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ABSTRACT
Runtime verification is an effective automated method for
specification-based offline testing and analysis as well as on-
line monitoring of complex systems. The specification lan-
guage is often a variant of regular expressions or a popular
temporal logic, such as Ltl. This paper presents a novel
and efficient parallel algorithm for verifying a highly expres-
sive fragment of first-order Ltl specifications, where nested
quantifiers can be subject to second-order numerical con-
straints. Such constraints are useful in evaluating thresholds
(e.g., expected uptime of a web server). The significance of
this extension is that it enables us to reason about the cor-
rectness of a large class of systems, such as web servers,
OS kernels, and network behavior, where properties are re-
quired to be instantiated for parameterized requests, kernel
objects, network nodes, etc. Our algorithm uses the pop-
ular MapReduce architecture to split a program trace into
variable-based clusters at run time. Each cluster is then
mapped to its respective monitor instances, verified, and re-
duced collectively on a multi-core CPU or the GPU. Our
algorithm is fully implemented and we report very encour-
aging experimental results, where the monitoring overhead
is negligible on real-world data sets.

1. INTRODUCTION
In this paper, we study runtime verification of properties

specified in a fragment first-order linear temporal logic (Ltl)
with second-order numerical constraints. Runtime verifi-
cation (RV) is an automated specification-based technique,
where a monitor evaluates the correctness of a set of logical
properties on a particular execution either on the fly (i.e., at
run time) or based on log files. Runtime verification com-
plements exhaustive approaches such as model checking and
theorem proving and under-approximated methods such as
testing. First-order properties are of particular interest, as
they can express parametric requirements on types of execu-
tion entities (e.g., processes and threads), user- and kernel-
level events and objects (e.g., locks, files, sockets), web ser-
vices (e.g., requests and responses), and network traffic. For
example, the requirement ‘every open file should eventually
be closed’ specifies a rule for causal and temporal order of
opening and closing individual objects which generalizes to
all files. Such properties cannot be expressed using tradi-
tional RV frameworks, where the specification language is
propositional Ltl or regular expressions.

In this paper, we extend the 4-valued semantics of Ltl,
designed for runtime verification (Ltl4) [1], to first-order

Ltl4 with second-order numerical constraints and propose
an efficient parallel algorithm for their verification at run
time. The syntax of our language Ltl4−foc allows formu-
las that include nested universal and existential quantifiers
over data variables followed by an Ltl subformula in terms
of n-ary predicates. Each quantifier may be subject to a
numerical constraint. For example, the following Ltl4−foc

formula:

∀x : user(x)⇒ (∃≤3 r : rid(r)⇒ (login ∧ unauthorized))

intends to capture the requirement that ‘for all users, there
exist at most 3 requests of type login that end with an unau-
thorized status’. Also, the formula:

∀≥0.95 s : socket(s)⇒ (G receive (s) =⇒ F respond (s))

intends to express the property that ‘at least 95% of open
TCP/UDP sockets must eventually be closed’. The seman-
tics of Ltl4−foc is defined over six truth values:

• True (>) denotes that the property is already perma-
nently satisfied.

• False (⊥) denotes that the property is already perma-
nently violated.

• Currently true (>c) denotes that the current execu-
tion satisfies the quantifier constraint of the property,
yet it is possible that an extension violates the con-
straint.

• Currently false (⊥c) denotes that the current execu-
tion violates the quantifier constraint of the property,
yet it is possible that an extension satisfies it.

• Presumably true (>p) denotes that the current ex-
ecution satisfies the inner Ltl property and the quan-
tifier constraint of the property.

• Presumably false (⊥p) denotes that the current ex-
ecution violates the inner Ltl property and the quan-
tifier constraint of the property.

We claim that these truth values provide us with informative
verdicts about the status of different components of proper-
ties (i.e., quantifiers and their numerical constraints as well
as the inner Ltl formula) at run time.

The second contribution of this paper is a divide-and-
conquer-based online monitor generation technique for an
Ltl4−foc specification. In fact, Ltl4−foc monitors have to
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be generated at run time, otherwise, an enormous number of
monitors (i.e., in the size of cross-product of domains of all
variables), which is clearly impractical. Our technique first
synthesizes an Ltl4 monitor for the inner Ltl property of
Ltl4−foc properties pre-compile time using the technique
in [1]. Then, based upon the values of variables observed
at run time, submonitors are generated and merged to com-
pute the current truth value of a property for the current
program trace.

Our third contribution is an algorithm that implements
the above approach for verification of Ltl4−foc properties
at run time. This algorithm enjoys two levels of parallelism:
the monitor (1) works in parallel with the program under
inspection, and (2) evaluates properties in a parallel fashion
as well. While the former ensures that the runtime monitor
does not intervene with the normal operation of the pro-
gram under inspection, the latter attempts to maximize the
throughput of the monitor. The algorithm utilizes the pop-
ular MapReduce technique to (1) spawn submonitors that
aim at evaluating subformulas using partial quantifier elim-
ination, and (2) merge partial evaluations to compute the
current truth value of properties.

Our parallel algorithm for verification of Ltl4−foc prop-
erties is fully implemented on multi-core CPU and GPU
technologies. We report rigorous experimental results by
conducting three real-world independent case studies. The
first case study is concerned with monitoring HTTP requests
and responses on an Apache Web Server. The second case
study attempts to monitor users uploading maximum chunk
packets repeatedly to a personal cloud storage service based
on a dataset for profiling DropBox traffic. The third case
study monitors a network proxy cache to reduce the band-
width usage of online video services, based on a YouTube
request dataset. We present performance results comparing
single-core CPU, multi-core CPU, and GPU implementa-
tions. Our results show that our GPU-based implementa-
tion provides an average speed up of 7x when compared
to single-core CPU, and 1.75x when compared to multi-
core CPU. The CPU utilization of the GPU-based imple-
mentation is negligible compared to multi-core CPU, free-
ing up the system to perform more computation. Thus, the
GPU-based implementation manages to provide competitive
speedup while maintaining a low CPU utilization, which are
two goals that the CPU cannot achieve at the same time.
Put it another way, the GPU-based implementation incurs
minimal monitoring costs while maintaining a high through-
put.

The rest of the paper is organized as follows. Section 2 de-
scribes the syntax and semantics of Ltl4−foc. In Section 3,
we explain our online monitoring approach, while Section 4
presents our parallelization technique based on MapReduce.
Experimental results are presented in Section 5. Related
work is discussed in Section 6. Finally, we make concluding
remarks and discuss future work in Section 7.

2. FIRST-ORDER LTL WITH NUMERICAL
CONSTRAINTS

To introduce our logic, we first define a set of basic con-
cepts.

Definition 1 (Predicate). Let V = {x1, x2, . . . , xn}
be a set of variables with (possibly infinite) domains
D1,D2, . . . ,Dn, respectively. A predicate p is a binary-valued

function on the domains of variables in V such that

p : D1 ×D2 × · · · × Dn → {true, false} �

The arity of a predicate is the number of variables it accepts.
A predicate is uninterpreted if the domain of variables are
not known concrete sets. For instance, p(x1, x2) is an unin-
terpreted predicate, yet we can interpret it as (for instance)
a binary function that checks whether or not x1 is less than
x2 over natural numbers.

Let UP be a finite set of uninterpreted predicates, and let
Σ = 2UP be the power set of UP . We call each element of
Σ an event.

Definition 2 (Trace). A trace w = w0w1 · · · is a
finite or infinite sequence of events; i.e, wi ∈ Σ, for all
i ≥ 0. �

We denote the set of all infinite traces by Σω and the set
of all finite traces by Σ∗. A program trace is a sequence of
events, where each event consists of interpreted predicates
only. For instance, the following trace is a program trace:

w = {open(1), r, anony)} {open(2), rw, user(5)} · · ·

where open and user are unary predicates and r, anony, and
rw are 0-arity predicates. Predicate open is interpreted as
opening a file, r is interpreted as read-only permissions, anony
is interpreted as an anonymous user, and so on.

2.1 Syntax of LTL4-FOC

Definition 3 (Ltl4−foc Syntax). Ltl4−foc formu-
las are defined using the following grammar:

ϕ ::=∀∼k x : p(x)⇒ ϕ | ∃∼l x : p(x)⇒ ϕ | ψ
ψ ::=> | p (x1 · · ·xn) | ¬ψ | ψ1 ∧ ψ2 |

Xψ | ψ1 Uψ2

where x, x1 · · ·xn are variables with possibly infinite do-
mains D,D1, · · · Dn, ∼∈ {<,≤, >,≥,=}, k :R ∈ [0, 1], l ∈
Z+, X is the next, and U is the until temporal operators. �

If we omit the numerical constraint in ∀∼k (respectively,
∃∼l), we mean ∀=1 (respectively, ∃≥1). The syntax of Ltl4−foc

forces constructing formulas, where a string of quantifiers is
followed by a quantifier-free formula.

Consider Ltl4−foc property ϕ = ∀x : p(x) ⇒ ψ, where
the domain of x is D. This property denotes that for any
possible valuation of the variable x ([x := v]), if p(v) holds,
then ψ should hold. If p(v) does not hold, then p(v) ⇒ ψ
trivially evaluates to true. This effectively means that the
quantifier ∀x is in fact applied only over the following sub-
domain:

{v ∈ D | p(v)} ⊆ D

To give an intuition, consider the scenarios where file man-
agement anomalies can cause serious problems at run time
(e.g., in NASA’s Spirit Rover on Mars in 2004). For exam-
ple, the following Ltl4−foc property expresses “if a process
wants to open a new file, then at least half of the files that
it has previously opened must be closed”:

ϕ1 = ∀≥50% f : intrace(f)⇒ (opened(f) U close(f)) (1)

where intrace denotes the fact that the concrete file appeared
in any event in the trace.
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2.2 4-Valued LTL [1]
First, we note that the syntax of Ltl4 can be easily ob-

tained from Definition 3 by (1) removing the quantifier rules
and (2) reducing the arity of predicates to 0 (i.e., predicates
become atomic propositions).

2.2.1 FLTL
To introduce Ltl4 semantics, we first introduce Finite

Ltl. Finite Ltl (Fltl) [11] allows us to reason about finite
traces for verifying properties at run time. The semantics of
Fltl is based on the truth values B2 = {>,⊥}.

Definition 4 (Fltl semantics). Let ϕ and ψ be Ltl
properties, and u = u0u1 · · ·un−1 be a finite trace.

[u |=F Xϕ] =

{
[u1 |=F ϕ] if u1 6= ε

⊥ otherwise

[u |=F ϕUψ] =


> ∃k ∈ [0, n− 1] : [uk |=F ψ] = > ∧
∀l ∈ [0, k) : [ul |=F ϕ] = >

⊥ otherwise

where ε is the empty trace. The semantics of Fltl for
atomic propositions and Boolean combinations are identical
to that of Ltl. �

Similar to standard Ltl, Fp ≡ >U p and Gp ≡ ¬F¬p.

2.2.2 LTL4 Semantics
Ltl4 is designed for runtime verification by producing

more informative verdicts than Fltl. The semantics of Ltl4
is defined based on values B4 = {>,>p,⊥p,⊥} (true, pre-
sumably true, presumably false, and false respectively). The
semantics of Ltl4 is defined based on the semantics Ltl and
Fltl.

Definition 5 (Ltl4 semantics). Let ϕ be an Ltl4 prop-
erty and u be a finite prefix of a trace.

[u |=4 ϕ] =


> ∀v ∈ Σω : uv |= ϕ

⊥ ∀v ∈ Σω : uv 6|= ϕ

>p [u |=F ϕ] ∧ ∃v ∈ Σω : uv 6|= ϕ

⊥p [u 6|=F ϕ] ∧ ∃v ∈ Σω : uv |= ϕ �

In this definition, |= denotes the satisfaction relation defined
by standard Ltl semantics over infinite traces. Thus, an
Ltl4 property evaluates to > with respect to a finite trace u,
if the property remains permanently satisfied, meaning that
for all possible infinite continuations of the trace, the prop-
erty will always be satisfied in Ltl. Likewise, a valuation
of ⊥ means that the property will be permanently violated.
If the property evaluates to >p, this denotes that currently
the property is satisfied yet there exists a continuation that
could violate it. Finally, value ⊥p denotes that currently
the property is violated yet there exists a continuation that
could satisfy it.

2.2.3 LTL4 Monitors
In [1], the authors introduce a method of synthesizing a

monitor, as a deterministic finite state machine (FSM), for
an Ltl4 property.

>p ?p >p ?p

> ?

> ?

a ¬a b ¬b c ¬c

¬a ^ b ¬a ^ ¬b ^ ¬c

a ¬a b ¬b c ¬c

¬a ^ b ¬a ^ ¬b ^ ¬c

a ¬a b ¬b c ¬c

¬a ^ b ¬a ^ ¬b ^ ¬c

a ¬a b ¬b c ¬c

¬a ^ b ¬a ^ ¬b ^ ¬c

a ¬a b ¬b c ¬c

¬a ^ b ¬a ^ ¬b ^ ¬c
a ¬a b ¬b c ¬c

¬a ^ b ¬a ^ ¬b ^ ¬c

true

true

Figure 1: Ltl4 monitor for property ϕ = Ga ∨ (bU c).

Definition 6 (Ltl4 Monitor). Let ϕ be an Ltl4 for-
mula over Σ. The monitor Mϕ of ϕ is the unique FSM
(Σ, Q, q0, δ, λ), where Q is a set of states, q0 is the ini-
tial state, δ ⊆ Q × Σ × Q is the transition relation, and
λ : Q→ B4 is a function such that:

[u |=4 ϕ] = λ(δ(q0, u)). �

Thus, given an Ltl4 property ϕ and a finite trace u, moni-
torMϕ is capable of producing a truth value in B4, which is
equal to [u |=4 ϕ]. For example, Figure 1 shows the monitor
for property ϕ = Ga ∨ (bU c). Observe that a monitor
has two trap states (only an outgoing self loop), which map
to truth values > and ⊥. They are trap states since these
truth values imply permanent satisfaction (respectively, vi-
olation). Otherwise, states labeled by >p and ⊥p can have
outgoing transitions to other states.

2.3 Truth Values of LTL4-FOC
The objective of Ltl4−foc is to verify the correctness

of quantified properties at run time with respect to finite
program traces. Such verification attempts to produce a
sound verdict regardless of future continuations.

We incorporate six truth values to define the semantics
of Ltl4−foc: B6 = {>,⊥,>c,⊥c,>p,⊥p}; true, false, cur-
rently true, currently false, presumably true, presumably false,
respectively. The values in B6 form a lattice ordered as fol-
lows: ⊥ < ⊥c < ⊥p < >p < >c < >. Given a finite trace
u and an Ltl4−foc property ϕ, the informal description of
evaluation of u with respect to ϕ is as follows:

• True (>) denotes that any infinite extension of u sat-
isfies ϕ.

• False (⊥) denotes that any infinite extension of u vi-
olates ϕ.

• Currently true (>c) denotes that currently u sat-
isfies the quantifier constraint of ϕ, yet it is possible
that a suffix of u violates the constraint. For instance,
the valuation of Property 1 (i.e., ϕ1) is >c, if in a
trace u, currently 50% of files previously opened are
closed. This is because (1) the inner Ltl property is
permanently satisfied for at least 50% of files previ-
ously opened, and (2) it is possible for a trace continu-
ation to change this percentage to less than 50% in the
future (a trace in which enough new files are opened
and not closed).

• Currently false (⊥c) denotes that currently u vio-
lates the quantifier constraint of ϕ, yet it is possible
that a suffix of u satisfies the constraint. For instance,
the valuation of Property 1 (i.e., ϕ1) in a finite trace
u is ⊥c, if the number of files that were not success-
fully opened is currently greater than 50%. This could
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happen in the scenario where opening a file fails, pos-
sibly due to lack of permissions. Analogous to >c, the
property is valuated to ⊥c because (1) the inner Ltl
property is permanently satisfied for less than 50% of
files in the program trace, and (2) it is possible for a
trace continuation to change this percentage to at least
50% in the future.

Now let us consider modifying the property to support
multiple open and close operations on the same file. For
this purpose, we reformulate the property as follows:

ϕ2 = ∀≥50% f : intrace(f)⇒ (G (opened(f) U close(f))) (2)

• Presumably true (>p) extends the definition of pre-
sumably true in Ltl4 [2], which >p denotes that u sat-
isfies the inner Ltl property and the quantifier con-
straint in ϕ, if the program terminates after execution
of u. For example, Property 2 (i.e., ϕ2) evaluates to
>p, if at least 50% of the files in the program trace
are closed. Closed files presumably satisfy the prop-
erty, since they satisfy the G operator thus far, yet can
potentially violate it if the file is opened a subsequent
time without being closed. Note that this property
can never evaluate to >c, since no finite trace prefix
can permanently satisfy the inner Ltl property. How-
ever, if the inner property can be permanently satis-
fied (>) and presumably satisfied (>p), then the entire
Ltl4−foc property can potentially evaluate to >c if
the numerical condition of the quantifier is satisfied.
A property can evaluate to >p only if the conditions
for >c are not met, since >c is higher up the partial
order of B6.

• Presumably false (⊥p) extends the definition of pre-
sumably false in Ltl4 [2], which denotes that u presum-
ably violates the quantifier constraint in ϕ. According
to the Property 2, this scenario will occur when the
number of files that are either closed or opened and
not yet closed is at least 50% of all files in the trace.
Opened files presumably violate the inner property,
since closing the file is required but has not yet oc-
curred. This condition should not conflict with >p or
>c, since they precede ⊥p in the partial order of B6

and thus ⊥p only occurs if the conditions for >p and
>c do not hold.

2.4 Semantics of LTL4-FOC
An Ltl4−foc property essentially defines a set of traces,

where each traces is a sequences of events (i.e., sets of unin-
terpreted predicates). We define the semantics of Ltl4−foc

with respect to finite traces and present a method of utiliz-
ing these semantics for runtime verification. In the context
of runtime verification, the objective is to ensure that a pro-
gram trace (i.e., a sequence of sets of interpreted predicates)
is in the set of traces that the property defines, given the in-
terpretations of the property predicates within the program
trace.

To introduce the semantics of Ltl4−foc, we examine quan-
tifiers further. Since the syntax of Ltl4−foc allows nesting
of quantifiers, a canonical form of properties is as follows:

ϕ = Qϕ ψ (3)

where ψ is a propositional Ltl property and Qϕ is a string

of quantifiers

Qϕ = Q0Q1 · · · Qn−1 (4)

such that each Qi = 〈Qi,∼i, ci, xi, pi〉, 0 ≤ i ≤ n − 1, is
a tuple encapsulating the quantifier information. That is,
Qi ∈ {∀, ∃}, ∼i∈ {<,≤, >,≥,=}, ci is the constraint con-
stant, xi is the bound variable, and pi is the predicate within
the quantifier (see Definition 3).

We presents semantics of Ltl4−foc in a stepwise manner:

1. Variable valuation. First, we demonstrate how
variable valuations are extracted from the trace and
used to substitute variables in the formula.

2. Canonical variable valuations. Next, we demon-
strate how to build a canonical structure of the variable
valuations provided in Step 1. This canonical structure
mirrors the canonical structure of Ltl4−foc proper-
ties.

3. Valuation of property instances. A property
instance is a unique substitution of variables in the
property with values from their domains. This step
demonstrate how to evaluate property instances.

4. Applying quantifier numerical constraints. This
step demonstrates how to evaluate quantifiers by ap-
plying their numerical constraints on the valuation of a
set of property instances from Step 3. The set of prop-
erty instances is retrieved with respect to the canonical
structure defined in Step 2.

5. Inductive semantics. Using the canonical struc-
ture in Step 2, and valuation of quantifiers in Step 4,
we define semantics that begin at the outermost quan-
tifier of an Ltl4−foc property and evaluate quantifiers
recursively inwards.

2.4.1 Variable Valuation
We define a vector Dϕ with respect to a property ϕ as

follows:

Dϕ = 〈d0, d1, · · · , dn−1〉

where n = |Qϕ| and di, 0 ≤ i ≤ n− 1, is a value for variable
xi. We denote the first m components of the vector Dϕ

(i.e., 〈d0, d1, · · · , dm−1〉) by Dϕ|m. We refer to Dϕ as a
value vector and to Dϕ|m as a partial value vector.

A property instances ϕ̂(Dϕ|m) is obtained by replacing
every occurrence of the variables x0 · · ·xm−1 in ϕ with the
values d0 · · · dm−1, respectively. Thus, ϕ̂(Dϕ|m) is free of
quantifiers of index less than m, yet remains quantified over
variables xm · · ·xn−1. For instance, for the following prop-
erty

ϕ = ∀>c1 x : px(x)⇒ (∀<c2 y : py(y)⇒ G q(x, y))

and value vector Dϕ = 〈1, 2〉 (i.e., the vector of values for
variables x and y, respectively), ϕ̂(Dϕ) will be

ϕ̂(〈1, 2〉) = px(1)⇒ (py(2)⇒ G q(1, 2))

We now define the set Dϕ,u as the set of all value vectors
with respect to a property ϕ = Qϕ ψ and a finite trace
u = u0u1 · · ·uk:

Dϕ,u = {Dϕ | ∃j ∈ [0, k] : ∀i ∈ [0, n− 1] : pi(di) ∈ uj} (5)

where n = |Qϕ|.
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2.4.2 Canonical Variable Valuations
An Ltl4−foc property follows a canonical structure, in

which every quantifier Qi has a parent quantifier Qi−1, ex-
cept for Q0 which is the root quantifier. A quantifier Qi is
applied over all valuations of its variable xi given a unique
valuation of its predecessor variables x0, · · · , xi−1. Hence,
we define function P which takes as input a partial value
vector Dϕ|m, and returns all partial value vectors in Dϕ,u of
length m + 1, such that the first m elements of these vec-
tors is the same as Dϕ|m. In this context, we refer to Dϕ|m
as a parent vector and all the returned vectors as child vec-
tors. Similarily, a property instance can have a parent; for
instance, ϕ̂(Dϕ|m) is the parent of ϕ̂(Dϕ|m+1).

P(ϕ, u,Dϕ|m) =

{
D′ϕ|m+1

∣∣∣∣ D′ϕ ∈ Dϕ,u ∧ D′ϕ|m = Dϕ|m
}

Following the example above, assume there are two value
vectors: 〈1, 2〉 and 〈1, 3〉. In this case,

P(ϕ, u, 〈1〉) =
{
〈1, 2〉, 〈1, 3〉

}
2.4.3 Valuation of Property Instances

As per the definition of Dϕ,u, every value vector Dϕ =
〈d0 · · · dn−1〉 in Dϕ,u contains values for which the predicates
pi(di) hold in some trace event uj . For simplicity, we denote
this as a value vector in a trace event uj . These value vectors
can possibly be in multiple and interleaved events in the

trace. Thus, we define a trace uDϕ = u
Dϕ

0 u
Dϕ

1 · · ·uDϕ

l as a
subsequence of the trace u such that the value vector Dϕ is
in every event:

∀ j ∈ [0, l] : ∀ i ∈ [0, n− 1] : pi(di) ∈ uDϕ

j

For any property instance ϕ̂(Dϕ), we wish to evaluate [uDϕ |=6

ϕ̂(Dϕ)] (read as valuation of ϕ̂(Dϕ) with respect to uDϕ for
Ltl4−foc), since any other event in trace u is not of interest
to ϕ̂(Dϕ).

By leveraging uDϕ , we define function B as follows:

B(ϕ, u,Dϕ|m, b) =
D′ϕ|m+1 ∈ P(ϕ, u,Dϕ|m) |

[uD′ϕ|m+1

|=6 ϕ̂(D′ϕ|m+1)] = b iff m < |Qϕ| − 1

D′ϕ|m+1 ∈ P(ϕ, u,Dϕ|m) |
[uD′ϕ|m+1

|=4 ϕ̂(D′ϕ|m+1)] = b iff m = |Qϕ| − 1

where b is a truth value in B6. Function B can be imple-
mented in a straightforward manner, where it iterates over
all its children value vectors D′ϕ|m+1 which are retrieved us-
ing P. For every child vector, the function checks whether
ϕ̂(D′ϕ|m+1) evaluates to b with respect to the trace subse-

quence uD′ϕ|m+1

.
To clarify B, let us refer to our example earlier. Let a

program trace u be as follows:

u = {px(1), py(2), · · · }, {px(1), py(3), · · · }, {px(1), py(2), · · · }

With respect to this trace, P(ϕ, u, 〈1〉) = {〈1, 2〉, 〈1, 3〉}. As

per the definition of uDϕ , u〈1,2〉 = u0u2, and u〈1,3〉 = u1.
Thus, B(ϕ, u, 〈1〉, b) checks the following:

[u〈1,2〉 |=4 px(1)⇒ (py(2)⇒ G q(1, 2))] = b

[u〈1,3〉 |=4 px(1)⇒ (py(3)⇒ G q(1, 3))] = b

The definition of uDϕ implies that pi(di) ∈ u
Dϕ

j for all j.
Thus, we can simplify the property by omitting the p pred-
icates since they hold by definition:

[u〈1,2〉 |=4 G q(1, 2)] = b

[u〈1,3〉 |=4 G q(1, 3)] = b

For instance, if only [u〈1,2〉 |=4 G q(1, 2)] = b holds, then

B(ϕ, u, 〈1〉, b) = {〈1, 2〉}

As can be seen in the example, the property instances that
are evaluated are Ltl4 properties. This is because the input
to B is Dϕ|1 = Dϕ||Qϕ|−1, which represents the inner most
quantifier.

2.4.4 Applying Quantifier Numerical Constraints
Finally, numerical constraints should be incorporated in

the semantics. We define function S as follows:

S(ϕ, u,Dϕ|m, B) =



∣∣∣∣ ⋃
b∈B
B(ϕ, u,Dϕ|m, b)

∣∣∣∣ ∼i

ci × |{P(ϕ, u,Dϕ|m)}| iff Qm = ∀∣∣∣∣ ⋃
b∈B
B(ϕ, u,Dϕ|m, b)

∣∣∣∣ ∼i ci iff Qm = ∃

(6)

where B ⊆ B6 is a set of truth values. This function returns
whether a quantifier constraint is satisfied or not based on
any of the truth values b ∈ B. Observe that, for universal
quantifiers, the constraint value denotes the percentage of
property instances that evaluate to b. For existential quan-
tifiers, the constraint value denotes the number of property
instances that evaluate to b. For instance, consider Prop-
erty 7 which is read as: for all users, there exists at most 3
requests of type login that end with an unauthorized status.
For such a property, if 4 or more unauthorized login attempts
are detected for the same user, the property is permanently
violated.

2.4.5 Inductive Semantics
Using the previously defined set of of functions, we now

formalize Ltl4−foc semantics.

Definition 7 (Ltl4−foc Semantics). Ltl4−foc se-
mantics for properties with quantifiers are defined as follows:

[u |=6 ϕ] =



> iff S(ϕ, u, 〈〉, {>}) = 1 ∧
∀v ∈ Σω : [uv |=6 ϕ] = >

⊥ iff S(ϕ, u, 〈〉,B6 − {⊥}) = 0 ∧
∀v ∈ Σω : [uv |=6 ϕ] = ⊥

>c iff S(ϕ, u, 〈〉, {>,>c}) = 1 ∧
∃v ∈ Σω : [uv |=6 ϕ] 6= >c

⊥c iff S(ϕ, u, 〈〉,B6 − {⊥,⊥c}) = 0 ∧
∃v ∈ Σω : [uv |=6 ϕ] 6= ⊥c

>p iff S(ϕ, u, 〈〉, {>,>c,>p}) = 1 ∧
S(ϕ, u, 〈〉, {>,>c}) = 0

⊥p iff S(ϕ, u, 〈〉, {>,>c,>p}) = 0 ∧
S(ϕ, u, 〈〉,B6 − {⊥,⊥c}) = 0 �

Note that these semantics are applied recursively until
there is only one quantifier left in the formula, at which point
B checks the valuation based on Ltl4 semantics ([uDϕ |=4

ϕ̂(Dϕ)] = b). When checking the valuation of these Ltl4
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properties, B will always return an empty set in case the
input b is >c or ⊥c, since these truth values are inapplica-
ble to Ltl4 properties. As mentioned earlier, truth values
in B6 form a lattice. Standard lattice operators u and t
are defined as expected based on the lattice’s partial order.
Permanent satisfaction (>) or violation (⊥) is applicable to
∃ quantifiers regardless of the comparison operator, as well
as a special case of ∀ quantifiers:

• ∀ quantifier. As mentioned earlier, if the ∀ quanti-
fier is not subscripted, it is assumed to denote ∀=1.
In this case, a single violation in its child property in-
stances causes a permanent violation of the quantified
property.

• ∃ quantifier. Permanent violation is possible for any
numerical constraint attached to an ∃ quantifier, since
it is a condition on the number of satisfied property
instances.

Property 7 illustrates an example of an ∃ quantifier that
can be permanently violated. Also, since the ∀ quantifier
in Property 7 defaults to ∀=1, it will be violated if a single
user makes more than three unauthorized login attempts.
In such a case, the entire property evaluates to ⊥. Table 1
illustrates how permanent satisfaction or violation apply to
the different numerical constraints of ∃ quantifiers.

∀x : user(x)⇒ (∃≤3 r : rid(r)⇒ (login ∧ unauthorized)) (7)

Table 1: Rules of permanent satisfaction or violation of ∃
constraints

Operator Verdict
> c Permanent satisfaction if > c
≥ c Permanent satisfaction if ≥ c
= c Permanent violation if > c
< c Permanent violation if ≥ c
≤ c Permanent violation if > c

To clarify the semantics, consider Property 7 and the fol-
lowing program trace:

{rid(12), user(Adam), login, unauthorized}
{rid(13), user(Adam), login, unauthorized}
{rid(14), user(Jack), login, authorized}
{rid(15), user(Adam), login, authorized}
{rid(16), user(Adam), login, authorized}

where each line represents an event: a set of interpreted
predicates. Each event contains a request identifier (rid), a
username, a request type (login), and response status (authorized
or unauthorized). As seen in the trace, there are 5 distinct
value vectors: 〈Adam, 12〉, 〈Adam, 13〉, 〈Jack, 14〉, 〈Adam, 15〉,
and 〈Adam, 16〉. Now, let us apply the inductive semantics
on the property.

Step 1. We begin by checking the truth value of [u |=6 ϕ],
which requires determining which condition in Definition 7
applies. This requires the evaluation of function S for the
different truth values shown. Since we are verifying ϕ, we
begin with the outermost quantifier, which is a ∀ quan-
tifier. Thus, S will require calculating the cardinality of
the set P(ϕ, u,Dϕ|0), which in case of the trace should be
|{Adam, Jack}| = 2. Now, in order to evaluate S, one has

to evaluate B to determine whether each property instance
evaluates to a certain truth value or not. The two property
instances thus far are:

ϕ̂(Dϕ|1) = ϕ̂(Adam) = ∃≤3 r : rid(r)⇒ (login ∧ unauthorized)

ϕ̂(D′ϕ|1) = ϕ̂(Jack) = ∃≤3 r : rid(r)⇒ (login ∧ unauthorized)

And the trace subsequences for these property instances re-
spectively are:

uDϕ|1 ={rid(12), · · · }{rid(13), · · · }{rid(15), · · · }{rid(16), · · · }

uD′ϕ|1 ={rid(14), · · · }

Note that user(Adam) ⇒ · · · is ommitted from ϕ̂(Dϕ|1)
since user(Adam) holds according to the trace subsequence.
The same applies to user(Jack). Evaluating these property
instances with respect to the trace subsequences requires re-
ferring to Definition 7 again, which marks the second level
of recursion.

Step 2. Let us consider the property instance ϕ̂(Dϕ|1),
which begins with an ∃ quantifier and has Ltl4 properties as
child instances (refer to P). These properties are in the form
of login ∧ unauthorized, where there is one instance for each
distinct request identifier. We can deduce that the property
holds for all 4 requests: 12, 13, 15, and 16, thus evaluating
to >. Therefore, the following holds:

B(ϕ̂(Dϕ|1), uDϕ|1 , Dϕ|1,>) = 4

This value, when used in S(ϕ̂(Dϕ|1), uDϕ|1 , Dϕ|1, {>}) will
violate the numerical condition: 4 6≤ 3, resulting in S re-
turning 0 (false). Based on the conditions in Definition 7
and the rules of permanent violation, this property instance
becomes permanently violated and thus returns ⊥.

The other property instance ϕ̂(D′ϕ|1) will however evalu-
ate to > since its child property instance

ϕ̂(D′ϕ|2) = ϕ̂(〈Jack, 14〉) = login ∧ unauthorized

is violated, and thus the number of satisfied instances is still
less than 3.

Step 3. In this step we use the valuations determined in
Step 2 to produce verdicts for the property instances in Step
1. Based on S, the ∀ quantifier’s numerical condition is vio-
lated, since not all instances are satisfied. The final verdict
should thus be [u |=6 ϕ] = ⊥, which denotes a permanent
violation of the property.

3. DIVIDE-AND-CONQUER-BASED
MONITORING OF LTL4-FOC

In this section, we describe our technique inspired by
divide-and-conquer for evaluating Ltl4−foc properties at
run time. This approach forms the basis of our parallel ver-
ification algorithm in Section 4.

Unlike runtime verification of propositional Ltl4 proper-
ties, where the structure of a monitor is determined solely
based on the property itself, a monitor for an Ltl4−foc

needs to evolve at run time, since the valuation of quantified
variables change over time. More specifically, the monitor
Mϕ for an Ltl4−foc property ϕ = Qϕψ relies on instan-
tiating a submonitor for each property instance ϕ̂ obtained
at run time. We incorporate two type of submonitors: (1)
Ltl4 submonitors evaluate the inner Ltl property ψ, and
(2) quantifier submonitors deal with quantifiers in Qϕ, de-
scribed in Subsections 3.1 and 3.2. In Subsection 3.3, we
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explain the conditions under which a submonitor is instan-
tiated at run time. Finally, in Subsection 3.4, we elaborate
on how submonitors evaluate an Ltl4−foc property.

3.1 LTL4 Submonitors
Let ϕ = Qϕψ be an Ltl4−foc property. If |Qϕ| = 0 (re-

spectively, one wants to evaluate ϕ̂(Dϕ|i), where i = |Qϕ|),
then ϕ (respectively, ϕ̂(Dϕ|i)) is free of quantifiers and, thus,
the monitor (respectively, submonitor) of such a property
is a standard Ltl4 monitor (see Definition 6). We denote
Ltl4 submonitors as M∗Dϕ

, where Dϕ is the value vector
with which the monitor is initialized.

3.2 Quantifier Submonitors
Given a finite trace u and an Ltl4−foc property ϕ =

Qϕψ, a quantifier submonitor (MQ) is a monitor responsible
for determining the valuation of a property instance ϕ̂(Dϕ|i)
with respect to a trace subsequence uDϕ|i , if i < |Qϕ|. Obvi-
ously, such a valuation is in B6. Let V be a six-dimensional
vector space, where each dimension represents a truth value
in B6.

Definition 8 (Quantifier Submonitor). Let ϕ = Qϕψ
be an Ltl4−foc property and ϕ̂(Dϕ|i) be a property in-
stance, with i ∈ [0, |Qϕ| − 1]. The quantifier submonitor
for ϕ̂(Dϕ|i) is the tuple MQ

Dϕ|i = 〈Qi,MDϕ|i , v, b〉, where

• Qi encapsulates the quantifier information (see Equa-
tion 4)

• v ∈ V represents the current number of child property
instances that evaluate to each truth value in B6 with
respect to their trace subsequences,

• b ∈ B6 is the current value of [uDϕ|i |=6 ϕ̂(Dϕ|i)],

• MDϕ|i is the set of child submonitors (submonitors of

child property instances) defined as follows:

MDϕ|i =

{
{M∗D′ϕ | D

′
ϕ|i = Dϕ|i} if i = |Qϕ| − 1

{MQ
D′ϕ|i+1 | D′ϕ|i = Dϕ|i} if i < |Qϕ| − 1

Thus, if i = |Qϕ| − 1, all child submonitors are Ltl4 sub-
monitors. Otherwise, they are quantifier submonitors of the
respective child property instances. �

Based on the definition, every quantifier submonitor refer-
ences a set of child monitors. We use the following notation
to denote a hierarchy of a submonitor and its children:

MQDϕ|i
{
MQDϕ|i+1 ,MQD′ϕ|i+1 ,MQD′′ϕ|i+1 , · · ·

}
such that Dϕ|i = D′ϕ|i = D′′ϕ|i · · · and i < |Qϕ| − 1 which is
why the child monitors are quantifier submonitors.

3.3 Instantiating Submonitors
Let an Ltl4−foc monitor Mϕ for property ϕ evaluate

the property with respect to a finite trace u = u0u1 · · · . Let
Dϕ = 〈d0, d1, · · · 〉 be a value vector and uk the first trace
event such that ∀di : pi(di) ∈ uk, where pi is the predicate
within each quantifier (i.e. ∀xi : pi(xi)⇒ · · · ). In this case,
the Ltl4−foc monitor instantiates submonitors for every
property instance resulting from that value vector. A value
vector of length |Qϕ| results in |Qϕ|+ 1 property instances:
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Figure 2: Tree structure of an Ltl4−foc monitor.

one for each quantifier in addition to an Ltl4 inner property.
The hierarchy of the instantiated submonitors is as follows:

MQDϕ|0

{
MQDϕ|1

{
· · ·
{
MQ

Dϕ||Qϕ−1|{M∗Dϕ
}
}}}

If another value vector D′ϕ is subsequently encountered
for the first time, the hierarchy of submonitors becomes as
follows:

MQDϕ|0
{
MQDϕ|1

{
· · · {M∗Dϕ

}
}
,MQD′ϕ|1

{
· · · {M∗D′ϕ}

}
Since the hierarchy is formulated as a recursive set, no du-
plicate submonitors are allowed. Two submonitors are du-
plicates, if they represent identical value vectors. If Dϕ|1 =
D′ϕ|1, the respective monitors are merged. Such merging is
explained in detail in Section 4.

3.4 Evaluating LTL4-FOC Properties
Once the Ltl4−foc monitor instantiates its submonitors,

every submonitor is responsible for updating its truth value.
The truth value of Ltl4 submonitors (M∗) maps to the
current state of the submonitor’s automaton as described
in Definition 6. Quantifier submonitors update their truth
value based on the truth values of all child submonitors. The
number of child submonitors whose truth value is > is stored
in v> (i.e., the > dimension of vector v) and so on for all
truth values in B6. Then, Ltl4−foc semantics are applied,
beginning with function S (see Equation 6), which in turn
relies on the cardinality of function B(ϕ, u,Dϕ|i, b) where b
is a truth value. This cardinality is readily provided by the
vector v, such that for instance B(ϕ, u,Dϕ|i,>) = v> and
so on.

Since each submonitor depends on its child submonitors,
updating truth values proceeds outwards, starting at Ltl4
submonitors, then recursively parent submonitors update
their truth values until the submonitorMQ

Dϕ|0 , which is the

root submonitor. The truth value of the root submonitor is
the truth value of property ϕ with respect to trace u. This
is visualized as the tree shown in Figure 2.

4. PARALLEL ALGORITHM DESIGN
The main challenge in designing a runtime monitor is to

ensure that its behavior does not intervene with functional
and extra-functional (e.g., timing constraints) behavior of
the program under scrutiny. This section presents a parallel
algorithm for verification of Ltl4−foc properties. Our idea
is that such a parallel algorithm enables us to offload the
monitoring tasks into a different computing unit (e.g., the
GPU). The algorithm utilizes the popular MapReduce tech-
nique to spawn and merge submonitors to determine the
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final verdict. This section is organized as follows: Subsec-
tion 4.1 describes how valuations are extracted from a trace
in run time, and Subsection 4.2 describes the steps of the
algorithm in detail.

4.1 Valuation Extraction
Valuation extraction refers to obtaining a valuation of

quantified variables from the trace. As described in Ltl4−foc

semantics, the predicate pi(xi) identifies the subset of the
domain of xi over which the quantifier is applied: namely
the subset that exists in the trace. From a theoretical per-
spective, we check whether the predicate is a member of
some trace event, which is a set of predicates. From an
implementation perspective, the trace event is a key-value
structure, where the key is for instance a string identifying
the quantified variable, and the value is the concrete value
of the quantified variable in that trace event. Consider the
following property:

ϕ = ∀≥0.95 s : socket(s)⇒ (G receive (s)⇒ F respond (s))
(8)

Predicate p in this case is socket(s), and a trace event should
contain a key socket and a value ∈ [0, 65535] representing the
socket file descriptor in the system. Thus, the valuation ex-
traction function ε(ui,K) = Dϕ returns a map where keys
are in K, and the value of each key is the value of the quan-
tified variable corresponding to this key. These keys are
defined by the user.

4.2 Algorithm Steps
Algorithm 1 presents the pseudocode of the parallel mon-

itoring algorithm. Given an Ltl4−foc property ϕ = Qϕ ψ,
the input to the algorithm is the Ltl4 monitor M∗ of Ltl4
property ψ, a finite trace u, the set of quantifiers Qϕ, and
the vector of keys K used to extract valuations. The entry
point to the algorithm is at Line 5 which is invoked when the
monitor receives a trace to process. The algorithm returns
a truth value of the property at Line 8. Subsections 4.2.1
– 4.2.4 describe the functional calls between Lines 5 – 8.
The MapReduce operations are visible in functions Sort-
Trace and ApplyQuantifiers, which perform a map (⇒) in
Lines 10 and 51 respectively. ApplyQuantifiers also performs
a reduction (�) in Line 52.

4.2.1 Trace Sorting
As shown in Algorithm 1, the first step in the algorithm

is to sort the input trace u (Line 5). The function SortTrace
performs this functionality as follows:

1. The function performs a parallel map of every trace
event to the value vector that it holds using ε (Line 10).

2. The mapped trace is sorted in parallel using the quan-
tifier variable keys (Line 11). For instance, according
to Property 8, the key used for sorting will be socket,
effectively sorting the trace by socket identifier.

3. The sorted trace is then compacted based on valua-
tions, and the function returns a map µ where keys
are value vectors and values are the ranges of where
these value vectors exist in trace u (Line 12). A range
contains the start and end index. This essentially de-
fines the subsequences uDϕ for each property instance
ϕ̂(Dϕ) (refer to Subsection 2.4).

4.2.2 Monitor Spawning
Monitor spawning is the second step of the algorithm

(Line 6). The function SpawnMonitors receives a map µ
and searches the cached collection of previously encountered
value vectors D for duplicates. If a value vector in µ is new,
it creates submonitors and inserts them in the tree of sub-
monitors T (Line 19). The function AddToTree attempts to
generate |Qϕ| − 1 quantifier submonitors MQ (Line 26) en-
suring there are no duplicate monitors in the tree (Line 27).
After all quantifier submonitors are created, SpawnMonitors
creates an Ltl4 submonitorM∗ and adds it as a child to the
leaf quantifier submonitor in the tree representing the value
vector (Line 20). This resembles the structure in Figure 2.
Creation of submonitors is performed in parallel for all value
vectors in trace u.

4.2.3 Distributing the Trace
The next step in the algorithm is to distribute the sorted

trace to all Ltl4 submonitors (Line 7). The function Dis-
tribute instructs every Ltl4 submonitor to process its re-
spective trace by passing the full trace and the range of
its respective subsequence, which is provided by the map µ
(Line 42). The Ltl4 monitor updates its state according to
the trace subsequence and stores its truth value b.

4.2.4 Applying Quantifiers
Applying quantifiers is a recursive process, beginning with

the leaf quantifier submonitors and proceeding upwards to-
wards the root of the tree (Line 8). Function ApplyQuanti-
fiers operates in the following steps:

1. The function retrieves all quantifier submonitors at the
ith level in the tree T (Line 50).

2. In parallel, for each quantifier submonitor, all child
submonitor truth values are reduced into a single truth
value of that quantifier submonitor (Lines 51-53). This
step essentially reduces all child truth vectors into a
single vector and then applies Ltl4−foc semantics to
determine the truth value of the current submonitor.

3. The function proceeds recursively calling itself on sub-
monitors that are one level higher. It terminates when
the root of the tree is reached, where the truth value
is the final verdict of the property with respect to the
trace.

5. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We have implemented Algorithm 1 for two computing
technologies: Multi-core CPUs and GPUs. We applied three
optimizations in our GPU-based implementation: (1) we
use CUDA Thrust API to implement parallel sort, (2) we
using Zero-Copy Memory which parallelizes data transfer
with kernel operation without caching, and (3) we enforced
alignment, which enables coalesced read of trace events into
monitor instances. In order to inercept systems calls, we
have integrated our algorithm with the Linux strace ap-
plication, which logs all system calls made by a process, in-
cluding the parameters passed, the return value, the time the
call was made, etc. Notice that using strace has the ben-
efit of eliminating static analysis for instrumentation. The
work in [5, 14, 15] also use strace to debug the behavior of
applications.
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Algorithm 1 Ltl4−foc monitoring algorithm

1: INPUT: An Ltl4 monitorM∗ of Ltl property ψ, a finite trace u, a
set of quantifiers Qϕ, and a vector of keys K to extract valuations
of quantified variables.

2: declare T = {MQ
D|0
} . Tree of quantifier submonitors

3: declare D = {} . Value vector set
4: declare M∗ = {} . Ltl4 submonitor set
5: µ← SortTrace(u) . The entry point
6: SpawnMonitors(µ)
7: Distribute(u,µ)
8: return ApplyQuantifiers(|Qϕ − 1|)

9: function SortTrace(u) . Trace sorting and compaction
10: ui ⇒ u′i := ε(ui, K) . ‖ map to value vectors
11: ParallelSort(u′,K)
12: µ〈D, r〉 ← ParallelCompact(u′)
13: return µ
14: end function

15: function SpawnMonitors(µ) . Monitor spawning
16: for D ∈ µ do in parallel
17: if D 6∈ D then
18: Add(D,D)
19: t← AddToTree(D)
20: t.addMonitor(CreateMonitor(D))
21: end if
22: end for
23: end function

24: function AddToTree(D)
25: t = T .root
26: for i ∈ [1, |Qϕ| − 1] do

27: if MQ
D|i
6∈ t.children then

28: t.addchild(MQ
D|i

)

29: end if

30: t← t.children
[
MQ

D|i

]
31: end for
32: return t
33: end function

34: function CreateMonitor(D) . Monitor creation
35: M∗D ← LaunchMonitorThread(D)
36: M∗D.D ← D
37: add(M∗,M∗D)
38: return M∗D
39: end function

40: function Distribute(u,µ) . Distribute trace to monitors
41: forM∗D ∈ M∗ do in parallel
42: ProcessBuffer(M∗D,u,µ[M∗D.D])
43: end for
44: end function

45: function ProcessBuffer(M∗D,u,r) . Process trace subsequence
46: filter include u ⇒ u′ := u[r.start, r.end] . ‖ filter
47: M∗D.b ←UpdateMonitor(M∗D, u′)
48: end function

49: function ApplyQuantifiers(i) . Apply quantifiers
50: for t ∈ T.nodesAtDepth(i) do in parallel
51: t.children ⇒ {s := [v, v′, · · · ]} . ‖ map to truth vectors
52: s � t.v . ‖ reduction to truth vector
53: t.b← Valuation(t) . Ltl4−foc semantics
54: end for
55: if i = 0 then
56: return t.b
57: end if
58: return ApplyQuantifiers(i− 1)
59: end function

Subsection 5.1 presents the case studies implemented to
study the effectiveness of the GPU implementation in online
and offline monitoring. Subsection 5.2 discusses the experi-
mental setup, while Subsection 5.3 analyzes the results.

5.1 Case studies

We have conducted the following three case studies:

1. Ensuring every request on a socket is responded
to. This case study monitors the responsiveness of a
web server. Web servers under heavy load may expe-
rience some timeouts, which results in requests that
are not responded to. This is a factor contributing
to the uptime of the server, along with other factors
like power failure, or system failure. Thus, we monitor
that at least 95% of requests are indeed responded:

∀≥0.95 s : socket(s)G receive (s)⇒ F respond (s)

We utilize the Apache Benchmarking tool to generate
different load levels on the Apache Web Server.

2. Ensuring fairness in utilization of personal cloud
storage services. This case study is based on the
work in [8], which discusses how profiling DropBox
traffic can identify the bottlenecks and improve the
performance. Among the issues detected during this
analysis, is a user repeatedly uploading chunks of max-
imum size to DropBox servers. This is possibly at-
tributed to failure in the client or misuse of the ser-
vice, or even some legitimate use that is not yet ex-
plained. Thus, it is beneficial for a runtime verifica-
tion system to ensure that the average chunk size of
all clients falls below a predefined maximum thresh-
old, effectively ensuring fairness of service use. The
corresponding Ltl4−foc property is as follows:

∀u : user(u)⇒ F (avg chunksize (u) ≤ maximum)

3. Ensuring proxy cache is functioning correctly.
This experiment is based on a study that shows the ef-
fectiveness of utilizing proxy cache in decreasing YouTube
videos requests in a large university campus [16]. Thus,
we monitor that no video is requested externally while
existing in the cache:

∀v : vid(v)⇒ ∃=0 r : req(r)⇒ (cached(v) ∧ external(r))

5.2 Experimental Setup
Experiment Hardware and Software. The machine we
use to run experiments comprises of a 12-core Intel Xeon E5-
1650 CPU, an Nvidia Tesla K20c GPU, and 32GB of RAM,
running Ubuntu 12.04.

Experimental Factors. The experiments involve compar-
ing the following factors:

• Implementation. We compare three implementations
of the Ltl4−foc monitoring algorithm:

– Single Core CPU. A CPU implementation run-
ning on a single core. The justification for using
a single core is to allow the remaining cores to per-
form the main functionality of the system without
causing contention from the monitoring process.

– Parallel CPU. A CPU implementation running on
all 12 cores of the system. The implementation
uses OpenMP.

– GPU. A parallel GPU-based implementation.

• Trace size. We also experiment with different trace
sizes to study the scalability of the monitoring solution,
increasing exponentially from 16, 384 to 8, 388, 608.
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Experimental Metrics. Each experiment results in values
for the following metrics:

• Total execution time. The total execution time of the
monitor.

• Monitor CPU utilization. The CPU utilization of the
monitor process.

In addition, we measure the following metrics for Case Study
1, since it utilizes an online monitor:

• Monitored program CPU utilization. The CPU utiliza-
tion of the monitored program. This is to demonstrate
the impact of monitoring on overall CPU utilization.

• strace parsing CPU utilization. The CPU utilization
of the strace parsing module. This module translates
strace strings a numerical table.

We perform 20 replicates of each experiment and present
error bars of a 95% confidence interval.

5.3 Results
Table 2 shows the impact of online monitoring on CPU

overhead. The table demonstrates the average CPU time
consumed by the Apache Web Server, the average CPU time
consumed by strace parsing, and the CPU time consumed by
monitoring for each implementation. The results in the ta-
ble are only for a trace size of 262144, yet different trace
sizes show the same trends. As seen in the table, the mon-
itoring overhead of GPU is almost negligable compared to
the CPU time of Apache. Single core CPU also imposes
low monitoring overhead, while parallel CPU imposes large
monitoring overhead distributed over all cores.

Apache strace Monitor
Single Code CPU

10000 4099
15

Parallel CPU 2142
GPU 7

Table 2: Processing time (msec) of Apache, strace, and mon-
itoring for all 3 implementations. Trace size is 262144.

The results of Case Study 1 are shown in Figure 3. As
seen in the figure, the GPU implementation scales efficiently
with increasing trace size, resulting in the lowest monitor-
ing time of all three implementations. The GPU versus sin-
gle core CPU speedup ranges from 0.8 to 1.6, increasing
with the increasing trace size. When compared to parallel
CPU (CPU ||), the speedup ranges from 0.78 to 1.59. This
indicates that parallel CPU outperforms GPU for smaller
traces (32768), yet does not scale as well as GPU. CPU uti-
lization results in Figure 3 show a common trend with the
increase of trace size. When the trace size is small, paral-
lel implementations incur high CPU utilization as opposed
to a single core implementation, which could be attributed
to the overhead of parallelization relative to the small trace
size. On the other hand, GPU shows a stable utilization
percentage, with a 78% average utilization. The single core
CPU implementation shows a similar trend, yet slightly ele-
vated average utilization (average 86%). The parallel CPU
implementation imposes a higher CPU utilization (average
1.15%), since more cores are being used to process the trace.
This result indicates that shipping the monitoring workload
to GPU consistently provides more time for CPU to execute
other processes including the monitored process. The results
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Figure 3: Results of Case Study 1.
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Figure 4: Results of Case Study 2.

of Case Study 2 and Case Study 3 in Figures 4 and 5 respec-
tively show similar trends. For Case Study 2, the speedup of
the GPU implementation over single core CPU ranges from
1.8 to 3.6, and 0.83 to 1.18 over parallel CPU. The aver-
age CPU utilization of GPU, single core CPU, and parallel
CPU is 64%, 82%, and 598% respectively. For Case Study
3, speedup is more significant, with 6.3 average speedup of
GPU over single core CPU, and 1.75 over parallel CPU. The
average CPU utilization of GPU, single core CPU, and par-
allel CPU is 73%, 95%, and 680% respectively.

Although the parallel CPU implementation provides
reasonable speedup, and the single-core CPU imple-
mentation imposes low CPU utilization overhead, the
GPU implementation manages to achieve both simul-
taneously.

6. RELATED WORK
Runtime verification of parametric properties has been

studied by Rosu et al [9,10,12]. In this line of work, it is pos-
sible to build a runtime monitor parameterized by objects in
a Java program. The work by Chen and Rosu [6] presents
a method of monitoring parametric properties in which a
trace is divided into slices, such that each monitor operates
on its slice. This resembles our method of identifying trace
subsequences and how they are processed by submonitors.
However, parametric monitoring does not provide a formal-
ization of applying existential and numerically constrained
quantifiers over objects.

Bauer et al. [3] present a formalization of a variant of first
order logic combined with LTL. This work is related to our
work in that it instantiates monitors at run time according
to valuations, and defines quantification over a finite subset
of the quantified domain, normally with that subset being
defined by the trace. Our work extends this notion with
numerical constraints over quantifiers, as well as a parallel
algorithm for monitoring such properties.
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Figure 5: Results of Case Study 3.

The work by Leucker et al. presents a generic approach
for monitoring modulo theories [7]. This work provides a
more expressive specification language. Our work enforces
a canonical syntax which is not required in [7], resulting in
more expressiveness. However, the monitoring solution pro-
vided requires SMT solving at run time. This may induce
substantial overhead as opposed to the lightweight parallel
algorithm presented in this paper, especially since it is de-
signed to allow offloading the workload on GPU. SMT solv-
ing also runs the risk of undecidability, which is not clear
whether it is accounted for or not. Ltl4−foc is based on
six-valued semantics, extending Ltl4 by two truth values:
>c and ⊥c. These truth values are added to support quan-
tifiers and their numerical constraints. This six-valued se-
mantics provides a more accurate assessment of the satisfac-
tion of the property based on finite traces as opposed to the
three-valued semantics in [7]. Finally, although Ltl4−foc

does not support the expressiveness of full first-order logic,
numerical constraints add a flavor of second-order logic in-
creasing its expressiveness in the domain of properties where
some percentage or count of satisfactied instances needs to
be enforced.

Finally, the work in [4] presents two parallel algorithms for
verification of propositional Ltl specifications at run time.
These algorithms are implemented in the tool RiTHM [13].
This paper enhances the framework in [4,13] by introducing
a significantly more expressive formal specification language
along with a parallel runtime verification system.

7. CONCLUSION
In this paper, we proposed a specification language

(Ltl4−foc) for runtime verification of properties of types of
objects in software and networked systems. Our language is
a highly expressive fragment of first-order Ltl with second-
order numerical constraints. The six truth values of the
semantics of Ltl4−foc allows system designers to obtain
informative verdicts about the status of system properties
at runt time. We also introduced an efficient and effective
parallel algorithm with two implementations on multi-core
CPU and GPU technologies. The results of our experiments
on three real-world case studies show that runtime monitor-
ing using GPU provides us with the best throughput and
CPU utilization, resulting in minimal intervention in the
normal operation of the system under inspection.

For future work, we are planning to design a framework
for monitoring Ltl4−foc properties in distributed systems
and cloud services. Another direction is to extend Ltl4−foc

such that it allows non-canonical strings of quantifiers. Fi-
nally, we are currently integrating Ltl4−foc in our tool
RiTHM [13].
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