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Abstract—We present a spatial-domain method for the recon-
struction of a three-dimensional density distribution from one or
more projections (images formed by integration of density along
lines of sight) and using the three-dimensional reconstruction to
explain features of the two-dimensional images. The advantages
of our proposed method are that it degrades gracefully down
to a single image, that it uses linear equations and constraints
(allowing the use of convex optimization), that it is amenable
to three-dimensional structural biases, and that ambiguity can
be expressed precisely (it is possible to “know what we don’t
know”). Previously described methods have some, but not all, of
these properties.

I. INTRODUCTION

We examine the problem of reconstructing a density distri-
bution from projections in a way that degrades gracefully to a
single image, using symmetry and other structural properties to
reduce or eliminate ambiguity. Projection, in the sense that we
consider here, is a process of image formation by integration
along the line of sight. Using structural constraints allows
reconstruction even from a single viewpoint, which would
otherwise provide insufficient information for a reconstruction.
Our framework allows a wide variety of structural constraints
to be defined, including various types of symmetry, smooth-
ness, and compactness. It also allows any remaining uncer-
tainty to be precisely expressed for each model. This makes
our framework more flexible and more robust than existing
methods for single-projection reconstruction (discussed in V).

A 3-D reconstruction is useful on its own but it can
also be used to explain aspects of a 2-D image. Subtracting
the projection of the 3-D reconstruction from the original
image results in a residual image that reveals aspects of the
original image that cannot be explained under the structural
assumptions used for reconstruction.

Reconstruction from projections is useful in many domains.
One such domain is astronomy; images of galaxies, for exam-
ple, can be modelled as projections of “luminosity density.”
Since galaxies are so distant, only one viewing angle is
available to use in reconstruction, which makes it impossible
to use existing techniques; on the other hand, there are
strong symmetry assumptions that can be made about galaxies.
Radiographs (X-rays) are a very different type of image which

Fig. 1. Example of projection of a two-dimensional function along two
directions

can also be modelled as a projection process in which light is
absorbed rather than emitted. Computed tomography allows
three-dimensional reconstruction with many X-ray images
from different angles, but is not effective with a small number
of images. Our framework allows reconstruction with as little
as a single image if appropriate structural assumptions can be
made.

II. PROJECTION & RECONSTRUCTION

In this paper, projection refers to integration of density along
a line of sight. This is distinct from orthographic or perspective
projection geometry, which determine the directions of lines of
sight; we assume parallel lines of sight (i.e. orthographic pro-
jection geometry) in our definitions of the projection process.
A projection is defined along a specific direction (the direction
of the lines of sight); for notational convenience, we define
the z-axis of the viewer’s coordinate system to be parallel to
the direction of projection. Given a three-dimensional density



function D, its two-dimensional projection P along the z-axis
can be defined as follows:

P (x, y) = Proj[D](x, y) =

∫ ∞
−∞

D(x, y, z)dz. (1)

This process is shown in Figure 1. Projection can also be
defined in a discrete form, where the image is discretized
as a grid of pixels and the density distribution is discretized
as a grid of voxels. Assuming that the size of the density
distribution is finite, a discrete projection process can be
defined as follows:

P (x, y) = Proj[D](x, y) =

zmax∑
z=zmin

D(x, y, z) (2)

where zmin and zmax represent the limits of non-zero density
along the z-axis. In either formulation, it is clear that the
projection process is linear; this will be critical to our re-
construction framework. Although this formulation is discrete,
the density at an intermediate point can be defined using
interpolation.

For images of objects like galaxies that emit light, the value
of a pixel in the image is the sum of light emitted along a line
of sight, which corresponds directly to projection. For images
formed by light absorption, like X-ray images, a pixel value
is the product of the proportion of light passing through each
voxel on the line of sight. This does not correspond to pro-
jection as stated, but taking the logarithm of the transmission
proportions and pixel values converts the product operation to
a sum; this modified problem is a case of projection.

Reconstruction is the problem of inverting the projection
process. Given a projection P , the objective is to produce a
reconstructed density distribution D̂. The optimal D̂ must be
determined based on the evidence of the projected image P ,
since the original density distribution is not directly accessible.
An objective function representing the image reproduction
error can be defined based on the sum of squared errors:

E(D̂) =
∑
x,y

(
P (x, y)− Proj[D̂](x, y)

)2
(3)

The optimal reconstruction is therefore

argmin
D̂

(
E(D̂)

)
. (4)

If the image is both noise-free and compatible with the model
used, E(D̂) = 0; otherwise reproduction error is inevitable.

III. OUR FRAMEWORK

We use a spatial-domain method for reconstruction which
is based on a discrete voxel representation of the density
distribution. The projection process is linear, and each pixel
value is a linear combination of voxel values along the line
of sight; this implies that projection can be represented by a
matrix operation. Let p and d be vector representations of
P and D, respectively, generated by placing pixel (or voxel)

Fig. 2. Three-dimensional projection with a matrix formulation.

values in the vector in raster-scan order. Then a projection
matrix GP can be defined such that

p = GPd. (5)

Assuming that D is n×n×n voxels and P is n×n pixels, GP

is n2 × n3. It is the matrix formulation of the reconstruction
problem that we use to derive our framework. Figure 2 shows
an example of a three-dimensional projection process and the
corresponding matrix formulation.

If there are multiple images, GP can be extended to describe
the relationship between the volume and all of the images
simultaneously. The meaning of the volume vector d remains
the same; the image vector p must now represent each pixel
value in every image. The projection matrix GP must be
altered to represent the contribution of each voxel to each
pixel value in the new image vector. These modifications can
be implemented by simply vertically concatenating the image
vectors and projection matrices for each of the original images.

The matrix formulation of the projection problem hints at
a way to solve the reconstruction problem: d̂ = G−1P p. The
“unpacked” D̂ corresponding to d̂ would minimize the sum
of squared image reconstruction error. This requires that GP

be invertible. For a single image, the projection matrix has n3

columns and n2 rows; it represents an underdetermined system
of equations, with infinitely many solutions. Multiple images
can provide more evidence upon which to base the reconstruc-
tion; if there are enough images from the appropriate viewing
angles, GP is invertible and this method is viable. In particular,
if the total number of images is greater than the number of
voxels, this corresponds to the algebraic reconstruction method
(ARM) in computed tomography [1].

A. Ambiguity

Since the correct 3-D reconstruction is ambiguous when
there are fewer independent constraints than voxels, it is
important to precisely characterize this ambiguity. This can be
done using the properties of the projection matrix. Ambiguity
means that there are multiple distinct density distributions
which project to the same image; thus it can be characterized
by defining the set of all possible solutions. We now show
how the null space of the projection matrix can be used to
characterize ambiguity:



Theorem 1. If d1 and d2 are density distributions, then
GPd1 = GPd2 if and only if d = d1 − d2 is in the null
space of GP .

Proof. Assume that d is a member of the null space of GP .
Then GPd = 0. It follows that

GP (d1 − d2) = 0 (6)
GPd1 −GPd2 = 0

GPd1 = GPd2

Similarly, if GPd1 = GPd2, it follows that

GPd1 −GPd2 = 0 (7)
GP (d1 − d2) = 0

GPd = 0.

Thus, d = d1 − d2 is in the null space of GP .

Since, for any d in the null space of GP , we have p =
GPd

∗ ⇒ p = GP (d
∗+d, the null space of GP characterizes

the inherent ambiguity in that given any one “base” solution d∗

the null space expresses the entire range of possible solutions.
If the null space of GP contains only the zero vector, there can
be only one solution; in this case, the problem is unambiguous.
Otherwise, infinitely many distinct solutions exist. The dimen-
sionality of the null space can be used to quantify the severity
of ambiguity. Depending on the viewing angle, number of
images, and choice of structural model, a practical problem
may be either ambiguous or unambiguous. In general, it is
desirable to reduce ambiguity, either by reducing the number
of unknowns (e.g. by imposing symmetry constraints) or by
increasing the number of equations (by supplying additional
images or applying a structural bias).

If the problem is ambiguous, must must still be find d∗.
The Moore-Penrose pseudoinverse of the projection matrix,
G+

P , can be used; d̂ = G+
Pp is the solution with the smallest

L2-norm ‖d̂‖ such that ‖p−GP d̂‖2 is as small as possible.

B. Symmetry

Symmetry constraints reduce ambiguity by reducing the
number of unknowns. Other constraints in which a subset
of voxels must have the same density value work similarly;
for convenience, we refer to all constraints of this type as
“symmetry constraints”.

Symmetry constraints can be enforced strictly by reparam-
eterizing the density distribution such that a single variable is
used to represent the density at all points in a set of points
where the density must be identical. This corresponds to a
change in the basis used to represent the space of density
distributions. This new basis can be denoted βmodel, and is
defined such that lvoxel = βmodellmodel. This can be integrated
into the projection process:

i = GP lvoxel

= GPβmodellmodel (8)

If each element of the basis is symmetric, every linear combi-
nation must also be symmetric. For reasons of efficiency it is

Fig. 3. Examples of spherically symmetric basis vectors.

Fig. 4. Examples of cylindrically symmetric basis vectors.

often desirable to calculate GPβmodel more directly, but the
matrix multiplication representation is convenient for analysis.

For many types of symmetry, the viewing angle is signifi-
cant. In these cases, βmodel is also dependent on the orientation
of the density distribution relative to the viewer. For example,
it may represent a cylindrically symmetric density distribution
viewed at an angle of 30◦ from the axis of symmetry.

1) Spherical Symmetry: A restrictive but often physically
plausible type of symmetry is spherical symmetry. Spherical
shells are constrained to have a uniform density; each basis
vector corresponds to one of these shells, some of which are
shown in Figure 3.

2) Cylindrical Symmetry: Cylindrical symmetry is a very
flexible model but considerably reduces the space of solutions
consistent with an image. The basis of a cylindrically sym-
metric density distribution is a set of rings of uniform density
value, each of which has a radius and a position along the axis
of the cylinder; some of these basis vectors are shown in Figure
4. The appearance of a cylindrically symmetric distribution
depends on the angle between the direction of projection and
the axis of symmetry, which we denote θ.

Other types of structural model can be defined by defining
other sets of equal-density points. The circular ring basis used
for cylindrically symmetric functions might be replaced with
square rings or some other shape.

C. Structural Bias

Ambiguity can also be addressed by introducing a structural
bias. This imposes a penalty term in the objective function
which encourages some specific properties in the solution:

E(D̂) =
∑
x,y

(
P (x, y)− Proj[D̂](x, y)

)2
+ S(D̂) (9)

where S represents the penalty term. This allows a compro-
mise between reconstruction accuracy and the desired prop-
erties of the solution. Some structural biases correspond to
regularization—a penalty proportional to the L2-norm of the
solution vector, for example. Many structural biases can be
expressed by adding constraint rows to GP . It is important to



Fig. 5. Proportion of randomly-generated viewing scenarios with ambiguity
no greater than the horizontal axis value for a 63 × 63 × 63 volume
with 250047 voxels. Cylindrical, cylindrical and reflective, and rectangular
symmetry are shown for 1, 2, and 3 randomly-selected viewing angles.
Rectangular symmetry with 3 views is omitted because there is so little
ambiguity with 2 views.

choose an appropriate bias; an inappropriate one guides the
solution away from, rather than toward, plausible reconstruc-
tions.

IV. EXPERIMENTAL RESULTS

We test the performance of our framework in three ways:
first, we examine ambiguity properties under different symme-
try assumptions and with different numbers of images; second,
we show experimental results on synthetic data; finally, we test
the reconstruction method on real data.

A. Ambiguity Properties

We examine ambiguity properties using the dimensional-
ity of the null space to measure ambiguity under different
structural models. Figure IV-A shows the degree of ambiguity
under three structural models: cylindrical symmetry, cylindri-
cal symmetry with reflective symmetry across the equatorial
plane, and a square-ring variant of cylindrical symmetry we
call rectangular symmetry. For multiple viewing angles, fine
uniform samples of all combinations of viewing angles is too
computationally intensive. Instead we use random sampling of
a range of viewing angles to generate Figure IV-A. This graph
corresponds to the cumulative probability that a randomly-
selected viewing scenario is less ambiguous than each value
on the horizontal axis. These tests show that low or zero
ambiguity is typical, especially with three images. The size of
the null space of GP is found by counting the number of zero
eigenvalues (since the calculations are numerical, extremely
small eigenvalues are taken to be zero).

B. Synthetic Data

Synthetic data is useful because truly symmetric objects are
difficult to find in practice. It is through synthetic data that the
performance of our framework under ideal circumstances can
be tested. Figure 6 shows the results of reconstruction of a
ring with and without symmetry constraints and a structural
bias towards a small L2-norm for one projection at 45◦ and
three projections at using projections at 30◦, 45◦, and 60◦.

Original Reconstructed Residual

Fig. 7. Telescopic image of a galaxy (left column), the reconstructed image
(middle column), and the corresponding residual (right column); the upper
row shows reconstruction without a structural bias, and the lower shows
reconstruction with a bias encouraging concentration to the equatorial plane.

The results clearly show the advantages of using a structural
model. For the case of reconstruction from three views, the
problem is unambiguous under the assumption of cylindrical
symmetry and reconstruction is exact; adding structural bias
slightly degrades the result in this case. In practice, an L2-
norm-minimizing bias has been found to be effective on noisy
or asymmetric data (e.g. in Section IV-C). In all cases, the
original image is reconstructed well.

C. Real Data

One example of image data formed by projection is an
image of a galaxy. The galaxy can (in many cases) be modelled
as a continuous, transparent, light-emitting substance; thus, the
value of a pixel in an image of the galaxy is the sum of the
“luminosity density” of the galaxy along a line of sight. Since
the angular diameter of a galaxy is small, it is reasonable to
assume that the lines of sight are approximately parallel. We
use an image of NGC 4452 from the Sloan Digital Sky Survey
III [2] as an example case.

The reconstructions shown in Figure 7 assume cylindri-
cal symmetry with reflective symmetry across the equatorial
plane; one uses no structural bias, and one uses a structural
bias to encourage concentration of luminosity toward the
equatorial plane. Both methods are effective, but the biased
version is more robust with respect to extraneous objects like
stars outside of the galaxy. The residual clearly shows the
small deviations from cylindrical symmetry that are difficult
to notice in the original image.

A second practical example of projection is an X-ray image.
We use a CT scan of a roughly conical chocolate from the
NIH/NIGMS Center for Integrative Biomedical Computing
CT Scan Database to generate our test images. Since the
raw imaging data is not available, we simulate the imaging
process using the real volumetric radiopacity data provided
in the original file. The raw density data was converted to
normalized absorption proportions; the important aspects of
the data for our purposes are its structural properties, not the
specific density of this particular piece of chocolate.

Figure 8 shows an original projection and its reconstruction
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Fig. 6. Reconstruction of synthetic data for 1 and 3 projections, with and without symmetry constraints and structural bias.

Original Reconstructed Residual

Fig. 8. Reconstruction (middle) of a chocolate from a single projection taken
at 90◦ to the axis of symmetry (left), with residual (right, not to scale).

Original Recon. (45◦) Recon. (90◦)

Fig. 9. Reconstruction of a chocolate from a single projection taken at 45◦
to the axis of symmetry. The original image is on the left, a projection of the
reconstruction at the original viewing angle is in the center, and a projection
of the reconstruction at 90◦ to the axis of symmetry is on the left

assuming cylindrical symmetry. The reconstruction is very
accurate, and the residual clearly shows the asymmetries
in the density distribution. Figure 9 shows a reconstruction
with a less-favourable direction of projection; although the
reconstruction projects to a reasonable image, overfitting is
clear when the reconstructed density distribution is viewed
from another angle. A structural bias can be used to reduce the
degree of overfitting; Figure 10 shows the effects of a strong
bias against a large L2-norm. Artefacts caused by asymmetries
in the original density distribution are not completely elimi-
nated, but the reconstructed density distribution is substantially
improved, and the general structure is much more readily
visible.

Reconstruction can also be performed with multiple images.
With only a few images, overfitting has been found to be a
distinct possibility in cases where the true distribution is not
perfectly symmetric, even when the problem appears to be
unambiguous. This is because while there may be no density
distribution that projects to an image of zeros, there may still
be some that produce images that are zero nearly everywhere

Original Recon. (45◦) Recon. (90◦)

Fig. 10. Regularized reconstruction of a chocolate from a single projection
taken at 45◦ to the axis of symmetry. The original image is on the left, a
projection of the reconstruction at the original viewing angle is in the center,
and a projection of the reconstruction at 90◦ to the axis of symmetry is on
the left

or nearly zero everywhere. As in the case of a single image,
however, structural biases can be used to address the problem.
Figure 11 shows the results of reconstruction using projections
at 30◦, 45◦, and 60◦ assuming cylindrical symmetry and using
a strong bias against a large L2-norm. The results here are
much more accurate than the results using a single image;
the only strong artefact occurs where the presence of the
platform the object rests on causes the density distribution
to be strongly asymmetric. As can be clearly seen, a high-
quality reconstruction can be obtained using only three image
with very simple structural assumptions.

V. RELATED WORK

Most existing single-view three-dimensional reconstruction
techniques are designed for images of opaque objects, rather
than images formed by projection. For example, shape-from-
shading [3] and shape-from-silhouette [4] techniques have
been used with single images. These images are very different
from images formed by projection. In a projected image,
each pixel is influenced by every part of the object along
the corresponding line of sight, but this information must be
disentangled. In an image of an opaque object, a pixel provides
information about a single patch of the surface of the object.
Different techniques must be used for reconstruction.

Existing work done with projections typically assumes the
availability of projections from a wide range of angles. This
is the case for computed tomography (CT), which is the basis
of CT scan medical imaging [5], [1]. The projection-slice the-
orem, which is critical to CT scanning, states that the Fourier
transform of a projection is a “slice” through the Fourier
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Fig. 11. Regularized reconstruction of a chocolate from three projections
taken at 30◦, 45◦, and 60◦ to the axis of symmetry. Note that the only
significant artefact occurs at the base of the image, where there is strong
asymmetry in the original density distribution.

transform of the density distribution, at an angle determined by
the angle of projection [6]. CT methods using the projection-
slice theorem take the Fourier transforms of projections at
many different angles to reconstruct the Fourier transform of
the density distribution; from this, the reconstructed density
distribution can be readily obtained [5], [1]. The algebraic
reconstruction method (ARM) uses the inverse of a projection
matrix describing the formation of many images [1]. Another
method for CT reconstruction is back-projection [5], [1], in
which the original density distribution is generated by “ex-
truding” each projection back along the direction of projection
and compensating for the differing numbers of intersecting
projections at different distances from the center. CT is very
useful and widely applicable, but requires many projections
from a range of angles, which are not always available. Our
framework uses a single image but requires stronger structural
assumptions; it is complementary to CT methods, rather than
directly competing with them.

Zaroubi et al. [7] describe a method for reconstructing
cylindrically symmetric density distributions from a single
projection using the projection-slice theorem, emphasizing
astronomical applications. The assumption of cylindrical sym-
metry reduces ambiguity in the reconstruction problem, but
does not eliminate it in most practical cases. In the Fourier
domain, in fact, it can be shown that ambiguity exists for any
direction of projection that is not perpendicular to the axis of
symmetry. The frequency-domain method is a very different
approach from ours, but it is less flexible because it strictly

assumes rotational symmetry whereas our framework allows a
wide range of symmetry properties to be defined and exploited.

VI. CONCLUSION

We have presented a framework for 3-D reconstruction of
a density distribution from a small number of projections
(as few as one), using structural assumptions to reduce or
eliminate ambiguity, and for determining which aspects of
an image can be explained by a given structural model. Our
framework allows a wide variety of structural assumptions to
be made, resulting in great flexibility. It is complementary to
reconstruction methods that require many images (such as CT)
and to single-image reconstruction methods for images that are
not formed by projection.

While projection is not the most common image formation
process encountered in day-to-day life, it occurs in very
important settings, including X-ray images and images of
transparent, light-emitting structures such as galaxies. Our
framework is applicable to any of these image classes, and
is especially important if only one viewpoint is accessible.

Extensions to the framework such as methods for handling
images that are blurred or missing areas and reconstruction of
multiple distinct objects are potentially interesting areas for
further research.
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