of M. Since
EG—halt means there exists a path along which halt
is never true, and the DTM M is deterministic, and
therefore has only one path, we can conclude that
M does not halt on an empty tape.

o Case (2) By induction on the number of steps,
we can prove that if at step ¢, M is at state g;,
every Kripke structure in CK(®) satisfies Q(t) = «.
Assuming M does not halt on an empty tape, we
can conclude that every Kripke structure in CK (D)
has an infinite path starting at 0:

O—1—=2—=3—..

where none of them is the halting state g,:

QQ0) #n, Q(1) #n, Q(2) #n, Q(3) #n,..

Therefore, every Kripke structure in CK (D) satisfies
EG-halt:
D =y EG-halt

U

Lemma 8: Let M = (Q, §) be a DTM; the complement of

the halting problem on an empty tape for M is reducible
to universal model checking of an AG formula.

Proof: To prove this lemma, we create a declarative
model ® from M such that © universally satisfies an
AG formula iff M does not halt on an empty tape.
The declarative model that we need to build for this
reduction is same as the one in Lemma [/l We claim that
the following holds:

D |y AG-halt < M does not halt on an empty tape.

We need to prove two statements: 1) © |=y AG—halt
implies M does not halt on an empty tape, and 2) D fy
AG—halt implies M halts on an empty tape.

o Case (1) similar to Case 1 of Lemma [7]

o Case (2) since ® fy AG—halt, there exists a Kripke
structure K € CK (D) that does not satisfy AG—halt.
This means that there is a finite path from an initial
state of K that reaches a state satisfying halt. By



induction on the length of this path, we can show
that this finite path corresponds to a finite sequence
of configurations in M that results in a halting
configuration; as a result, M halts on an empty tape.

|

Theorem 4: (Maximality of CTL-live) The temporal

part of CTL-live cannot be extended with EG, AG, or
— for universal model checking in FOL.

Proof: In Lemma [7] (), we showed that the comple-
ment of the halting problem on an empty tape for a DTM
is reducible to universal model checking of EG (AG).
This problem is not recursively enumerable, as a result, it
cannot be reduced to entailment checking in FOL, which
is a recursively enumerable problem. We also know that
EGy is equivalent to —(T AU—). Since AU is include in
this fragment, = cannot be added as well. O

6 RELATED WORK

Immerman and Vardi show how the semantics of CTL
and CTL* can be encoded in FOL plus the transitive-
closure operator [13]]. Based on their work, we showed
how universal and existential model checking can
be solved for a finite declarative model [11]. Since
transitive-closure is not expressible in FOL, this encoding
cannot be used with an FOL reasoner.

SAT and SMT solvers have been used for bounded
model checking [3], [4]. These methods use a reasoner
directly for model checking by expanding the transition
relation for a finite number of steps.

K-induction is a technique for unbounded model check-
ing of safety properties [5]. This technique extends
bounded model checking by proving that bounded
model checking for bound K is sufficient. The number K
is dominated by the diameter of a Kripke structure. The
diameter is computed iteratively using a SAT solver to
check the equivalence of two formulae: the equivalence
holds iff no new state can be reached by taking more
than K steps. In [5], termination is guarantied due to
finiteness of the Kripke structures under study.

Bultan, Gerber, and Pugh use Presburger formulae to
represent infinite sets of states symbolically [6]. Their
model checking approach requires a fix-point calcula-
tion, and termination is achieved by using conservative
approximation. This approach allows false negatives.

The problem of model checking parametrized sys-
tems is related to our work. A parametrized system
defines an infinite family of finite Kripke structures
where each finite Kripke structure is determined by
fixing a parameter. In most cases, this parameter is the
number of processes that can execute. Model checking
a parametrized system means checking whether all the
Kripke structures in the family satisfy a temporal prop-
erty. If a parametrized system is presented as a declara-
tive model, then model checking a parametrized system
is equivalent to universal model checking. In general,
this problem is undecidable [14]. One approach to model
checking parametrized systems is to achieve decidability
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by restricting the structure of a parametrized system;
e.g., Emerson and Kahlon consider asynchronous sys-
tems consisting of an arbitrary number of homogeneous
copies of a generic process template [15]. Some work
restricts the topology of a network and communica-
tions between processes [16], [17]. Other approaches
to model checking a parametrized system are based
on abstraction, network invariants, and compositional
model checking [18]-[21]. Our approach is more general
in the sense that the set of Kripke structures have no
restrictions on them as long as they are expressible in
FOL, however, our results are only for a fragment of
CTL, and FOL entailment checking is not decidable.

7 CONCLUSION

In this article, we presented a fragment of CTL, called
CTL-live, whose model checking problem is reducible to
semantic entailment in FOL. This reduction shows that
FOL reasoning techniques are sufficient for model check-
ing CTL-live formulae, without the need for transitive-
closure, fixed-point operators, or induction. The key
insight in our approach is to use the implicit higher-
order quantifier in the definition of semantic entailment
to require that all initial states of a Kripke structure are
within all the sets of states that satisfy a representation
of a CTL-live temporal operator, and thereby, reduce
model checking to semantic entailment in FOL. Semantic
entailment checking for FOL is recursively enumerable;
as a result, this reduction allows one to generate auto-
matically a proof in the case where a CTL-live formula
is satisfied.

CTL-live has two parts: 1) propositional 2) temporal.
The propositional part contains all propositional logic
connectives. The temporal section includes all the con-
nectives such that their encoding in the mu-calculus
requires the least fixed-point operator. These connectives
are usually used to express liveness properties. The
temporal part also includes conjunction and disjunction
since their corresponding set operators, intersection and
union, are monotonic with respect to set inclusion rela-
tion.

The input to our model checking technique is a set
of logical formulae, called a declarative model, where
every satisfying interpretation is a Kripke structure; as
a result, a declarative model can represent a class of
Kripke structures. We studied two questions about such
a class of Kripke structures: 1) universal model checking:
do all the Kripke structures in the class satisfy a CTL
formula? 2) existential model checking: is there at least one
Kripke structure in the class that satisfies a CTL formula?
We showed how our encoding of CTL-live in FOL can
be used to solve universal model checking and how
existential model checking can be reduced to universal
model checking.

We proved that CTL-live is maximal in the sense that if
any other CTL connective is added, non-FOL reasoning
techniques would be required and the model checking



problem becomes harder than a recursively enumerable
problem. The connectives that cannot be model checked
in FOL are the ones whose encoding in the mu-calculus
requires the greatest fixed-point operator. An implicit
result of our work is that some reachability queries can
be answered by using an FOL reasoner even though
reachability is not expressible in FOL.

The rapid improvements in the efficiency of fields such
as SMT solvers, DL reasoners, FOL automated theorem
proving, etc. have a direct effect on the applicability
of our results. A practitioner who wants to use the
theoretical result of this article must first check if the
temporal property of interest is within CTL-live; then
model checking can be accomplished using a FOL rea-
soner by itself. We are currently studying the use of
SMT solvers and decidable fragments of FOL for model
checking CTL-live formulae.
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