
Constructing Call Graphs of Scala Programs ?

Karim Ali1, Marianna Rapoport1, Ondřej Lhoták1, Julian Dolby2, and
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Abstract. As Scala gains popularity, there is growing interest in pro-
gramming tools for it. Such tools often require call graphs. However, call
graph construction algorithms in the literature do not handle Scala fea-
tures, such as traits and abstract type members. Applying existing call
graph construction algorithms to the JVM bytecodes generated by the
Scala compiler produces very imprecise results due to type information
being lost during compilation. We adapt existing call graph construc-
tion algorithms, Name-Based Resolution (RA) and Rapid Type Analysis
(RTA), for Scala, and present a formalization based on Featherweight
Scala. We evaluate our algorithms on a collection of Scala programs. Our
results show that careful handling of complex Scala constructs greatly
helps precision and that our most precise analysis generates call graphs
with 1.1-3.7 times fewer nodes and 1.5-18.7 times fewer edges than a
bytecode-based RTA analysis.

1 Introduction

As Scala [19] gains popularity, the need grows for program analysis tools for
it that automate tasks such as refactoring, bug-finding, verification, security
analysis, and whole-program optimization. Such tools typically need call graphs
to approximate the behavior of method calls. Call graph construction has been
studied extensively [10,20]; algorithms vary primarily in how they handle indirect
function calls. Several Scala features such as traits, abstract type members, and
closures affect method call behavior. However, to our knowledge, no call graph
construction algorithms for Scala have yet been proposed or evaluated.

One could construct call graphs of Scala programs by compiling them to JVM
bytecode, and then using existing bytecode-based program analysis frameworks
such as WALA [14] or SOOT [28] on those generated bytecodes. However, as we
shall demonstrate, this approach is not viable because significant type informa-
tion is lost during the compilation of Scala programs, causing the resulting call
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graphs to become extremely imprecise. Furthermore, the Scala compiler trans-
lates certain language features using hard-to-analyze reflection. While solutions
exist for analyzing programs that use reflection, such approaches tend to be com-
putationally expensive or they make very conservative assumptions that result
in a loss of precision.

Therefore, we explore how to adapt existing call graph construction algo-
rithms for Scala, and we evaluate the effectiveness of such algorithms in prac-
tice. Our focus is on adapting low-cost algorithms to Scala, in particular Name-
Based Resolution (RA) [25], Class Hierarchy Analysis (CHA) [8], and Rapid
Type Analysis (RTA) [5]. We consider how key Scala features such as traits, ab-
stract type members, and closures can be accommodated, and present a family of
successively more precise algorithms. In the appendix of this technical report, we
formally define our most precise algorithm for FSalg, the “Featherweight Scala”

subset of Scala that was previously defined by Cremet et al. [7], and prove its
correctness by demonstrating that for each execution of a method call in the
operational semantics, a corresponding edge exists in the constructed call graph.

Our new algorithms differ primarily in how they handle the two key chal-
lenges of analyzing Scala: traits, which encapsulate a group of method and field
definitions so that they can be mixed into classes, and abstract type members,
which provide a flexible mechanism for declaring abstract types that are bound
during trait composition. We implement our algorithms in the Scala compiler,
and compare the number of nodes and edges in the call graphs computed for a
collection of publicly available Scala programs. In addition, we evaluate the effec-
tiveness of applying the RTA algorithm to the JVM bytecodes generated by the
Scala compiler. For each comparison, we investigate which Scala programming
idioms result in differences in cost and precision of the algorithms.

Our experimental results indicate that careful handling of complex Scala
features greatly improves call graph precision. We also found that call graphs
constructed from the JVM bytecodes using the RTA algorithm are much less
precise than those constructed using our source-based algorithms, because sig-
nificant type information is lost due to the transformations and optimizations
performed by the Scala compiler.

In summary, this paper makes the following contributions:

1. We present variations on the RA [25] and RTA [5] algorithms for Scala. To
our knowledge, these are the first call graph construction algorithms designed
for Scala.

2. We evaluate these algorithms, comparing their relative cost and precision on
a set of publicly available Scala programs.

3. We evaluate the application of the RTA algorithm to the JVM bytecodes
produced by the Scala compiler, and show that such an approach is not
viable because it produces highly imprecise call graphs.

In addition, we have formalized our most precise algorithm and proven its cor-
rectness in the appendix of this technical report.

The remainder of this paper is organized as follows. Section 2 reviews existing
call graph construction algorithms that serve as the inspiration for our work.
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Section 3 presents a number of motivating examples that illustrate the challenges
associated with constructing call graphs of Scala programs. Section 4 presents
our algorithms. Section 5 presents the implementation in the context of the
Scala compiler. An evaluation of our algorithms is presented in Section 6. Lastly,
Section 7 concludes and briefly discusses directions for future work.

2 Background

Algorithms for call graph construction [10] have been studied extensively in the
context of object-oriented programming languages such as Java [9,16], C++ [5]
and Self [1], of functional programming languages such as Scheme [23] and
ML [11], and of scripting languages such as JavaScript [24]. Roughly speak-
ing, most call graph construction algorithms can be classified as being either
type-based or flow-based [6, 12, 13, 16, 17]. The former class of algorithms uses
only local information given by static types to determine possible call targets,
whereas the latter analyzes the program’s data flow.

We focus on type-based algorithms, so we will briefly review some important
type-based call graph construction algorithms for object-oriented languages upon
which our work is based. In the exposition of these algorithms, we use a constraint
notation that is equivalent to that of [26], but that explicitly represents call graph
edges using a relation ‘ 7→’ between call sites and methods.

Name-Based Resolution (RA). The main challenge in constructing call graphs
of object-oriented programs is in approximating the behavior of dynamically
dispatched (virtual) method calls. Early work (see, e.g., [25]) simply assumed
that a virtual call e.m(· · · ) can invoke any method with the same name m. This
approach can be captured using the following constraints:

main ∈ R RAmain

c 7→M
M ∈ R RAreachable

call c : e.m(. . .) occurs in method M
method M ′ has name m

M ∈ R
c 7→M ′

RAcall

Intuitively, rule RAmain reads “the main method is reachable” by including
it in the set R of reachable methods. Rule RAcall states that “if a method is
reachable, and a call site c : e.m(. . .) occurs in its body, then every method with
name m is reachable from c.” Finally, rule RAreachable states that any method
M reachable from a call site c is contained in the set R of reachable methods.

Class Hierarchy Analysis (CHA). Obviously, Name-Based Resolution can be-
come very imprecise if a class hierarchy contains unrelated methods that happen
to have the same name. Class Hierarchy Analysis [8] improves upon name-based
resolution by using the static type of the receiver expression of a method call in
combination with class hierarchy information to determine what methods may
be invoked from a call site. Following the notation of [26], we use StaticType(e)
to denote the static type of an expression e, and StaticLookup(C,m) to denote
the method definition that is invoked when method m is invoked on an object
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with run-time type C. Using these definitions, CHA is defined as follows:

main ∈ R CHAmain

c 7→M
M ∈ R CHAreachable

call c : e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))

StaticLookup(C,m) = M ′

M ∈ R
c 7→M ′

CHAcall

Rules CHAmain and CHAreachable are the same as their counterparts for RA.
Intuitively, rule CHAcall now reads: “if a method is reachable, and a call site
c : e.m(. . .) occurs in the body of that method, then every method with name
m that is inherited by a subtype of the static type of e is reachable from c.”

Rapid Type Analysis (RTA). Bacon and Sweeney [4, 5] observed that CHA
produces very imprecise results when only a subset of the classes in an application
is instantiated. In such cases, CHA loses precision because, effectively, it assumes
for a method call e.m(· · · ) that all subtypes of the static type of e may arise
at run time. In order to mitigate this loss of precision, RTA maintains a set of
types Σ̂ that have been instantiated in reachable methods. This set is used to
approximate the types that a receiver expression may assume at run time. The
constraint formulation of RTA is as follows:

main ∈ R RTAmain

“new C()” occurs in M
M ∈ R

C ∈ Σ̂
RTAnew

c 7→M
M ∈ R RTAreachable

call e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))

StaticLookup(C,m) = M ′

M ∈ R
C ∈ Σ̂
c 7→M ′

RTAcall

Rules RTAmain and RTAreachable are again the same as before. Intuitively,
RTAcall refines CHAcall by requiring that C ∈ Σ̂, and rule RTAnew reads: “Σ̂
contains the classes that are instantiated in a reachable method.”

Sallenave and Ducourneau [21] recently presented an extension of RTA for
the C# language that determines the types with which parameterized classes
are instantiated by maintaining sets of type tuples for parameterized classes and
methods. They use their analysis to generate efficient CLI code for embedded ap-
plications that avoids expensive boxing/unboxing operations on primitive types,
while permitting a space-efficient shared representation for reference types.

3 Motivating Examples

Before presenting our algorithms in Section 4, we briefly review the Scala features
that pose the most significant challenges for call graph construction.

4



1 object Traits {
2 trait A {
3 def foo = println (”A.foo”)
4 def bar
5 }
6 trait B {
7 def foo
8 def bar = this. foo
9 }

10 trait C {
11 def foo = println (”C.foo”)
12 }
13

14 def main(args: Array[ String ]) =
15 { (new A with B).bar }
16 }

Fig. 1. A Scala program illustrating the use of traits.

3.1 Traits

Traits are one of the cornerstone features of Scala. They provide a flexible mech-
anism for distributing the functionality of an object over multiple reusable com-
ponents. Traits are similar to Java’s abstract classes in the sense that they may
provide definitions of methods, and in that they cannot be instantiated by them-
selves. However, they resemble Java interfaces in the sense that a trait may
extend (“mix-in”) multiple super-traits.

Figure 1 shows an example program that declares a trait A in which a concrete
method foo and an abstract method bar are defined. The program also declares
a trait B that defines a concrete method bar and an abstract method foo. Lastly,
trait C defines a concrete method foo. The program contains a main method that
creates an object by composing A and B, and then calls bar on that object.

Before turning our attention to call graph construction, we need to consider
how method calls are resolved in Scala. In Scala, the behavior of method calls
depends on the class linearization order of the receiver object [18, Section 5.1.2].
The linearization of a class C with parents C1 with · · · with Cn is defined as:

L(C) = C,L(Cn)
→
+ · · ·→+L(C1)

where
→
+ denotes concatenation where elements of the right operand replace

identical elements of the left one3. Scala defines the set of members of a class in
terms of its linearization. Ignoring a number of complicating factors detailed in
the Scala specification [18, §5.1.3 and §5.1.4], the members of a class C include
all members m declared in classes in L(C), except for those overridden in classes
that precede C in the linearization order. Given this notion of class membership,
the resolution of method calls is straightforward: a call x.m(· · · ) where x has
type C at run time dispatches to the unique member named m in C.

For the example of Figure 1, the linearization order of type new A with B

on line 15 is: X, B, A (here, we use X to denote the anonymous class that is
implicitly declared by the allocation expression new A with B). Following the
definitions above, the set of members of X is: { B.bar,A.foo }. Hence, the call to

3 The presence of an allocation expression such as new C with D is equivalent to a
declaration of a new empty class with parents C with D.
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bar on line 15 resolves to B.bar. Using a similar argument, the call to foo on line 8
resolves to A.foo. Therefore, executing the program will print “A.foo”.

Implications for call graph construction. The presence of traits complicates the
construction of call graphs because method calls that occur in a trait typically
cannot be resolved by consulting the class hierarchy alone. In the example of
Figure 1, B.bar contains a call this.foo on line 8. How should a call graph con-
struction algorithm approximate the behavior of this call, given that there is no
inheritance relation between A, B, and C?

To reason about the behavior of method calls in traits, a call graph con-
struction algorithm needs to make certain assumptions about how traits are
combined. One very conservative approach would be to assume that a program
may combine each trait with any set of other traits in the program in any order4,
such that the resulting combination is syntactically correct5. Then, for each of
these combinations, one could compute the members contained in the resulting
type, and approximate the behavior of calls by determining the method that is
selected in each case. For the program of Figure 1, this approach would assume
that B is composed with either A or with C. In the former case, the call on line 8
is assumed to be invoked on an object of type A with B (or B with A), and would
dispatch to A.foo. In the latter, the call is assumed to be invoked on an object
of type C with B (or B with C), and would dispatch to C.foo. Hence, a call graph
would result in which both A.foo and C.foo are reachable from the call on line 8.

The conservative approach discussed above is likely to be imprecise and in-
efficient in cases where a program contains many traits that can be composed
with each other. For practical purposes, a better approach is to determine the
set of combinations of traits that actually occur in the program, and to use that
set of combinations of traits to resolve method calls. Returning to our example
program, we observe that the only combination of traits is A with B, on line 15.
If the call on line 8 is dispatched on an object of this type, it will dispatch to
A.foo, as previously discussed. Hence, this approach would create a smaller call
graph in which there is only one outgoing edge for the call on line 8.

This more precise approach requires that the set of all combinations of traits
in the program can be determined. The conservative approach could still have
merit in cases where this information is not available (e.g., libraries intended to
be extended with code that instantiates additional trait combinations).

3.2 Abstract Type Members

Scala supports a flexible mechanism for declaring abstract type members in traits
and classes. A type declaration [18, §4.3] defines a name for an abstract type,

4 Note that an X with Y object may behave differently from a Y with X object in
certain situations because these objects have different linearization orders.

5 If multiple traits that provide concrete definitions of the same method are composed,
all but the last of these definitions in the linearization order must have the override
modifier in order for the composition to be syntactically correct [18, Section 5.1.4].
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17 object AbstractTypeMembers {
18 trait HasFoo {
19 def foo: Unit
20 }
21 trait X {
22 class A extends HasFoo {
23 def foo = println (”X.A.foo”)
24 }
25 }
26 trait Y {
27 class A extends HasFoo {
28 def foo = println (”Y.A.foo”)
29 }
30 ...

31 ...
32 type B = A
33 val o = new A
34 }
35 trait Z {
36 type B <: HasFoo
37 val o: B
38 def bar = o.foo
39 }
40

41 def main(args: Array[ String ]) =
42 { (new Y with Z {}).bar }
43 }

Fig. 2. A Scala program illustrating the use of abstract type members.

along with upper and lower bounds that impose constraints on the concrete types
that it could be bound to. An abstract type is bound to a concrete type when
its declaring trait is composed with (or extended by) another trait that provides
a concrete definition in one of two ways: either it contains a class or trait with
the same name as the abstract type, or it declares a type alias [18, §4.3] that
explicitly binds the abstract type to some specified concrete type.

Figure 2 shows a program that declares traits X, Y, Z, and HasFoo. Traits X

and Y each declare a member class A that is a subclass of HasFoo. Traits Y and
Z each declare an abstract type member B and a field o, which is assigned a new
A object in Y. Note that Y defines its B to be the same as Y.A. Observe that the
abstract member type B of Z has a bound HasFoo, and that o is declared to be of
type B. The presence of this bound means that we can call foo on o on line 38.

On line 42, the program creates an object by composing Y with Z, and calls
bar on it. Following Scala’s semantics for method calls, this call will dispatch to
Z.bar. To understand how the call o.foo on line 38 is resolved, we must understand
how abstract type members are bound to concrete types as a result of trait
composition. In this case, the composition of Y with Z means that the types Y.B

and Z.B are unified. Since Y.B was defined to be the same as Y.A, it follows that
the abstract type member Z.B is bound to the concrete type Y.A. Thus, executing
the call on line 38 dispatches to Y.A.foo, so the program prints “Y.A.foo”.

Implications for call graph construction. How could a call graph construction
algorithm approximate the behavior of calls such as o.foo in Figure 2, where the
receiver expression’s type is abstract? A conservative solution relies on the bound
of the abstract type as follows: For a call o.f(· · · ) where o is of an abstract type
T with bound B, one could assume the call to dispatch to definitions of f(· · · )
in any subtype of B. This approach is implemented in our TCAbounds algorithm
and identifies both X.A.foo and Y.A.foo as possible targets of the call on line 38.

However, the above approach may be imprecise if certain subtypes of the
bound are not instantiated. Our TCAexpand algorithm implements a more pre-
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44 object Closures {
45 def bar1(y: () => A) = { y() }
46 def bar2(z: () => B) = { z() }
47

48 class A
49 class B

50 def main(args: Array[ String ]) = {
51 val foo1 = () => { new A }
52 val foo2 = () => { new B }
53 this .bar1(foo1)
54 this .bar2(foo2)
55 }
56 }

Fig. 3. A Scala program illustrating the use of closures.

cise approach that considers how abstract type members are bound to concrete
types in observed combinations of traits, in the same spirit of the more precise
treatment of trait composition discussed above. In Figure 2, the program only
creates an object of type Y with Z, and Z.B is bound to Y.A in this particular
combination of traits. Therefore, the call on line 38 must dispatch to Y.A.foo.

Scala’s parameterized types [18, §3.2.4] resemble abstract type members and
are handled similarly. Similar issues arise in other languages with generics [21].

3.3 Closures

Scala allows functions to be bound to variables and passed as arguments to other
functions. Figure 3 illustrates this feature, commonly known as “closures”. On
line 51, the program creates a function and assigns it to a variable foo1. The
function’s declared type is () => A, indicating that it takes no parameters and
returns an object of type A. Likewise, line 52 assigns to foo2 a function that takes
no arguments and returns a B object.

Next, on line 53, bar1 is called with foo1 as an argument. Method bar1 (line 45)
binds this closure to its parameter y, which has declared type () => A, and then
calls the function bound to y. Similarly, on line 54 bar2 is called with foo2 as an
argument. On line 46, this closure is bound to a parameter z and then invoked.
From the simple data flow in this example, it is easy to see that the call y() on
line 45 always calls the function that was bound to foo1 on line 51, and that the
call z() on line 46 always calls the function that was bound to foo2 on line 52.

Implications for call graph construction. In principle, one could use the declared
types of function-valued expressions and the types of the closures that have
been created to determine if a given call site could invoke a given function. For
example, the type of y is () => A, and line 53 creates a closure that can be bound
to a variable of this type. Therefore, a call graph edge needs to be constructed
from the call site y() to the closure on line 53. By the same reasoning, a call
graph edge should be constructed from the call site z() to the closure on line 54.

Our implementation takes a different approach to handle closures. Rather
than performing the analysis at the source level, we apply it after the Scala com-
piler has “desugared” the code by transforming closures into anonymous classes
that extend the appropriate scala.runtime.AbstractFunctionN. Each such class has
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57 object Closures {
58 def bar1(y: () => A) = { y.apply() }
59 def bar2(z: () => B) = { z.apply() }
60

61 class A
62 class B
63

64 def main(args: Array[ String ]) = {
65 val foo1: () => A = {
66 class $anonfun extends
67 scala .runtime.AbstractFunction0[A] {
68 def apply (): A = { new A() }
69 };
70 new $anonfun()
71 };

72 val foo2: () => B = {
73 class $anonfun extends
74 scala .runtime.
75 AbstractFunction0[B] {
76 def apply (): B = {
77 new B()
78 }
79 };
80 new $anonfun()
81 };
82 this .bar1(foo1)
83 this .bar2(foo2)
84 }
85 }

Fig. 4. Desugared version of the program of Figure 3 (slightly simplified).

86 object This {
87 trait A {
88 def foo
89 // can only call B.foo
90 def bar = this. foo
91 }
92

93 class B extends A {
94 def foo = println (”B.foo”)
95 }

96 class C extends A {
97 def foo = println (”C.foo”)
98 override def bar = println (”C.bar”)
99 }

100

101 def main(args: Array[ String ]) = {
102 (new B).bar
103 (new C).bar
104 }
105 }

Fig. 5. A Scala program illustrating a call on this.

an apply() method containing the closure’s original code. Figure 4 shows a desug-
ared version of the program of Figure 3. After this transformation, closures can
be treated as ordinary parameterized Scala classes without loss of precision. This
has the advantage of keeping our implementation simple and uniform.

3.4 Calls on the variable this

Figure 5 shows a program that declares a trait A with subclasses B and C. Trait A

declares an abstract method foo, which is overridden in B and C, and a concrete
method bar, which is overridden in C (but not in B). The program declares a
main method that calls bar on objects of type B and C (lines 102–103). Executing
the call to bar on line 102 dispatches to A.bar(). Executing the call this.foo() in
that method will then dispatch to B.foo(). Finally, executing the call to bar on
line 103 dispatches to C.bar, so the program prints “B.foo”, then “C.bar”.

Consider how a call graph construction algorithm would approximate the
behavior of the call this.foo() at line 90. The receiver expression’s type is A, so
CHA concludes that either B.foo or C.foo could be invoked, since B and C are
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subtypes of A. However, note that this cannot have type C in A.bar because C

provides an overriding definition of bar. Stated informally, this cannot have type
C inside A.bar because then execution would not have arrived in A.bar in the
first place. The TCAexpand-this algorithm, presented in Section 4, exploits such
knowledge. Care must be taken in the presence of super-calls, as we will discuss.

3.5 Bytecode-based Analysis

The above examples show that Scala’s traits and abstract type members pose
new challenges for call graph construction. Several other Scala features, such
as path-dependent types and structural types, introduce further complications,
and will be discussed in Section 5. At this point, the reader may wonder if all
these complications could be avoided by simply analyzing the JVM bytecodes
produced by the Scala compiler.

We experimentally determined that such an approach is not viable for two
reasons. First, the translation of Scala source code to JVM bytecode involves sig-
nificant code transformations that result in the loss of type information, causing
the computed call graphs to become imprecise. Second, the Scala compiler gen-
erates code containing hard-to analyze reflection for certain Scala idioms.

Loss of Precision. Consider Figure 6, which shows JVM bytecode produced by
the Scala compiler for the program of Figure 3. As can be seen in the figure, the
closures that were defined on lines 51 and 52 in Figure 3 have been translated into
classes Closures$$anonfun$1 (lines 128–138 in Figure 6) and Closures$$anonfun$2

(lines 140–150). These classes extend scala.runtime.AbstractFunction0<T>, which is
used for representing closures with no parameters at the bytecode level. Addition-
ally, these classes provide overriding definitions for the apply method inherited by
scala.runtime.AbstractFunction0<T> from its super-class scala.Function0<T>. This
apply method returns an object of type T. The issue to note here is that Clo-

sures$$anonfun$1 and Closures$$anonfun$2 each instantiate the type parameter T

with different types, Closures$A and Closures$B, respectively. Therefore, their apply

methods return objects of type Closures$A and Closures$B. However, at the byte-
code level, all type parameters are erased, so that we have a situation where:

– scala.Function0.apply has return type Object

– Closures$$anonfun$1.apply and Closures$$anonfun$2.apply each override
scala.Function0.apply and also have return type Object

– there are two calls to scala.Function0.apply on lines 118 and 123

Given this situation, the RTA algorithm creates edges to Clo-

sures$$anonfun$1.apply and Closures$$anonfun$2.apply from each of the calls on
lines 118 and 123. In other words, a bytecode-based RTA analysis creates 4
call graph edges for the closure-related calls, whereas the analysis of Section 3.3
only created 2 edges. In Section 6, we show that this scenario commonly arises
in practice, causing bytecode-based call graphs to become extremely imprecise.
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106 public final class Closures$ {
107 public void main(java.lang . String []);
108 0: new Closures$$anonfun$1
109 ...
110 8: new Closures$$anonfun$2
111 ...
112 18: invokevirtual Closures$ .bar1( scala .Function0) : void
113 ...
114 23: invokevirtual Closures$ .bar2( scala .Function0) : void
115 26: return
116 public void bar1( scala .Function0);
117 0: aload 1
118 1: invokeinterface scala .Function0.apply() : java . lang .Object
119 6: pop
120 7: return
121 public void bar2( scala .Function0);
122 0: aload 1
123 1: invokeinterface scala .Function0.apply() : java . lang .Object
124 6: pop
125 7: return
126 }
127
128 public final class Closures$$anonfun$1 extends scala .runtime.AbstractFunction0 {
129 public final Closures$A apply ();
130 0: new Closures$A
131 3: dup
132 4: invokespecial Closures$A()
133 7: areturn
134 public final java . lang .Object apply ();
135 0: aload 0
136 1: invokevirtual Closures$$anonfun$1.apply() : Closures$A
137 4: areturn
138 }
139
140 public final class Closures$$anonfun$2 extends scala .runtime.AbstractFunction0 {
141 public final Closures$B apply ();
142 0: new Closures$B
143 3: dup
144 4: invokespecial Closures$B()
145 7: areturn
146 public final java . lang .Object apply ();
147 0: aload 0
148 1: invokevirtual Closures$$anonfun$2.apply() : Closures$B
149 4: areturn
150 }

Fig. 6. JVM bytecode produced by the Scala compiler for the program of Figure 3.

151 trait ClassHandler
152

153 object LuceneIndex {
154 def buildStaticIndex (): Int = {
155 val handler = new ClassHandler {
156 var classCount = 0
157 var methodCount = 0
158 }
159 handler .classCount + handler.methodCount
160 }
161 }

Fig. 7. A Scala program for which the compiler generates code containing reflective
method calls (taken from the ensime program, see Section 6).
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Reflection in Generated Code. We detected several cases where the Scala com-
piler generates code that invokes methods using java.lang.reflect.Method.invoke().
In general, the use of reflection creates significant problems for static analysis,
because it must either make very conservative assumptions that have a detrimen-
tal effect on precision (e.g., assuming that calls to java.lang.reflect.Method.invoke()

may invoke any method in the application) or the analysis will become unsound.
Figure 7 shows a small example (taken from the ensime program, see Sec-

tion 6) for which the Scala compiler generates code containing reflection.

4 Algorithms

We present a family of call graph construction algorithms using generic inference
rules, in the same style that we used in Section 2. The algorithms presented
here are: TCAnames, a variant of RA that considers only types instantiated in
reachable code, TCAbounds, a variant of RTA adapted to deal with Scala’s trait
composition and abstract type members, TCAexpand, which handles abstract
type members more precisely, and TCAexpand-this, which is more precise for call
sites where the receiver is this.

We use Figure 8 to illustrate differences between the algorithms. When exe-
cuted, the call site on line 172 calls method B.foo; our different algorithms resolve
this call site to various subsets of the foo methods in classes A, B, C, and D.

162 class A { def foo = ”A.foo” }
163 class B extends A { override def foo = ”B.foo” }
164 class C { def foo = ”C.foo” }
165 class D { def foo = ”D.foo” }
166 class CallSiteClass [T <: A](val receiver : T) {
167 def callsite = {
168 /∗ resolves to:

169 ∗ TCAexpand: { B.foo } , TCAbounds: { B.foo,A.foo }
170 ∗ TCAnames: { B.foo,A.foo,C.foo } , RA: { B.foo,A.foo,C.foo,D.foo }
171 ∗/
172 receiver .foo
173 }
174 }
175 def main(args: Array[ String ]): Unit = {
176 new A
177 val receiver = new B
178 new C
179 val callSiteClass = new CallSiteClass[B]( receiver );
180 callSiteClass . callsite
181 }

Fig. 8. A Scala program illustrating the varying precision of the analyses.
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4.1 TCAnames

The RA algorithm of Section 2 is sound for Scala because it resolves calls based
only on method names, and makes no use of types. However, it is imprecise
because it considers as possible call targets all methods that have the appropriate
name, even those in unreachable code. For Figure 8, RA resolves the call site as
possibly calling all four foo methods, even though D is never instantiated in code
reachable from main. Since RA already computes a set R of reachable methods,
we extend it to consider only classes and traits instantiated in reachable methods.

We add rule RTAnew from RTA, which computes a set Σ̂ of types instantiated
in reachable methods. The CALL rule6 is adapted as follows to make use of Σ̂:

call c : e.m(. . .) occurs in method M
method M ′ has name m

method M ′ is a member of type C

M ∈ R C ∈ Σ̂
c 7→M ′

TCAnames
call

The resulting TCAnames analysis consists of the rule RTAnew and the rules
of RA, except that RAcall is replaced with TCAnames

call . In TCAnames
call , a method

is considered as a possible call target only if it is a member of some type C that
has been instantiated in a reachable method in R7.

For the program of Figure 8, TCAnames resolves the call site to A.foo, B.foo,
and C.foo, but not D.foo because D is never instantiated in reachable code.

4.2 TCAbounds

To improve precision, analyses such as RTA and CHA use the static type of the
receiver e to restrict its possible runtime types. Specifically, the runtime type C
of the receiver of the call must be a subtype of the static type of e.

A key difficulty when analyzing a language with traits is enumerating
all subtypes of a type, as both CHA and RTA do in the condition C ∈
SubTypes(StaticType(e)) in rules CHAcall and RTAcall of Section 2. Given a
trait T , any composition of traits containing T is a subtype of T . Therefore, enu-
merating possible subtypes of T requires enumerating all compositions of traits.
Since a trait composition is an ordered list of traits, the number of possible
compositions is exponential in the number of traits8.

6 When we present an inference rule in this section, we use shading to highlight
which parts of the rule are modified relative to similar preceding rules.

7 Calls on super require special handling, as will be discussed in Section 5.
8 Although some trait compositions violate the well-formedness rules of Scala, such

violations are unlikely to substantially reduce the exponential number of possible
compositions. Moreover, the well-formedness rules are defined in terms of the mem-
bers of a specific composition, so it would be difficult to enumerate only well-formed
compositions without first examining all of them.
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In principle, an analysis could make the conservative assumption that all
compositions of traits are possible, and therefore that any method defined in
any trait can override any other method of the same name and signature in any
other trait (a concrete method overrides another method with the same name
and signature occurring later in the linearization of a trait composition). The
resulting analysis would have the same precision as the name-based algorithms
RA and TCAnames, though it would obviously be much less efficient.

Therefore, we consider only combinations of traits occurring in reachable
methods of the program. This set of combinations is used to approximate the
behavior of method calls. In essence, this is similar to the closed-world assump-
tion of RTA. Specifically, the TCAbounds analysis includes the rule RTAnew to
collect the set Σ̂ of trait combinations occurring at reachable allocation sites.
The resulting set is used in the following call resolution rule:

call e.m(. . .) occurs in method M

C ∈ SubTypes(StaticType(e))

method M ′ has name m
method M ′ is a member of type C

M ∈ R C ∈ Σ̂
c 7→M ′

TCAbounds
call

The added check C ∈ SubTypes(StaticType(e)) relies on the subtyping re-
lation defined in the Scala language specification, which correctly handles com-
plexities of the Scala type system such as path-dependent types.

According to Scala’s definition of subtyping, abstract types do not have sub-
types, so TCAbounds

call does not apply. Such a definition of subtyping is necessary
because it cannot be determined locally, just from the abstract type, which ac-
tual types will be bound to it elsewhere in the program. However, every abstract
type in Scala has an upper bound (if it is not specified explicitly, scala.Any is
assumed), so an abstract type T can be approximated using its upper bound B:

call e.m(. . .) occurs in method M

StaticType(e) is an abstract type with upper bound B

C ∈ SubTypes( B )
method M ′ has name m

method M ′ is a member of type C

M ∈ R C ∈ Σ̂
c 7→M ′

TCAbounds
abstract-call

For the program of Figure 8, TCAbounds resolves the call site to A.foo and
B.foo, but not D.foo because D is never instantiated, and not C.foo, because C is
not a subtype of A, the upper bound of the static type T of the receiver.
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4.3 TCAexpand

The TCAbounds analysis is particularly imprecise for abstract types that do not
have a declared upper bound, since using the default upper bound of scala.Any

makes the bound-based analysis as imprecise as the name-based analysis.
It is more precise to consider only concrete types with which each abstract

type is instantiated, similar to the approach of [21]. To this end, we introduce
a mapping expand(), which maps each abstract type9 T to those concrete types
with which it has been instantiated:

C ∈ Σ̂
“type A = B” is a member of C

D is a supertype of C
“type A” is a member of D

B ∈ expand(D.A)
TCAexpand

expand-type

C ∈ Σ̂
“trait A { . . . }” is a member of C

D is a supertype of C
“type A” is a member of D

C.A ∈ expand(D.A)
TCAexpand

expand-trait

R ∈ expand(S)
S ∈ expand(T )

R ∈ expand(T )
TCAexpand

expand-trans

The TCAbounds
call rule is then updated to use the expand() mapping to deter-

mine the concrete types bound to the abstract type of a receiver:

call e.m(. . .) occurs in method M
StaticType(e) is an abstract type T

C ∈ SubTypes( expand(T ) )

method M ′ has name m
method M ′ is a member of type C

M ∈ R C ∈ Σ̂
c 7→M ′

TCAexpand
abstract-call

Rule TCA
expand
expand-type handles situations such as the one where a type assign-

ment type A = B is a member of some instantiated trait composition C. Now, if
a supertype D of C declares an abstract type A, then B is a possible concrete
instantiation of the abstract type D.A, and this fact is recorded in the expand()

mapping by TCA
expand
expand-type. Rule TCA

expand
expand-trait handles a similar case where

an abstract type is instantiated by defining a member trait with the same name.
The right-hand-side of a type assignment might be abstract, so it is necessary to
compute the transitive closure of the expand() mapping (rule TCA

expand
expand-trans).

Cycles among type assignments may exist. In Scala, cyclic references between
abstract type members are a compile-time error. However, recursion in generic
types is allowed. For example, the parameter B in a generic type A[B] could be

9 Similar rules (not shown) are needed to handle the type parameters of generic types
and type-parametric methods. Our implementation fully supports these cases.
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instantiated with A[B] itself, leading to B representing an unbounded sequence
of types A[B], A[A[B]], . . . . This kind of recursion can be detected either by
limiting the size of expand(T ) for each abstract type to some fixed bound, or by
checking for occurrences of T in the expansion expand(T ). The current version of
our implementation limits the size of expand(T ) to 1000 types. This bound was
never exceeded in our experimental evaluation, implying that recursive types
did not occur in the benchmark programs. The same issue also occurs in Java
and C#, and was previously noted by Sallenave and Ducourneau [21]. Their
implementation issues a warning when it detects the situation. Our algorithm
resolves the issue soundly: when a recursive type T is detected, the algorithm
falls back to using the upper bound of T to resolve calls on receivers of type T .

4.4 TCAexpand-this

In both Java and Scala, calls on the this reference are common. In some cases,
it is possible to resolve such calls more precisely by exploiting the knowledge
that the caller and the callee must be members of the same object. Care must
be taken in the presence of super-calls, as will be discussed in Section 5.1.

For example, at the call this.foo() on line 90 of Figure 5, the static type of
the receiver this is A, which has both B and C as subtypes. Since B and C are
both instantiated, all of the analyses described so far would resolve the call to
both B.foo (line 94) and C.foo (line 97). However, any object that has C.foo as a
member also has C.bar as a member, which overrides the method A.bar containing
the call site. Therefore, the call site at line 90 can never resolve to method C.foo.

This pattern is handled precisely by the following rule:

call D.this.m(. . .) occurs in method M

D is the declaring trait of M

C ∈ SubTypes(D)
method M ′ has name m

method M ′ is a member of type C

method M is a member of type C

M ∈ R C ∈ Σ̂
c 7→M ′

TCAexpand-this
this-call

The rule requires not only the callee M ′, but also the caller M to be members
of the same instantiated type C. The rule applies only when the receiver is the
special variable this. Because nested classes and traits are common in Scala, it
is possible that a particular occurrence of the special variable this is qualified
to refer to the enclosing object of some outer trait. Since it would be unsound
to apply TCA

expand-this
this-call in this case, we require that the receiver be the special

variable this of the innermost trait D that declares the caller method M .
After adding rule TCA

expand-this
this-call , we add a precondition to rule TCA

expand-this
call

so that it does not apply when TCA
expand-this
this-call should, i.e., when the receiver is

the special variable this of the declaring trait D of the caller method M .

16



4.5 Correctness

In the appendix of this technical report, we provide a formalization of the in-
ference rules for TCAexpand-this based on the FSalg (“Featherweight Scala”)

representation of Cremet et al. [7]. We also prove the TCAexpand-this analysis
correct with respect to the operational semantics of FSalg by demonstrating

that:

1. For any FSalg program P , the set of methods called in an execution trace

of P is a subset of the set R of reachable methods computed for P by
TCAexpand-this.

2. For any FSalg program P , if the execution trace of P contains a call from

call site c to a target method M , then TCAexpand-this applied to P derives
c 7→M .

5 Implementation

We implemented RA, TCAnames, TCAbounds, TCAexpand, and TCAexpand-this

as a plugin for version 2.10.2 of the Scala compiler, and tested the implemen-
tation on a suite of programs exhibiting a wide range of Scala features. To the
best of our knowledge, our analyses soundly handle the entire Scala language,
but we assume that all code to be analyzed is available and we ignore reflection
and dynamic code generation. We also used the implementation of RTA in the
WALA framework to construct call graphs from JVM bytecode.

The analysis runs after the uncurry phase, which is the 12th of 30 compiler
phases. At this stage, most of the convenience features in Scala that are speci-
fied as syntactic sugar have been desugared. However, the compiler has not yet
transformed the program to be closer to JVM bytecode, and has not yet erased
any significant type information. In particular, closures have been turned into
function objects with apply methods, pattern matching has been desugared into
explicit tests and comparisons, and implicit calls and parameters have been made
explicit, so our analysis does not have to deal with these features explicitly.

Some Scala idioms, e.g., path-dependent types, structural types, singletons,
and generics, make the subtype testing in Scala complicated [18, §3.5]. For-
tunately, we can rely on the Scala compiler infrastructure to answer subtype
queries. Two issues, however, require special handling in the implementation:
super calls and incomplete programs.

5.1 Super calls

Normally, when a method is called on some receiver object, the method is a
member of that object. Super calls violate this general rule: a call on super

invokes a method in a supertype of the receiver’s type. This method is generally
not a member of the receiver object, because some other method overrides it.
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At a call on super, the analysis must determine the method actually invoked.
When the call site is in a class (not a trait), the call is resolved statically as
in Java. When the call site is in a trait, however, the target method is selected
using a dynamic dispatch mechanism depending on the runtime type of the
receiver [18, §6.5]. Our analysis resolves such calls using a similar procedure as
for ordinary dynamically dispatched calls. For each possible run-time type of the
receiver, the specified procedure is followed to find the actual call target.

The TCAexpand-this analysis requires that within any method M , the this vari-
able refers to an object of which M is a member. This premise is violated when
M is invoked using a super call. To restore soundness, we blacklist the signatures
of the targets of all reachable super calls. Within a method whose signature is
blacklisted, we fall back to the TCAexpand analysis instead of TCAexpand-this.

5.2 Incomplete programs

Our analyses are defined for complete programs, but a practical implementa-
tion must deal with incomplete programs. A typical example of an incomplete
program is a situation where user code calls unanalyzed libraries.

Our implementation analyzes Scala source files presented to the compiler,
but not referenced classes provided only as bytecode such as the Scala and
Java standard libraries. The analysis soundly analyzes call sites occurring in the
provided Scala source files using a Scala analogue of the Separate Compilation
Assumption [2,3], which asserts that unanalyzed “library” classes do not directly
reference analyzed “application” classes. If application code passes the name of
one of its classes to the library and the library instantiates it by reflection,
then our analysis faces the same challenges as any Java analysis, and the same
solutions would apply.

If the declaring class of the static target of a call site is available for analysis,
then so are all its subtypes. In such cases, the analysis can soundly determine all
possible actual call targets. On the other hand, if the declaring class of the static
target of a call is in an unanalyzed class, it is impossible to determine all possible
actual target methods, because some targets may be in unanalyzed code or in
trait compositions that are only created in unanalyzed code. The implementation
records the existence of such call sites, but does not attempt to resolve them
soundly. However, such call sites, as well as those in unanalyzed code, may
call methods in analyzed code via call-backs. For soundness, the analysis must
treat such target methods as reachable. This is achieved by considering a method
reachable if it occurs in an instantiated type and if it overrides a method declared
in unanalyzed code. This is sound because in both cases (a call whose static
target is in unanalyzed code, or a call in unanalyzed code), the actual runtime
target method must override the static target of the call.

Determining the method overriding relationship is more difficult than in Java.
Two methods declared in two independent traits do not override each other un-
less these traits are composed in the instantiation of some object. Therefore, the
overriding relation must be updated as new trait compositions are discovered.

18



6 Evaluation

We evaluated our implementation on publicly available Scala programs cover-
ing a range of different application areas and programming styles.10 Table 1
shows, for each program, the number of lines of Scala source code (excluding
library code), classes, objects, traits, trait compositions, methods, closures, call
sites, call sites on abstract types, and call sites on the variable this. argot is
a command-line argument parser for Scala. ensime is an Emacs plugin that
provides an enhanced Scala interactive mode, including a read-eval-print loop
(REPL) and many features commonly found in IDEs such as live error-checking,
package/type browsing, and basic refactorings. fimpp is an interpreter for an im-
perative, dynamically-typed language that supports integer arithmetic, console
output, dynamically growing arrays, and subroutines. kiama is a library for lan-
guage processing used to compile and execute several small languages. phantm
is a tool that uses a flow-sensitive static analysis to detect type errors in PHP
code [15]. scalaxb is an XML data-binding tool for Scala. scalisp is a LISP
interpreter written in Scala. see is a simple engine for evaluating arithmetic ex-
pressions. squeryl is a Scala library that provides Object-Relational mapping
for SQL databases. tictactoe is an implementation of the classic “tic-tac-toe”
game with a text-based user-interface. Both kiama and scalaxb are part of
the DaCapo Scala Benchmarking project [22]. We did not use the other DaCapo
Scala benchmarks as they are not compatible with the latest version of Scala.

We ran all of our experiments on a machine with eight dual-core AMD
Opteron 1.4 GHz CPUs (running in 64-bit mode) and capped the available mem-
ory for the experiments to 16 GB of RAM.

6.1 Research Questions

Our evaluation aims to answer the following Research Questions:

RQ1. How precise are call graphs constructed for the JVM bytecode produced
by the Scala compiler compared to analyzing Scala source code?

RQ2. What is the impact on call graph precision of adopting subtype-based
call resolution instead of name-based call resolution?

RQ3. What is the impact on call graph precision of determining the set of
concrete types that may be bound to abstract type members instead of
using a bounds-based approximation?

RQ4. What is the impact of the special treatment of calls on this?
RQ5. How does the running time of the analyses compare?
RQ6. For how many call sites can the algorithms find a single outgoing edge?

10 The benchmark source code is available from http://github.com/bmc/argot,
http://github.com/aemoncannon/ensime, http://github.com/KarolS/fimpp,
http://code.google.com/p/kiama, http://github.com/colder/phantm,
http://github.com/eed3si9n/scalaxb, http://github.com/Mononofu/Scalisp,
http://scee.sourceforge.net, http://github.com/max-l/Squeryl, and
http://github.com/nickknw/arbitrarily-sized-tic-tac-toe.
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6.2 Results

Table 2 summarizes the precision of the call graphs computed by our analyses.
For each benchmark and analysis combination, the table shows the number of
reachable methods and call edges in the call graph. All call graphs presented in
this section include only the analyzed code of the benchmark itself, excluding
any library code. For RTAwala, such “summarized call graphs” were obtained
by collapsing the parts of the call graph in the library into a single node.

RQ1. To answer this question, we compare the call graphs from the TCAbounds

and RTAwala analyses. The call graphs constructed from bytecode have on av-
erage 1.7x as many reachable methods and 4.4x as many call edges as the call
graphs constructed by analyzing Scala source. In other words, analyzing gener-
ated bytecode incurs a very large loss in precision.

Investigating further, we found that the most significant cause of precision
loss is due to apply methods, which are generated from closures. These account
for, on average, 25% of the spurious call edges computed by RTAwala but not
by TCAbounds. The second-most significant cause of precision loss are toString

methods, which account for, on average, 13% of the spurious call edges.
The ensime program is an interesting special case because it uses Scala

constructs that are translated into code that uses reflection (see Section 3.5). As
a result, the RTAwala analysis makes conservative approximations that cause
the call graph to become extremely large and imprecise11. This further reaffirms
that a bytecode-based approach to call graph construction is highly problematic.

11 The summarized call graph computed by RTAwala shown in Table 2 has 4,525
nodes and 61,803 edges. However, the size of the call graph originally computed
by RTAwala (before summarizing the library code) has 78,901 nodes and 7,835,170
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argot 1,074 18 4 6 185 485 168 2,543 2 276
ensime 7,832 223 172 36 984 4,878 532 19,555 23 3,195
fimpp 1,089 42 53 5 685 2,060 549 5,880 4 1,159
kiama 17,914 801 664 162 5,324 19,172 3,963 69,352 401 16,256
phantm 9,319 317 358 13 1,498 7,208 561 36,276 15 6,643
scalaxb 10,290 324 259 222 3,024 10,503 2,204 47,382 35 7,305
scalisp 795 20 14 0 125 428 115 2,313 23 293
see 4,311 130 151 17 415 2,280 262 9,566 11 1,449
squeryl 7,432 255 55 110 1,040 3,793 826 13,585 173 2,540
tictactoe 247 2 7 0 32 112 24 603 0 41
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Table 2. Number of nodes and edges in the summarized version of call graphs com-
puted using the RA, TCAnames, TCAbounds, TCAexpand, TCAexpand-this, and RTAwala.
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argot
nodes 265 184 161 161 161 236
edges 3,516 1,538 442 442 440 648

ensime
nodes 3,491 3,018 2,967 2,966 2,965 4,525
edges 191,435 150,974 8,025 8,023 8,017 61,803

fimpp
nodes 870 773 771 771 771 1,381
edges 12,716 10,900 2,404 2,404 2,404 8,327

kiama
nodes 11,959 8,684 7,609 7,600 7,200 13,597
edges 1,555,533 845,120 35,288 34,062 32,494 609,255

phantm
nodes 5,945 5,207 4,798 4,587 4,587 5,157
edges 376,065 296,252 14,727 13,899 13,870 213,264

scalaxb
nodes 6,795 2,263 1,196 1,196 1,196 3,866
edges 1,832,473 322,499 5,819 5,819 5,818 48,966

scalisp
nodes 283 196 186 186 186 307
edges 3,807 2,380 526 526 526 908

see
nodes 1,869 1,711 1,645 1,572 1,572 2,016
edges 77,303 63,706 8,349 7,466 7,418 14,520

squeryl
nodes 2,484 1,488 408 408 408 1,507
edges 91,342 46,160 1,677 1,677 1,676 8,669

tictactoe
nodes 79 78 78 78 78 112
edges 524 523 170 170 170 327

RQ2. To answer this question, we compare TCAnames and TCAbounds and find
that name-based analysis incurs a very significant precision loss: The call graphs
generated by TCAnames have, on average, 10.9x as many call edges as those
generated by TCAbounds. Investigating further, we found that, on average, 66%
of the spurious call edges computed by the name-based analysis were to apply

methods, which implement closures.

RQ3. To answer this question, we compare TCAbounds and TCAexpand. On
the smaller benchmark programs that make little use of abstract types, the two
produce identical results. Since kiama, phantm, and see contain some call
sites on receivers with abstract types, TCAexpand computes more precise call

edges. We experimentally confirmed that nearly half of these edges are in parts of
the libraries related to the reflection API.
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Table 3. The time (in seconds) taken by RA, TCAnames, TCAbounds, TCAexpand,
TCAexpand-this, and RTAwala to compute the call graphs.
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argot 4 3.4 3.2 3.5 3.5 11.3 25.3
ensime 32.1 24.8 25 29 27.5 510.2 60.6
fimpp 5.5 4.9 7.4 7.5 8 14.3 36.1
kiama 286 83 125.6 132.9 115.3 66.9 104.1
phantm 55.4 43.2 51.1 54.3 52.5 26.8 70.2
scalaxb 113.4 16.3 10.9 11.5 12.7 21.1 85.9
scalisp 3 2.9 3 3.1 3.2 12.6 25.6
see 6.9 6.3 8.2 8.1 8.8 13.9 40
squeryl 21 11.5 5.6 6.3 6.8 20.9 61.6
tictactoe 1.7 1.7 1.9 2 2 9.9 16.3

graphs for them. For scalaxb, scalisp, and squeryl, call graph precision is
not improved despite the presence of abstract types because the call sites on
abstract receivers occur in unreachable code.

RQ4. To answer the fourth research question, we compare the TCAexpand and
TCAexpand-this analyses. In general, we found that the precision benefit of the
special handling of this calls is small and limited to specific programs. In partic-
ular, we found that the number of call edges is reduced by 5% on kiama and by
1% on see, but that there is no significant difference on the other benchmarks.
The situation for kiama is interesting in that TCAexpand finds 3.7% more in-
stantiated types than TCAexpand-this. Those types are instantiated in methods
found unreachable by TCAexpand-this.

The two most common reasons why the more precise rule TCA
expand-this
this-call may

fail to rule out a given call graph edge are that the caller M actually is inherited
into the run-time receiver type C, so the call can occur, or that the caller M

can be called through super, so using the rule would be unsound, as explained
in Section 5.1. Across all the benchmark programs, the rule failed to eliminate
a call edge at 80% of call sites on this due to the caller M being inherited into C,
and at 15% of call sites on this due to the caller M being called through super.

RQ5. The running times of the analyses are presented in Table 3. For compar-
ison, the last column of the table also shows the time required to compile each
benchmark using the unmodified Scala compiler. Although our implementation
has not been heavily tuned for performance, the analysis times are reasonable
compared to scalac compilation times. The high imprecision of the RA anal-
ysis generally makes it significantly slower than the other, more complicated
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Table 4. Number of monomorphic and polymorphic reachable call sites in the sum-
marized version of call graphs computed using RA, and how many of them became
unreachable, monomorphic, or polymorphic in TCAexpand-this.

TCAexpand-this

RA Unreachable Mono Poly

argot
Mono 1,200 459 741 -
Poly 1,296 575 687 34

ensime
Mono 10,901 398 10,503 -
Poly 8,433 430 7,545 458

fimpp
Mono 4,058 56 4,002 -
Poly 1,636 7 1,478 151

kiama
Mono 40,974 15,103 25,871 -
Poly 27,869 11,586 15,337 946

phantm
Mono 17,500 1,023 16,477 -
Poly 18,611 631 16,387 1,593

scalaxb
Mono 22,170 12,206 9,964 -
Poly 24,809 17,181 7,083 545

scalisp
Mono 1,163 143 1,020 -
Poly 1,106 154 890 62

see
Mono 5,327 258 5,069 -
Poly 4,126 321 2,998 807

squeryl
Mono 6,453 4,092 2,361 -
Poly 6,369 4,794 1,498 77

tictactoe
Mono 330 1 329 -
Poly 204 0 187 17

but more precise analyses. The TCAnames analysis is sometimes significantly
faster and sometimes significantly slower than the TCAbounds analysis, since it
avoids the many expensive subtype tests, but is significantly less precise. The
TCAexpand and TCAexpand-this analyses have generally similar execution times
as the TCAbounds analysis because abstract types and this calls are a relatively
small fraction of all call sites in the benchmark programs.

The long running time of nearly 500 seconds of RTAwala on ensime is because
the computed call graph becomes extremely large (see discussion of RQ1).

RQ6. Certain applications of call graphs require call sites to have a unique
outgoing edge. For example, whole-program optimization tools [27] may inline
such “monomorphic” call sites. It is therefore interesting to measure the abil-
ity of the different algorithms to resolve call sites to a unique target method.
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Table 4 shows, for each benchmark program, the number of monomorphic and
polymorphic call sites, as determined by the RA analysis. The table also shows
how these calls are resolved by the TCAexpand-this analysis. For example, for en-
sime, the RA analysis finds 10,901 monomorphic calls and 8,433 polymorphic
calls. Of the 10,901 calls that are identified as monomorphic by RA, 398 are
identified as unreachable by the more precise TCAexpand-this analysis and the
remaining 10,503 remain as monomorphic calls. More interestingly, of the 8,433
calls that RA identifies as polymorphic, 430 become unreachable, 7,545 become
monomorphic, and only 458 remain polymorphic according to TCAexpand-this.

7 Conclusions

We presented a family of low-cost algorithms for constructing call graphs of Scala
programs, in the spirit of Name-Based Resolution (RA) [25], Class Hierarchy
Analysis (CHA) [8] and Rapid Type Analysis (RTA) [5]. Our algorithms consider
how traits are combined in a Scala program to improve precision and handle the
full Scala language, including features such as abstract type members, closures,
and path-dependent types. Furthermore, we proposed a mechanism for resolving
calls on the this reference more precisely, by considering overriding definitions of
the method containing the call site.

We implemented the algorithms in the context of the Scala compiler, and
compared their precision and cost on a collection of Scala programs. We found
that TCAnames is significantly more precise than RA, indicating that main-
taining a set of instantiated trait combinations greatly improves precision. Fur-
thermore, TCAbounds is significantly more precise than TCAnames, indicating
that subtyping-based call resolution is superior to name-based call resolution.
The improvements of TCAexpand over TCAbounds occur on a few larger subjects
that make nontrivial use of abstract type members and type parameters. Simi-
larly, TCAexpand-this only did significantly better than TCAexpand on programs
that make nontrivial use of subtyping and method overriding.

Prior to our work, if one needed a call graph for a Scala program, the only
available method was to analyze the JVM bytecodes produced by the Scala com-
piler. Since significant type information is lost during the compilation process,
RTA call graphs constructed from the JVM bytecodes can be expected to be
much less precise than the call graphs constructed using our new algorithms, as
is confirmed by our experimental results.

While our research has focused on Scala, several aspects of the work are
broadly applicable to other statically typed object-oriented languages. In par-
ticular, the special handling of calls on this can be integrated with existing algo-
rithms such as CHA and RTA for languages such as Java, C#, and C++.
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reviewers for many invaluable comments and suggestions, and to Rob Schluntz
for assistance with testing. This research was supported by the Natural Sci-
ences and Engineering Research Council of Canada and the Ontario Ministry of
Research and Innovation.

24



References

1. Agesen, O. Constraint-based Type Inference and Parametric Polymorphism. In
SAS (1994), pp. 78–100.

2. Ali, K., and Lhoták, O. Application-only Call Graph Construction. In ECOOP
(2012), pp. 688–712.

3. Ali, K., and Lhoták, O. Averroes: Whole-program analysis without the whole
program. In ECOOP (2013), pp. 378–400.

4. Bacon, D. F. Fast and Effective Optimization of Statically Typed Object-Oriented
Languages. PhD thesis, University of California, Berkeley, 1997.

5. Bacon, D. F., and Sweeney, P. F. Fast static analysis of C++ virtual function
calls. In OOPSLA (1996), pp. 324–341.

6. Bravenboer, M., and Smaragdakis, Y. Strictly Declarative Specification of
Sophisticated Points-to Analyses. In OOPSLA (2009), pp. 243–262.

7. Cremet, V., Garillot, F., Lenglet, S., and Odersky, M. A core calculus
for Scala type checking. In MFCS (2006), pp. 1–23.

8. Dean, J., Grove, D., and Chambers, C. Optimization of object-oriented pro-
grams using static class hierarchy analysis. In ECOOP (1995), pp. 77–101.

9. DeFouw, G., Grove, D., and Chambers, C. Fast Interprocedural Class Anal-
ysis. In POPL (1998), pp. 222–236.

10. Grove, D., and Chambers, C. A framework for call graph construction algo-
rithms. ACM Trans. Program. Lang. Syst. 23, 6 (2001), 685–746.

11. Heintze, N. Set-Based Analysis of ML Programs. In LISP and Functional Pro-
gramming (1994), pp. 306–317.

12. Heintze, N., and Tardieu, O. Ultra-fast Aliasing Analysis using CLA: A Million
Lines of C Code in a Second. In PLDI (2001), pp. 254–263.

13. Henglein, F. Dynamic Typing. In ESOP (1992), pp. 233–253.
14. IBM. T.J. Watson Libraries for Analysis WALA. http://wala.sourceforge.

net/, April 2013.
15. Kneuss, E., Suter, P., and Kuncak, V. Phantm: PHP analyzer for type mis-

match. In SIGSOFT FSE (2010), pp. 373–374.
16. Lhoták, O., and Hendren, L. J. Scaling Java Points-to Analysis Using SPARK.

In CC (2003), pp. 153–169.
17. Lhoták, O., and Hendren, L. J. Context-Sensitive Points-to Analysis: Is It

Worth It? In CC (2006), pp. 47–64.
18. Odersky, M. The Scala Language Specification version 2.9. Tech. rep., EPFL,

May 2011. DRAFT.
19. Odersky, M., Spoon, L., and Venners, B. Programming in Scala, 2nd ed.

Artima Press, 2012.
20. Ryder, B. Constructing the call graph of a program. IEEE Transactions on

Software Engineering 5, 3 (1979), 216–226.
21. Sallenave, O., and Ducourneau, R. Lightweight generics in embedded systems

through static analysis. In LCTES (2012), pp. 11–20.
22. Sewe, A., Mezini, M., Sarimbekov, A., and Binder, W. Da capo con scala:

design and analysis of a Scala benchmark suite for the Java virtual machine. In
OOPSLA (2011), pp. 657–676.

23. Shivers, O. Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU,
May 1991.

24. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., and Tip, F. Correla-
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In this supplemental appendix, we review FSalg (Featherweight Scala), for-

malize the TCAexpand-this analysis for FSalg, and prove it sound.

A Extensions to Featherweight Scala

Cremet et al. [7] present an operational semantics and type system for a core
Scala subset FSalg, which is commonly referred to as “Featherweight Scala”.

FSalg includes traits, abstract type members, singleton types, path-dependent

types, and dynamic dispatch.
We make one minor extension to FSalg. In FSalg, a program that calls a

method on a receiver whose static type is an abstract type member is never well-
formed, because abstract type members do not themselves have any members,
and therefore no methods. However, we felt that disallowing such calls would
be unrealistic, because they are quite common in full Scala, and because resolv-
ing them requires reasoning about the way in which traits are composed, as we
discussed in Section 3.2. Fortunately, such calls can be supported in a straight-
forward manner, by allowing abstract type members to have upper bounds just
like in full Scala12. In particular, in full Scala, each abstract type member has
an upper bound, with scala.Any as the default if none is explicitly specified. If e
is an expression whose declared type is an abstract type member T , then calling
methods on e that are declared in the upper bound of T is legal. This allows us
to model situations such as the one in Figure 2 where type Z.B is declared to
have a bound of HasFoo on line 36, thus permitting the call o.foo on line 38.

In the remainder of this section, we review the syntax, operational semantics
and typing rules of FSalg. In the process, we also formalize the small extension

that we have just described. The extension to FSalg is identified by shading .

Figure 9 shows the syntax of FSalg. An FSalg program is a term which is

usually of the form
val z = new

{
ϕ |M

}
; t

Here, z is a universe object consisting of a list of member declarations M , t
is some term to be evaluated in the context of z, and ϕ is the name of the
self-reference. The only change to the original definition by Cremet et al. [7] is
the addition of a bounded type declaration of the form typenA <: T , which we
introduced to allow calls on variables whose type is an abstract type member,
as was illustrated in Figure 2.

Figure 10 presents an operational semantics for FSalg in the form of a relation

→. Here, Σ; t → Σ′; t′ means that a term t in the context of an evaluation
environment Σ can be rewritten to a term t′ in the context of an environment
Σ′. These rules are unchanged from [7].

Figure 11 presents a set of lookup judgments that define the set of members
of a given object based on the type signature that it was instantiated with.

12 Note that, in full Scala, abstract type members may also have lower bounds, which
we do not support here because they are not used by TCAexpand-this.
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These judgments take the form Σ ` T ≺ϕ M , indicating that in the context of
a runtime environment Σ , the type T contains a set of members M . Here, we
added a judgment to handle the case for a type of the form y.A where A is a
type with a bound T . In this case, the set of members in y.A is the same as the
set of members present in T .

The ] operator that is used in Figure 11 deserves some additional discus-
sion. In FSalg [7], the ] operator is defined as concatenation with rewriting of

common members: M ] N = M |dom(M)\dom(N), N , where dom(M) is the set

of labels defined in M and M |L consists of all declarations in M that define
a label in L. This definition does not distinguish between abstract and con-
crete members, and in particular specifies that an abstract member in N can
override a concrete member in M . Here, a member declaration is concrete if it
contains the optional = t or = T or if it is a trait declaration, and abstract
otherwise. In particular, the bounded type declaration is considered abstract.
In contrast, the Scala specification [18, Section 5.1] specifies that a concrete
member always hides an abstract member regardless of their relative order.
To be consistent with Scala, we therefore redefine the ] operator as follows:
M ] N = M |(cdom(M)\cdom(N))∪(adom(M)\dom(N)), N |cdom(N)∪(adom(N)\cdom(M)),

x, y, z, ϕ Variable
a Value label
A Type label

P ::= Program{
x |M t

}
M, N ::= Member decl

valna : T (= t)? Field decl

defna(y : S) : T (= t)? Method decl

typenA(= T )? Type decl

typenA <: T Bounded type decl

traitnA extends(T )
{
ϕ |M

}
Class decl

s, t, u ::= Term
x Variable
t.a Field selection
s.a(t) Method call
valx =new T ; t Object creation

p ::= Path
x Variable
p.a Field Selection

S, T, U ::= Type
p.A Type selection
p.type Singleton type

(T )
{
ϕ |M

}
Type signature

Fig. 9. FeatherWeight Scala Syntax
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valna : T = t ∈ Σ(x)

Σ ; x.a→ Σ ; t
(red-value)

Σ ` T ≺x M

Σ ; valx = new T ; t→ Σ , x : M ; t
(red-new)

defna(z : S) : T = t ∈ Σ(x)

Σ ; x.a(y)→ Σ ; [y/z]t
(red-method)

Σ ; t→ Σ ′ ; t′

Σ ; e[t]→ Σ ′ ; e[t′]
(red-context)

where

e ::= (term evaluation context)

〈〉
e.a

e.a(t)

x.a(s, e, u)

valx = newE; t

E ::= (type evaluation context)

e.a

(T , E, U)
{
ϕ |M

}
Fig. 10. Reduction
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where cdom(M) is the set of labels defined in concrete declarations in M and
adom(M) is the set of labels defined in abstract declarations in M .

Figures 12 and 13 define the type assignment relations that determine a
static type T for each form of term t. When t is a path, two types are defined:
the path-specific type assignment relation S, Γ `path · : · identifies the general
declared type T specified for t by the current environment, whereas the general
type assignment relation S, Γ ` · : · assigns t the specific singleton type t.type.

Figures 14 and 15 define the membership relations that define the set of
members of a static type T . The expansion judgment S, Γ ` · ≺ϕ · is the
static analogue of the runtime lookup judgment: using a static type environment
Γ , it looks up the members of each form of type T . In the original FSalg, an

abstract type has no members because the expansion judgment is not defined
for abstract type members of the form typenA. Therefore, in the original FSalg,

it was impossible to call a method on a receiver whose type was abstract, since
such a type has no member methods. In our extension, we add rule ≺-bounded-
type that gives bounded abstract types of the form typenA <: T the members
of their bound T . This makes a method call on a (bounded) abstract bound
possible, as shown in Figure 2. The membership judgment S, Γ ` · 3 · adjusts
the members found by the expansion judgment to account for singleton types.
When the type of a member involves the self-reference this, represented as ϕ
in FSalg, ϕ is replaced by the actual path p when it occurs in a singleton type

p.type, and the member is removed completely when it occurs in a non-singleton
type in which no specific value for the self-reference ϕ is available.

In Figure 16, we define a relation that extends the members of a type to also
include members of all of its supertypes. This ancestor membership relation is
needed for TCAexpand-this, and is not present in the original FSalg formalization.

∀i, Σ ` Ti ≺ϕ Ni

Σ `
(
T
) {
ϕ |M

}
≺ϕ

(⊎
iNi

)
]M

(lookup-sig)

traitnA extends
(
T
) {
ϕ |M

}
∈ Σ(y)

Σ `
(
T
) {
ϕ |M

}
≺ϕ N

Σ ` y.A ≺ϕ N
(lookup-class)

typenA = T ∈ Σ(y)

Σ ` T ≺ϕ M

Σ ` y.A ≺ϕ M
(lookup-alias)

typenA <: T ∈ Σ(y)

Σ ` T ≺ϕ M

Σ ` y.A ≺ϕ M
(lookup-bounded-type)

Fig. 11. Lookup
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x : T ∈ Γ
S, Γ `path x : T

(path-var)

S, Γ ` p.type 3 valna : T (= t)?

S, Γ `path p.a : T
(path-select)

Fig. 12. Path typing

S, Γ `path p : T

S, Γ ` p : p.type
(path)

S, Γ ` s : S

S, Γ ` t : T ′ S, Γ ` T ′ <: T

S, Γ ` S 3 defna(x : T ) : U(= u)?

S, Γ ` s.a(t) : U
(method)

S, Γ ` t : S t is not a path

S, Γ ` S 3 valna : T (= u)?

S, Γ ` t.a : T
(select)

S, Γ , x : T ` t : S x /∈ fn(S)

S, Γ ` T ≺ϕ Mc S, Γ ` T WF

S, Γ ` val x = new T ; t : S
(new)

Fig. 13. Type assignment

The TCAexpand-this algorithm uses this relation to determine which abstract
type members defined in supertypes are overridden by concrete members in
instantiated subtypes.

Figure 17 defines the subtyping relation <: between types. TCAexpand-this

relies on this relation to decide when a term of a given type S can reduce to
an object of some other given type T . The subtyping relation relies on an alias
expansion relation, shown in Figure 18, that expands type aliases of the form
typenA = T , so that subtypes of T can also be considered subtypes of A within
the context of the object that defines the type alias typenA = T . The subtyping
relation also uses the member subtyping relation, shown in Figure 19, to enforce
that a type is allowed to extend another type only when their respective members
have compatible types.

B Formalization of TCAexpand-this for FSalg

In this part of the appendix, we present a formalization of the TCAexpand-this

algorithm on FSalg. The full TCAexpand-this algorithm formalized for FSalg is

presented in Figure 20.
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S, Γ ` p.type 3 traitnA extends(T )
{
ϕ |M

}
{n} ∪ S, Γ ` (T )

{
ϕ |M

}
≺ϕ N n /∈ S

S, Γ ` p.A ≺ϕ N
(≺ -class)

S, Γ ` p.type 3 typenA = T

{n} ∪ S, Γ ` T ≺ϕ M n /∈ S

S, Γ ` p.A ≺ϕ M
(≺ -type)

S, Γ ` p.type 3 typenA <: T

{n} ∪ S, Γ ` T ≺ϕ M n /∈ S

S, Γ ` p.A ≺ϕ M
(≺ -bounded-type)

∀i, S, Γ ` Ti ≺ϕ Ni

S, Γ ` (T )
{
ϕ |M

}
≺ϕ

(⊎
iNi

)
]M

(≺ -signature)

Fig. 14. Expansion

S, Γ ` p ' q S, Γ `path q : T

ψ(p) ∪ S, Γ ` T ≺ϕ M ψ(p) 6⊆ S
S, Γ ` p.type 3 [p/ϕ]Mi

(3 -singleton)

T is not a singleton type

S, Γ ` T ≺ϕ M ϕ /∈ fn(Mi)

S, Γ ` T 3Mi
(3 -other)

Fig. 15. Membership
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S, Γ ` T 3M
S, Γ ` T 3∪ M

(3∪ -Base)

S, Γ ` p.type 3 traitnA extends(T )
{
ϕ |M

}
S, Γ ` Ti 3∪ N
S, Γ ` p.A 3∪ N

(3∪ -class)

S, Γ ` p.type 3 typenA = T ′

S, Γ ` T ′ 3∪ N
S, Γ ` p.A 3∪ N

(3∪ -alias)

S, Γ ` p.type 3 typenA <: T ′

S, Γ ` T ′ 3∪ N
S, Γ ` p.A 3∪ N

(3∪ -bounded)

S, Γ ` Ti 3∪ N

S, Γ ` (T )
{
ϕ |M

}
3∪ N

(3∪ -signature)

Fig. 16. Ancestor membership

The FSalg type rules are parameterized with a set of bindings Γ and a set

of locked declarations S used to prevent infinite recursion in types and in type
checking. In our formalization of TCAexpand-this, we drop the Γ,S for brevity
because it is uniquely determined by the identity of the particular term t and
its position within the overall term representing the whole program.

FSalg defines paths as a subset of terms that consist of a variable followed

by zero or more field dereferences. The type of a path p is defined to be the
singleton type p.type containing only the object designated by p. A separate
typing judgment of the form Γ,S `path p : T assigns p the wider type T deter-
mined by the declared types of the variable and fields referenced in p. In our
definition of TCAexpand-this, it is this latter type that we need, because it deter-
mines the possible methods that could be members of objects pointed to by p.
Therefore, in the formalization of TCAexpand-this, whenever we write t : T , we
mean Γ,S `path t : T when t is a path, and Γ,S ` t : T when t is not a path.

Rules TCA
expand-this
main and TCA

expand-this
reachable assert that the main method is

reachable, and that if any method M is called from some call site c, then that
M is reachable.

Rule TCA
expand-this
new accumulates the allocation sites that occur in reachable

methods into a set Σ̂. In FSalg, an allocation site is a term of the form val x =

new T ;u . The subterm u is evaluated in a context in which the variable x is
bound to the newly-allocated object of type T . It is at allocation sites that traits
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S, Γ ` T ' T ′ S, Γ ` U ' U ′
S, Γ `∗ T ′ <: U ′

S, Γ ` T <: U
(<: −unalias)

A 6= A′ {n} ∪ S, Γ ` Ti <: p′.A′ n /∈ S
S, Γ ` p.type 3 traitnA extends(T )

{
ϕ |M

}
S, Γ `∗ p.A <: p′.A′

(<: −class)

S, Γ ` p ' p′ S, Γ ` q ' p′

S, Γ `∗ p.type <: q.type
(<: −singleton-right)

S, Γ ` Ti <: p.A

S, Γ `∗ (T )
{
ϕ |M

}
<: p.A

(<: −sig-left)

U is not a singleton type
S, Γ ` p ' q S, Γ `path q : T S, Γ ` T <: U

S, Γ `∗ p.type <: U
(<: −singleton-left)

S, Γ ` p ' p′ S, Γ ` q ' p′

S, Γ `∗ p.A <: q.A
(<: −paths)

T is not a singleton type

∀i, S, Γ ` T <: Ti S, Γ ` T ≺ϕ N

dom(M) ⊆ dom(N) S, Γ ` N �M

S, Γ `∗ T <: (T )
{
ϕ |M

} (<: −sig-right)

Fig. 17. Algorithmic subtyping

S, Γ ` p.type 3 typenA = T
{n} ∪ S, Γ ` T ' U n /∈ S

S, Γ ` p.A ' U (' −type)

S, Γ ` p.type 3 traitnA extends(T )
{
ϕ |M

}
S, Γ ` p.A ' p.A (' −class)

S, Γ ` p.type 3 typenA

S, Γ ` p.A ' p.A (' −abstype)

S, Γ ` (T )
{
ϕ |M

}
' (T )

{
ϕ |M

}
(' −signature)

S, Γ ` p.type 3 typenA <: T

S, Γ ` p.A ' p.A (' −bounded-type)

S, Γ ` p.type ' p.type (' −singleton)

Fig. 18. Type alias expansion
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S, Γ ` T <: T ′

S, Γ ` valna : T (= t)? <: valma : T ′(= t′)?
(<: −member-field)

S, Γ ` typenA = T <: typenA(= T )? (<: −member-type)

T <: T ′

S, Γ ` typenA = T <: typenA <: T ′
(<: −bounded-type)

S, Γ ` traitnA extends(T )
{
ϕ |M

}
<: traitnA extends(T )

{
ϕ |M

}
(<: −member-class)

S, Γ ` S′ <: S S, Γ ` T <: T ′

S, Γ ` defna(x : S) : T (= t)? <: defma(x : S′) : T ′(= t′)?
(<: −member-method)

Fig. 19. Member subtyping

are finally composed into the types of actual run-time objects. Therefore, the
set Σ̂ contains all compositions of traits that occur in reachable parts of the
program. In addition to the composed type T , Σ̂ also collects the corresponding
variable x that holds the instantiated object because it will be required by the
rule TCA

expand-this
expand-trait.

The informal rules TCA
expand-this
call and TCA

expand-this
call-this from the paper are

merged into a single rule TCA
expand-this
call in the formalization on FSalg. To de-

termine the possible subtypes of the receiver type S, the rule first considers all
types T that occur in the set of reachable compositions Σ̂, then selects only those
that are subtypes of the receiver type (T <: S), and subsequently selects the
method M ′ that is a member of T with a name and signature that are consistent
with the call site c. The precondition (S 3M ∧ s ≡ ϕ)⇒ (T 3M) implements
the special handling of calls on the special variable this. In words, the condition
states that if the receiver s of a call is the special variable this (which is denoted
ϕ in FSalg), then the run-time type T of the receiver must contain the caller M

as a member. Because it is common in Scala to nest traits within other traits, it
is a non-trivial detail to recognize whether the receiver is the particular variable
this on which the caller method was called; in general, the variable this could
refer to any of the outer objects that encloses the current trait. The shaded
precondition applies only if the static type of the receiver this contains the caller
method (S 3M). If it does not (i.e., the receiver is a different variable this than
the receiver of the caller), then the left-hand-side of the implication is false, so
the precondition is trivially true.

In rule TCA
expand-this
call-abstract, the static type of the receiver is a path-dependent

type (s : p.A), and the member A of the object p is an abstract type member
(p.type 3 typenA).13 Here, the difficulty is that the subtyping rules in Scala

13 In every member declaration such as typenA, the subscript n is a unique label that
is used in FSalg to give an identity to that particular declaration. The full syntax of

FSalg member declarations is presented in the Appendix.
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main ∈ R TCAexpand-this
main

call c : s.a(t) occurs in method M, s : S

(x, T ) ∈ Σ̂
T 3M ′, M ′ ≡ defna(y : S′) : T ′(= t′)?

T <: S, (S 3M ∧ s ≡ ϕ)⇒ (T 3M)

(M ∈ R) ⇒ c 7→M ′
TCAexpand-this

call

val x = new T ;u occurs in M

(M ∈ R) ⇒ ((x, T ) ∈ Σ̂)
TCAexpand-this

new

c 7→M
M ∈ R TCAexpand-this

reachable

call c : s.a(t) occurs in method M, s : p.A
p.type 3 typenA

(x, T ) ∈ Σ̂
T 3M ′, M ′ ≡ defna(y : S′) : T ′(= t′)?

T <: S, S ∈ expand(typenA)

(M ∈ R) ⇒ c 7→M ′
TCAexpand-this

abstract-call

(x, T ) ∈ Σ̂
T 3∪ typenA, T 3 typen′A = T ′

T ′ ∈ expand(typenA)
TCAexpand-this

expand-type

(x, T ) ∈ Σ̂
T 3∪ typenA, T 3 traitn′A extends (T ′){ϕ | M}

x.A ∈ expand(typenA)
TCAexpand-this

expand-trait

p.A′ ∈ expand(typenA)
p.type 3 typen′A

′

T ∈ expand(typen′A
′)

T ∈ expand(typenA)
TCAexpand-this

expand-trans

Fig. 20. TCAexpand-this formalized for FSalg.
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and FSalg do not define any subtypes for an abstract type member, so there

is no direct way to determine which types of objects may be assigned to the
receiver. Therefore, in order to determine which types T of objects may be
bound to the receiver s, the analysis must first determine which concrete types
may be bound to the abstract type member p.A. This is accomplished using
rules TCA

expand-this
expand-type, TCA

expand-this
expand-trait, and TCA

expand-this
expand-trans, which generate the

set expand(p.A) of all concrete types that are possibly assigned to the abstract
type p.A. The key complication here is that the call site s.a(t) may occur in one
trait, and the actual static type of s may be assigned to p.A in a different trait,
so the actual static type of s is not known until the traits are composed at an
allocation site of the enclosing object.

In rule TCA
expand-this
expand-base, we examine the set of all reachable trait compositions

Σ̂ for the possible type T of the enclosing object. If some supertype of T declares
an abstract type member typenA, and T contains a member typen′A = T ′, then
the abstract type member A represents the actual type T ′ in T , so we want to
include T ′ in expand(typenA) as one of the possible actual types represented
by the abstract type typenA. In order to determine whether some supertype
of T declares an abstract type member typenA, we define a new relation T 3∪
typenA to hold whenever there exists a supertype S of T such that S 3 typenA.

In addition to an explicit type alias declaration typen′A = T ′, it is also
possible in full Scala (but not FSalg) to define the actual type assigned to an

abstract type typenA implicitly, by mixing in the trait that defines typenA with
another trait that contains a member trait traitn′A of the same name A. This
case is handled by rule TCA

expand-this
expand-trait. Although this rule is not necessary for

FSalg, which does not support this mechanism for binding abstract types, we

present it here for completeness to show how it appears in our implementation
for full Scala.

Finally, the type that is assigned to an abstract type member may itself be
abstract. Therefore, to determine the actual types represented by an abstract
type member, the expand() relation must be transitively closed. The transitive

closure of expand() is ensured by the inference rule TCA
expand-this
expand-trans.

C Correctness Proof

The definition of FSalg [7] defines both an operational semantics and a type

system, but it does not state or prove a theorem of type soundness relating
the two, although soundness is clearly intended. Although the correctness of
TCAexpand-this relies on the soundness of the FSalg type system, we consider it

outside the scope of this paper type to prove type soundness for FSalg. Instead,

we prove that TCAexpand-this is correct for all executions that respect the FSalg
type system. If the FSalg type system is indeed sound, then this covers all

possible executions.
It is typical for a definition of type soundness to assert that if a term s has

type S and reduces to value x with type T , then T <: S. Such a definition fails
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for FSalg when S is an abstract type p.A. In such cases, the concrete type of S is

unknown until execution time when the trait declaring abstract type memberA is
instantiated with a type alias that binds A to a concrete type. The FSalg subtype

relation therefore defines an abstract type to have no subtypes. Thus, under the
common definition of type soundness, terms whose type is abstract could not be
reduced, and abstract types would become useless. To get around this extreme
restriction, we define an extended subtype relation <<: that considers abstract
types. Our definition of type soundness can assert that if term s with type S
reduces to value x with type T , then T <<: S. However, unlike the normal
subtype relation <:, our extended subtype relation <<: must depend on some
specific execution trace that specifies how the abstract type member A has been
instantiated.

Definition 1. In the context of a given dynamic execution trace τ , T <<:τ S
if either:

1. T <: S, or
2. (a) the type S has the form p.A,

(b) A is an abstract type declaration in p,
(c) in the execution trace τ , p reduces to some variable x,
(d) there exist types U ′ and T ′ such that p : U ′ and x : T ′,
(e) if U ′ 3 typenA, then T ′ 3∪ typenA and T ′ 3 typen′A = S′, for some

type S′, and
(f) T <<:τ S

′.

In addition, we extend <<:τ to be reflexively and transitively closed. We omit
the subscript τ when it is clear from the context.

We now make precise the notions of type soundness of FSalg that our cor-

rectness proof of TCAexpand-this depends on. Informally stated, we assume that
executions preserve types consistently with the extended subtype relation <<:,
and that an execution does not get stuck because a method call invokes a method
that is not a member of the receiver.

Assumption 1 Our soundness proof applies to FSalg programs whose execution

is type-sound in the following specific ways.

1. If a term s : S reduces to a variable x : T in an execution τ , then T <<:τ S.
2. If reduction of a valid FSalg program reaches a method call term Σ;x.a(y),

then the set Σ(x) of members of x contains a method M with name a, and
if x : T , then this same method is also a member of the type T (that is,
T 3M).

Our proof also depends on some syntactic restrictions on the types that can
be instantiated. Full Scala has these same restrictions. Although FSalg does not

make these restrictions syntactically, it is not obvious what it would mean in
FSalg to instantiate the types that we prohibit, and any FSalg program instan-

tiating them would immediately get stuck, because the lookup relation is not
defined for them. The restrictions are specified by the following assumption:
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Assumption 2 We assume that in every term that instantiates an object, which
is of the form valx = new T ; t, that the type T cannot be a singleton type of the
form p.type or an abstract type of the form p.A where the member named A in
p is a type declaration and the type member A is not an alias for some concrete
type.

Definition 2. Let τ be a trace Σ, t →∗ Σ′, t′ of the execution of an FSalg
program according to the operational semantics of Figure 10. We define calls(τ)
and allocs(τ) to be the sets of methods called and types instantiated in the trace
τ , respectively. Precisely, each use of the reduction rule red-method refers to a
method label n in the precondition of the rule; calls(τ) is defined to be the set of
all such method labels defined by all uses of the red-method reduction rule in
the trace τ . Similarly, each use of the reduction rule red-new refers to a type
T in the conclusion of the rule, and the new object of this type is assigned to
some variable x. The set allocs(τ) is defined to be the set of all such pairs x, T
defined by all uses of the red-new reduction rule in the trace τ .

Lemma 1. Suppose that when TCAexpand-this is applied to some initial term t,
it computes the set of reachable methods R, the set of possibly instantiated types
Σ̂, and the expand relation expand(·). Let τ be an execution trace starting with
the initial term t. Further suppose that s is a subterm of t that is reduced to x
in the trace τ . If

1. calls(τ) ⊆ R,
2. allocs(τ) ⊆ Σ̂,
3. s : p.A, where A is an abstract type member in p,
4. x : T , and
5. p.type 3 typenA,

then there exists a type S such that T <: S and S ∈ expand(typenA).

Proof. By Assumption 1, if p reduces to some variable y and if y : T ′ and p : U ′,
then T ′ <<: U ′. We first show that this reduction from p to y actually occurs
within the execution trace τ :

1. The reduction rule red-method looks up the members of x in the environ-
ment Σ, so the variable x must have been added to the environment in the
trace τ by an application of red-new. This rule looks up the members of the
type of the variable being inserted, so the lookup relation must be applicable
to p.A. In all of the types of the form p.A appearing in the conclusions of
the lookup relation in Figure 11, the type is of the form y.A. Therefore, a
reduction from p to y must have occurred within the execution trace τ .

The lookup relations that apply to y.A require y to be in the environment, so
the instantiation of val y = newT ′;u must also occur in the trace τ . Therefore,
by the assumptions of the lemma, (y, T ′) ∈ Σ̂. By Definition 1, T ′ 3∪ typenA,
and T ′ 3 typen′A = S for some S such that T <<: S. Therefore, by analysis
rule Expandbase, S ∈ expand(typenA). If S is a concrete type, then T <<: S
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implies that T <: S due to Definition 1, and we are done proving the lemma. If
S is an abstract type p′.A′, then we can repeat the same argument as above to
show that a reduction of p′ to some y′ occurs in τ , that y′ contains a type alias
typen′′A′ = S′, that S′ ∈ expand(typen′′′A′), where typen′′′A′ is the declaration
of A′ in p′, and that T <<: S′. Rule Expandtrans can then be applied: since

1. p′.A′ ∈ expand(typenA),
2. p′.A′ 3 typen′′′A′, and
3. S′ ∈ expand(typen′′′A′),

it follows that S′ ∈ expand(typenA). If S′ is a concrete type, then T <<: S′

implies that T <: S′, and we are done proving the lemma. Otherwise, the same
argument can be repeated to find additional types in the sequence S, S′, S′′, . . .
until one of them is concrete. For each such type S∗, S∗ ∈ expand(typenA), and
T <<: S∗ so when S∗ is concrete, then T <: S∗, and we are done proving the
lemma. The type checking rules of FSalg use a lock set S to explicitly check for

and reject loops in type declarations, so they guarantee that for a valid FSalg
program, a concrete type S∗ will eventually be encountered.

Lemma 2. Suppose that when TCAexpand-this is applied to some initial term t,
it computes the set of reachable methods R and the set of possibly instantiated
types Σ̂. Let τ ′ be an execution trace from Σ, t to Σ′, t′, where Σ is the empty
environment, and let τ ′′ be the extension of τ ′ with one additional execution step
from Σ′, t′ to Σ′′, t′. If

1. calls(τ ′) ⊆ R, and
2. allocs(τ ′) ⊆ Σ̂,

then

1. calls(τ ′′) ⊆ R, and
2. allocs(τ ′′) ⊆ Σ̂.

Proof. Assume that calls(τ ′) ⊆ R and allocs(τ ′) ⊆ Σ̂. There are three cases to
consider depending on the reduction rule used in the transition Σ′, t′ → Σ′′, t′′.

1. The reduction rule may be red-new. In this case, t′ is of the form valx =
new T ; t′′′, and allocs(τ ′′) = allocs(τ ′) ∪ {T}. We must therefore prove that

T ∈ Σ̂. The conclusion of analysis rule TCA
expand-this
new is (M ∈ R) ⇒

(val x = new T ;u ∈ Σ), where M is the method containing the allocation
site, that is, our term t′. M is in R because it is in calls(Σ, t →∗ Σ′, t′).
Therefore, by the conclusion of rule TCA

expand-this
new , the pair (x, T ) is in Σ̂

as required.
2. The reduction rule may be red-method. In this case, t′ is a call site of

the form x.a(y) and calls(τ ′′) = calls(τ ′) ∪ {M ′}, where M ′ is the method
that is invoked in the transition from Σ′, t′ to Σ′′, t′′. We must therefore
prove that M ′ ∈ R. Since t′ is of the form x.a(y), the original program t
must have contained a call site c of the form s.a(t) such that s reduced to
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x and t reduced to y in the trace τ ′. The overall plan is to show that either
rule TCA

expand-this
call or TCA

expand-this
call-abstract applies to assert that c 7→ M ′ , and

then rule TCA
expand-this
reachable concludes that M ′ ∈ R. We examine each of the

preconditions of rules TCA
expand-this
call and TCA

expand-this
call-abstract in turn.

(a) M ∈ R, where M is the method containing call site c
The execution trace τ ′ must contain a call to M , or else the execution
would not be reducing the call site c, which is contained in M . By the
premise of the lemma, M ∈ R.

(b) (x, T ) ∈ Σ̂
In the rule red-method, x is looked up in the current runtime envi-
ronment Σ′. Since the only reduction rule that adds bindings to the
runtime environment is red-new, such a reduction reducing an instan-
tiation valx = new T ; t′′′, for some T and t′′′, must have occurred in
the trace τ ′. By the premise of the lemma, the pair (x, T ) is therefore
present in Σ̂.

(c) T 3M ′, M ′ ≡ defna(y : S′) : T ′(= t′)?

This is given by Assumption 1.

(d) (for TCA
expand-this
call ) T <: S, where s : S

When the type S of s is a concrete type, this is given by Assumption 1.

(e) (for TCA
expand-this
call ) (S 3M ∧ s ≡ ϕ)⇒ (T 3M)

The left-hand side of the implication ensures that this condition is rel-
evant only when the receiver s of the call is the “this” variable ϕ, and
in the case of nested traits, only when it is the ϕ of the innermost trait
containing the method M that contains the call site. The latter is guar-
anteed by the predicate S 3M , since only the innermost enclosing trait
contains M as a member. In this case, the receiver ϕ has the same value
that the receiver had when M itself was invoked. This value must con-
tain M as a member because M was the method invoked. Therefore, the
type T of the actual receiver x at the current call site c contains M as a
member.

(f) (for abstract 7→) T <: S, S ∈ expand(typenA), p.type 3 typenA, s : p.A
We need to ensure that these conditions are satisfied when the type p.A
of s is an abstract type. Lemma 1 applies to trace τ ′, and shows that
the analysis infers a type S ∈ expand(typenA), where typenA is the
declaration of A that is a member of p.type, such that T <: S.

Since all of the premises of the either analysis rule TCA
expand-this
call or TCA

expand-this
call-abstract

are satisfied, its conclusion must hold, so c 7→M ′. By analysis rule TCA
expand-this
reachable ,

M ′ ∈ R, so the conclusion of the lemma is satisfied.

3. The reduction rule may be a rule other than red-new and red-method. In
this case, calls(τ ′) = calls(τ ′′) and allocs(τ ′) = allocs(τ ′′), so the conclusion
of the lemma is satisfied.

Theorem 1. Let t be any initial FSalg program, and let τ = Σ, t→∗ Σ′, t′ be its

execution trace, where Σ is the empty environment. If TCAexpand-this computes
the set of reachable methods R when applied to t, then calls(τ) ⊆ R.
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Proof. The proof is by induction on the length of the trace τ . The induction
hypothesis is defined as follows: for a given trace τ ,

1. calls(τ) ⊆ R, and
2. allocs(τ) ⊆ Σ̂.

When τ is an empty trace, then the sets calls(τ) and allocs(τ) are empty and
therefore the conclusion is immediate. When τ is non-empty, let τ ′ be the sub-
trace of τ consisting of all except the last reduction step. If the induction hy-
pothesis holds for τ ′, then by Lemma 2, the induction hypothesis also holds for
τ . Therefore, by induction, the theorem holds for every execution trace τ .

Corollary 1. Let t be any initial FSalg program, and let τ = Σ, t →∗ Σ′, t′

be its execution trace, where Σ is the empty environment. If TCAexpand-this

computes the set of calls · 7→ · when applied to t, then each pair of call site c
and method target n that occurs in a use of the reduction rule red-method in
τ also occurs as a pair c 7→ n in the analysis result.

Proof. The corollary follows from the soundness of Σ̂ and R (shown by Theo-
rem 1) and following the same reasoning as in Case 2 (for rule red-method) of
the proof of Lemma 2.
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