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Abstract

We exhibit a procedure in the spirit of OBDA in which a rela-
tional engine can be usefully employed to address scalability
issues for answering conjunctive queries in the description
logic CFD∀

nc, a generalization of the logic CFDnc in which
universal restrictions are permitted on left-hand-sides of in-
clusion dependencies. The procedure necessarily relies on a
combination of the strategies that underlie both the perfect
rewriting and combined approaches to OBDA.

1 Introduction
Ontology based data access (OBDA) is concerned with
computing query answers over (possibly incomplete) data
sources for which background knowledge about the data,
commonly captured in an ontology, is available. The back-
ground knowledge provides additional query answers that
may not be explicit in the data itself. To address scalabil-
ity issues relating to the volume of data, many current ap-
proaches to OBDA focus on conjunctive queries (CQ) and
ontologies based on DL dialects for which CQ answering
is in PTIME with respect to data complexity. Moreover, to
leverage advances in query processing in relational systems,
approaches in which query answering can be reduced to
SQL query evaluation over a relational encoding of the data
are commonly sought. The two front-runners in this area are
(i) the perfect rewriting-based approaches in which the given
CQ is rewritten with the help of the ontological knowledge
(typically formulated in one of the DL-Lite family of log-
ics) in such a way that the resulting query can be executed
over the plain data yielding the desired answers (Calvanese
et al. 2007), and (ii) the combined approaches in which the
data is completed using the ontological knowledge (formu-
lated in DL-Lite or EL logics) in such a way that the original
query (modulo ontology-independent filtering) can then be
executed over the data completion (Kontchakov et al. 2010;
2011; Lutz et al. 2013; Lutz, Toman, and Wolter 2009).

Recently, Toman and Weddell proposed CFDnc (Toman
and Weddell 2013), a dialect of their CFD family of DLs
(Khizder, Toman, and Weddell 2000; Toman and Weddell
2009) that has PTIME complexity for many of the funda-
mental reasoning tasks, including computing the certain an-
swers to CQs.

In this paper, we show that CQ answering over CFD∀nc

knowledge bases1 can be reduced to evaluating SQL queries
over (a completion of) the data stored in a relational system.
Our technique is based on a combination of query rewrit-
ing and data completion. Indeed, it is worth noting that, for
CQs over CFD∀nc KBs, OBDA cannot be accomplished by
either using (perfect) query rewriting alone, due to PTIME-
completeness of CQ answering, or by exclusive use of the
combined approach, due to the need to realize exponentially
many prototypical anonymous witnesses to represent types
induced by value restrictions. We solve the problem by intro-
ducing a novel technique based on combining query rewrit-
ing with data completion.

Our main technical contributions, in the order presented,
are as follows:
• We show that concept satisfiability with respect to a
CFD∀nc TBox T is complete for NLOGSPACE by appeal
to an automaton that derives from T ;

• We exhibit an ABox completion procedure for a given
logic knowledge base K = (T ,A) with PTIME data
complexity, and show how this can be coupled with our
automata for checking concept satisfiability to yield a
procedure for checking knowledge base consistency, also
with PTIME data complexity;

• We define a query rewriting that produces a union of con-
junctive queries Q′ from a given conjunctive query Q and
T , and show that evaluating Q′ as a SQL query over the
above ABox completion, viewed as a relational database,
computes the certain answers of Q over K.

We also show that the potential for an exponential blowup
of the query rewriting cannot be avoided in general since
the combined complexity for CQ answering in CFD∀nc is
PSPACE-complete (unless NP=PSPACE).

We begin in the next section by introducing the syntax
and semantics of CFD∀nc, including a normal form that is
assumed in the remainder of the paper. The problem of con-
cept satisfiability for CFD∀nc TBoxes is then considered in
Section 3. Our second contribution is given in Section 4 in
which we present our ABox completion procedure, and then
show how consistency of CFD∀nc knowledge bases can be

1CFD∀
nc is a generalization of CFDnc in which value restric-

tions are also permitted on left-hand-sides of inclusion dependen-
cies; see Section 2 for definitions.



determined in PTIME. Our final contribution relating to the
above mentioned mapping of conjunctive queries is the topic
of Section 5, and a discussion of related work and summary
comments then follow in Sections 6 and 7.

2 The Description Logic CFD∀
nc

CFD∀nc is a member of the CFD family of DLs, all of
which are essentially fragments of FO with underlying sig-
natures based on disjoint sets of unary predicate symbols
called primitive concepts, constant symbols called individu-
als and unary function symbols called attributes. Note that
incorporating attributes deviates from normal practice to use
binary predicate symbols called roles. However, attributes
make it easier to incorporate concept constructors suited to
the capture of relational data sources and constraints such
as keys and functional dependencies by a straightforward
reification of n-ary predicates. Thus, e.g., a role R in ALC
would correspond to a primitive concept RC and two at-
tributes domR and ranR in CFD∀nc, and an ALC inclusion
dependency A v ∀R.B would be captured as the CFD∀nc
inclusion dependency ∀domR.A v ∀ranR.B.

Definition 1 (CFD∀nc Knowledge Bases) Let F, PC and IN
be disjoint sets of (names of) attributes, primitive concepts
and individuals, respectively. A path function Pf is a word
in F∗ with the usual convention that the empty word is de-
noted by id and concatenation by “.”. Concepts C and D are
defined by the grammars on the left-hand-side of Figure 1 in
which occurrences of “A” denote primitive concepts. A con-
cept “C : Pf1, . . . ,Pfk → Pf” produced by the last produc-
tion of the grammar for D is called a path functional depen-
dency (PFD). To retain tractability of reasoning (Toman and
Weddell 2008), any occurrence of a PFD must also satisfy a
regularity condition by adhering to one of the following two
forms:

(a) C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf or
(b) C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f

(1)

A PFD is a key if it adheres to the first of these forms.

Metadata and data in a CFD∀nc knowledge base K are re-
spectively defined by a TBox T and an ABox A. Assume
A ∈ PC, C and D are arbitrary concepts given by the gram-
mars in Figure 1, {Pf1,Pf2} ⊆ F∗ and that {a, b} ⊆ IN.
Then T consists of a finite set of inclusion dependencies of
the form C v D, and A consists of a finite set of facts in
form of concept assertions A(a), basic function assertions
f(a) = b and path function assertions Pf1(a) = Pf2(b). A
is called a primitive ABox if it consists only of concept and
basic function assertions.
Semantics is defined in the standard way with respect to an
interpretation I = (4, (·)I), where 4 is a domain of “ob-
jects” and (·)I an interpretation function that fixes the in-
terpretation of primitive concepts A to be subsets of 4, at-
tributes f to be total functions on 4, and individuals a to
be elements of4. The interpretation function is extended to
path expressions by interpreting id , the empty word, as the
identity function λx.x, concatenation as function composi-

tion, and to derived concept descriptions C or D as defined
in Figure 1.
An interpretation I satisfies an inclusion dependency C v D
if CI ⊆ DI , a concept assertion A(a) if aI ∈ AI , a basic
function assertion f(a) = b if fI(aI) = bI and a path
function assertion Pf1(a) = Pf2(b) if PfI1 (aI) = PfI2 (bI).
I satisfies a knowledge base K if it satisfies each inclusion
dependency and assertion in K, and also satisfies UNA if,
for any individuals a and b occurring in K, aI 6= bI . 2

As usual, allowing conjunction (resp. disjunction) on the
right-hand (resp. left-hand) sides of inclusion dependencies
is a simple syntactic sugar.

The conditions imposed on PFDs in (1) are necessary
to retain PTIME complexity for the reasoning problems
(Khizder, Toman, and Weddell 2001; Toman and Wed-
dell 2008) and does not impact the modeling utility of
CFD∀nc for formatted legacy data sources such as relational
databases. It remains possible, for example, to capture arbi-
trary keys or functional dependencies in a relational schema.

For reasoning tasks, such as TBox and more general KB
consistency, it is convenient to assume by default, and with-
out loss of generality, that CFD∀nc knowledge bases are
given in a normal form.

Lemma 2 (TBox and ABox Normal Forms)
For every CFD∀nc TBox T , there exists a conservative ex-
tension T ′ that adheres to the following (more limited)
grammar for CFD∀nc concept descriptions.

C ::= A | ∀f.A
D ::= A | ¬A | ∀f.A | A : Pf1, . . . ,Pfk → Pf

Also, for every ABoxA, there exists an equivalent ABoxA′
containing only assertions of the form A(a), f(a) = b, and
a = b, where A is a primitive concept. 2

Obtaining T ′ and A′ from an arbitrary knowledge base K
is achieved by a straightforward introduction of auxiliary
names for intermediate concept descriptions and individu-
als (e.g., see defn. of simple concepts in (Toman and Wed-
dell 2008)); the normalized TBox and ABox are linear in the
size of the inputs.

3 TBox and Concept Satisfiability
It is easy to see that every CFD∀nc TBox T is consistent (by
setting all primitive concepts to be interpreted as the empty
set). To test for concept satisfiability, we use the following
construction.

Definition 3 (Transition Relation for T ) Let T be a
CFD∀nc TBox in normal form. We define a transition
relation δ(T ) over the set of states
S = PC ∪ {¬A | A ∈ PC} ∪ {∀f.A | A ∈ PC, f ∈ F}

and the alphabet F as follows:

C
ε→D ∈ δ(T ) if C v D ∈ T

∀f.A f→A ∈ δ(T )

where ε is the empty letter transition, f ∈ F, A ∈ PC, and
C,D ∈ S. 2



SYNTAX SEMANTICS: “(·)I”
C ::= A AI ⊆ 4
| ∀Pf .C {x : PfI(x) ∈ CI}

D ::= A AI ⊆ 4
| ¬A 4 \AI

| ∀Pf .D {x : PfI(x) ∈ DI}
| C : Pf1, . . . ,Pfk → Pf {x : ∀ y ∈ CI .

∧k
i=1 Pf

I
i (x) = PfIi (y)⇒ PfI(x) = PfI(y)}

Figure 1: CFD∀nc concepts.

The transition relation allows us to construct non-
deterministic finite automata (NFA) that can be used for var-
ious reasoning problems that relate to a CFD∀nc TBox T .
Note that we follow common practice in automata theory
and use ε for the empty letter in transition relations.2

Lemma 4 Let T be a CFD∀nc TBox, C a primitive con-
cept, and D a primitive concept or the complement of a
primitive concept.. We define M = (S, {C}, {D}, δ(T ))
to be an NFA with the set of states S (as above), start
state C, final state D, and transition relation δ(T ). Then
T |= C v ∀Pf .D whenever Pf ∈ L(M).

Proof (sketch) For Pf ∈ L(M) there must be a run

C = A0
l1→A1

l2→A2 · · ·Ak−1
lk→Ak = D

in M where li ∈ F ∪ {ε} and such that Pf = l1.l2. · · · .lk. It

follows from the definition of δ(T ) that Ai−1
li→Ai exists if

Ai−1 v Ai, for li = ε, or li ∈ F (and hence these dependen-
cies are trivially implied by T ). The claim then follows by
simple transitive reasoning, all necessary cases derive from
the fact that

{B1 v ∀Pf .B2,B2 v ∀Pf ′ .B3} |= B1 v ∀Pf .Pf ′ .B3,

and the lemma then follows by induction on the length of the
run. 2

Concept Satisfiability
The problem of primitive concept satisfiability is to deter-
mine, for a given concept A and TBox T , if there exists an
interpretation I for T in which AI is non-empty. Given a
primitive concept A and TBox T , one can test for primitive
concept satisfiability by using the NFA, denoted nfaAB(T ):

(S, {A}, {B}, δ(T )), (2)

with states induced by primitive concepts, by their comple-
ments, and by value restrictions, with start state A, with the
set of final states {B} ⊆ S, and with transition relation
δ(T ).

Theorem 5 (Primitive Concept Satisfiability) A is satisfi-
able with respect to the TBox T if and only if

L(nfaAB(T ) ∩ L(nfaA¬B(T ) = ∅
2 Another option would have been to use id for this purpose,

but we thought, on balance, that this would hinder readability.

for every B ∈ PC.

Proof (sketch) Assume A is non-empty and hence there is
a ∈ AI . For a primitive concept B ∈ PC, a word Pf in the
intersection language of the two automata above is a witness
of the fact that PfI(aI) ∈ BI and PfI(aI) ∈ ¬BI must
hold in every model of T , for reasons analogous to the proof
of Lemma 4, which leads to a contradiction since Pf is a
(total) function.
Conversely, if no such word exists then one can construct
a deterministic finite automaton from nfaAB(T ), using the
standard subset construction, in which no state containing
both B and ¬B is reachable from the start state A. Unfold-
ing the transition relation of this automaton, starting from
the state A, labeling nodes by the concepts associated with
the automaton’s states, and adding missing features to com-
plete trees in which no primitive concept is true for any
node, yields a tree interpretation that satisfies T (in particu-
lar in which all PFD constraints are satisfied vacuously) and
whose root provides a witness for satisfiability of A (as we
can simply assert a ∈ A). 2

To test for emptiness of (2), we use an graph connectivity al-
gorithm that (nondeterministically) searches for a path from
(A,A) to (B,¬B) in the (virtual) poly-sized product au-
tomaton (Hopcroft and Ullman 1979); the following result
is then immediate.

Corollary 6 Concept satisfiability with respect to CFD∀nc
TBoxes is complete for NLOGSPACE.

Note that this procedure can be trivially extended to test for
consistency of conjunctions of concepts and their negations
in CFD∀nc: to test for satisfiability of B1 u . . . u Bk with
respect to T we simply introduce a fresh primitive concept
A and test for satisfiability of A in T ∪{A v Bi | i ≤ k}. It
is, however, impossible to precompute all such inconsistent
concepts since this would require consideration of all possi-
ble types over PC (or finite subsets of primitive concepts), a
process essentially equivalent to constructing an equivalent
deterministic automaton which can require exponential time
(Hopcroft and Ullman 1979).

4 ABox Completion
To test for consistency we follow the path first outlined
for the combined approach to CQ answering in PTIME-



if a = b, b = c ∈ A then add a = c to A
if f(a) = b, b = c ∈ A then add f(a) = c to A
if a = b, f(b) = c ∈ A then add f(a) = c to A
if f(a) = b, f(a) = c ∈ A then add b = c to A
if a = b,A(a) ∈ A then add A(b) to A

ABox Equality Interactions

if A(a) ∈ A and ε ∈ L(nfaAB(δ(T ))) then add B(a) to A
if A(a), f(a) = b ∈ A and f ∈ L(nfaAB(δ(T ))) then add B(b) to A
if A(b), f(a) = b ∈ A and ε ∈ L(nfa∀f.AB (δ(T ))) then add B(a) to A

ABox–δ(T ) Interactions

if A(a), B(b) ∈ A, Pf ′i(a) = ci,Pf
′
i(b) = ci ∈ A for 0 < i ≤ k, and A v B : Pf1, . . . ,Pfk → Pf ∈ T then

• if Pf(a) = c,Pf(b) = d ∈ A and c = d 6∈ A then add c = d to A; or
• if Pf is of the form Pf ′′ .f and Pf ′′(a) = c,Pf ′′(b) = d and c = d 6∈ A then add f(c) = e, f(d) = e to A;

where Pf ′i is a prefix of Pfi, c and d are A individuals, and e is a new individual.

ABox–PFD Interactions

Figure 2: ABox Completion Rules.

complete DLs (Lutz, Toman, and Wolter 2009) by complet-
ing the explicit data using the TBox. Note for our case, how-
ever, that we do not attempt to generate auxiliary anonymous
individuals to satisfy totality of features (the counterpart of
qualified existential restrictions in EL) since there can be
exponentially many such individuals with distinct concept
membership.

Example 7 Consider a CFD∀nc TBox

T = {Bi v ∀ f. · · · .f︸ ︷︷ ︸
ithprime

.Bi | i ≤ k}.

Asserting (B0 u . . . u Bk)(a) would require exponentially
many anonymous objects belonging to distinct concept com-
binations to be created as prototypical witnesses when com-
pleting the ABox along the lines of the combined approach
(Lutz, Toman, and Wolter 2009).

Hence, our ABox completion focuses exclusively on con-
cept membership of existing individuals and on realizing
equational constraints mandated by the PFDs. The later in-
volves equating anonymous individuals at most one feature
“away” from an ABox individual (see “ABox-PFD Interac-
tions in Figure 2) and thus only linearly many new individ-
uals are needed.

Definition 8 (ABox Completion) The completion of ABox
A with respect to T , denoted completionT (A), is the least
ABox that contains A and is closed under the rules in Fig-
ure 2.

Lemma 9 Let K = (T ,A) be a CFD∀nc knowledge base
such that A(a) ∈ completionT (A). Then K |= A(a).

Proof (sketch) The completion rules in Figure 2 only add
facts implied by K.

Note that the converse is contingent on consistency of K.

Knowledge Base Consistency

The automata-based approach to concept satisfiability can
be applied to the more general problem of knowledge base
consistency.

Theorem 10 (Knowledge Base Consistency)
Let K = (T ,A) be a CFD∀nc knowledge base. K is con-
sistent if and only if {A | A(a) ∈ completionT (A)}
is satisfiable with respect to T for every individual a in
completionT (A).

Proof (sketch) If {A | A(a) ∈ completionT (A)} is not
satisfiable for some a then the knowledge base (T , {A(a) |
A(a) ∈ completionT (A)}) is inconsistent and hence K is
also inconsistent due to Lemma 9.
For the other direction, construct an interpretation I for K
as follows: begin by closing A under the rules in Figure 2
and then proceed by extending the closure with anonymous
objects by unfolding δ(T ) for every individual that does not
satisfy the totality of features requirement. It is then easy to
show that I |= T . 2

Note that the ABox individuals are considered separately
(i.e., without considering the ABox equalities); however,
were an inconsistency with respect to an individual forced
by traversing a feature within the ABox, this inconsistency
will be detected when the target individual is considered in
the above theorem.

The construction yields a PTIME algorithm for consis-
tency checking, the lower bound for CFDnc has been al-
ready established (Toman and Weddell 2013).

Corollary 11 Knowledge base consistency for CFD∀nc is
PTIME-complete. 2

The interpretation constructed in the only if part of the proof
is called the canonical model of K and is analogous to the
minimal models of horn theories.



5 Conjunctive Queries over CFD∀
nc KBs

We now show that CQ answering is tractable in data com-
plexity for CFD∀nc. Note that this also makes the problem
of evaluating instance queries tractable since CQ answering
subsumes instance query evaluation.

A conjunctive query (CQ) is an expression of the form
{x̄ | ∃ȳ.BODY} where BODY is a conjunction of atomic for-
mulas of the form C(x) and Pf(x) = Pf ′(y) for C a CFD∀nc
concept description not containing PFDs, Pf,Pf ′ ∈ F∗, and
x are variables among x̄ ∪ ȳ. We often conflate the BODY
of the query with the set of its atomic conjuncts. We call the
variables x̄ the answer variables. A union of CQ (UCQ) is a
set of CQ that denotes a disjunction of the formulas that de-
fine the individual CQs. An answer to a CQ ϕ w.r.t. a KB K
is a vector of individuals ā ⊆ IN such that K |= ϕ(ā) where
ϕ(ā) is a formula obtained from ϕ by substituting x̄ by ā.
We assume that CQs are connected; otherwise we simply
process each component separately.

Without loss of generality we can assume that all CQs
are in normal form: the concepts used in the CQs are prim-
itive concepts or their negations and the equational atoms
of the form f(x) = y. It is easy to see that every CQ can
be transformed to a equivalent one by introducing additional
variables and existential quantifiers.

To compute answers for a CQ ϕ we use the notion of CQ
folding. We need the following auxiliary definition:

Definition 12 Let T be a CFD∀nc TBox and C a primitive
concept or the complement of a primitive concept. We say
that a primitive concept A is a Pf-precondition of C in T if
Pf ∈ L(nfaAC(δ(T ))).

Lemma 13 Let T be a CFD∀nc TBox and A1, . . . ,Ak all
Pf-preconditions of C in T . Then, in every model I of T ,
o ∈

⋃
0<i≤k AIi implies PfI(o) ∈ CI for o ∈ 4.

Proof (sketch) Follows immediately from Lemma 4.

The above enables us to replace concepts of the form ¬A
and ∀f.A by their preconditions w.r.t. T , thus ensuring each
of the queries will be in normal form.

Definition 14 Letϕ be a CQ. We define a set FoldT (ϕ) with
respect to T to be the least set of CQ that contains ϕ and is
closed under the following rules.

1. If {x̄ | ∃ȳ.BODY} ∈ FoldT (ϕ), {¬A(x)} ⊆ BODY then

{x̄ | ∃ȳ.BODY} − {¬A(x)} ∪ {Bi(x)} ∈ FoldT (ϕ)

for all Bi an ε-precondition of ¬A;

2. If {x̄ | ∃ȳ.BODY} ∈ FoldT (ϕ), {f(x) = y,A1(y), . . . ,
Ak(y)} ⊆ BODY, and y does not appear elsewhere in
BODY nor in x̄, then

{x̄ | ∃ȳ − {y}.(BODY − {f(x) = y,A1(y), . . . ,Ak(y)}
∪ {Bj1

1 (x), . . . ,Bjk
k (x)})} ∈ FoldT (ϕ)

for all possible combinations of concepts Bji
i that are f -

preconditions of Ai w.r.t. T .

3. If {x̄ | ∃ȳ.BODY} ∈ FoldT (ϕ) and {f(x) = y, f(x′) =
y} ⊆ BODY, then {x̄ | ∃ȳ.BODY}[x/x′] ∈ FoldT (ϕ);

The intuition that underlies this definition is that, to find
query answers, it is now sufficient to match the queries in
Fold(ϕ) explicitly against the (extended) ABox (cf. Defi-
nition 8) and verify correct concept membership for these
nodes as prescribed by the query since possible matches
outside of this ABox are reduced to primitive membership
checks against Pf-preconditions.

Lemma 15 Let ϕ be a CQ with at least one answer variable.
Then ā is an answer to ϕ over K = (T ,A) if and only if
there is a mapping µ : x̄ ∪ ȳ → IN to the set of ABox
individuals in completionT (A), such that

1. µ(x) is an individual in A for x ∈ x̄ an answer variable;

2. f(µ(x)) = µ(y) ∈ completionT (A) for all f(x) = y ∈
BODY; and

3. A(µ(x)) ∈ completionT (A) for all A(x) ∈ BODY,

for at least one {x̄ | ∃ȳ.BODY} ∈ FoldT (ϕ).

Proof (sketch) Observing that the extended ABox is essen-
tially a part of the minimal model ofK (sinceK is Horn) and
that every element of Fold(ϕ) implies ϕ, it is easy to see that
whenever (1-3) are satisfied, there is a match of ϕ in the min-
imal model and thus ā is an answer. Conversely, if a match
of ϕ in a minimal model exists yielding ā as an answer, then
part of the match will be realized in the ABox (since at least
one variable must be bound to an ABox individual) and the
reminder of the match must be forest-like. Hence, one of
the queries in FoldT (ϕ) matches in the ABox making the
remaining conjuncts implied by T due to Lemma 13. 2

For CQ without answer variables, we need an additional
step that checks if the query (when equivalent to a con-
cept) matches in the tree part of the canonical model of
K. To achieve this, we determine every primitive type
{A1, . . . ,An} ⊆ PC (of a potential completed ABox in-
dividual) whether C must be realized in the canonical model
in which an extended ABox individual belongs to such a
primitive type. We use the following construction: Let T be
a CFD∀nc TBox, {A1, . . . ,An} ⊆ PC a consistent primitive
type w.r.t. T , and assume the following query:

ψ = {∅ | ∃y.B1(y) ∧ . . . ∧ Bk(y)}3.

We define an automaton

M(ψ) = nfaA0

B1
(δ)× . . .× nfaA0

Bk
(δ)

where δ = δ(T ) ∪ {A0
ε→A1, . . . , A0

ε→An} and A0 is a
primitive concept not occurring in T . This construction also
indirectly yields a PSPACE lower bound on combined com-
plexity of query answering in CFD∀nc by reduction from the
DFA intersection problem (Garey and Johnson 1979).

3As a consequence of the definition of FoldT , it suffices to con-
sider only queries of this form since more complex queries are sim-
plified by the folding process.



Definition 16 Let T be a CFD∀nc TBox, {A1, . . . ,An} ⊆
PC a primitive type, and ψ ∈ FoldT (ϕ) of the form {∅ |
∃y.B1(y), . . . ,Bk(y)}. We say that the type {A1, . . . ,An}
forces ψ if M(ψ) is nonempty.

Now, whenever such a query ψ appears in FoldT (ϕ), we
add ∃x.T (x) for all T that force ψ w.r.t. T . These additional
queries can be evaluated solely with respect to the completed
ABox and guarantee that ψ is realized outside of the ABox
whenever a match is found.

Theorem 17 Let ϕ be a CQ with at least one answer vari-
able. Then ā is an answer to ϕ over K = (T ,A) if and only
if completionT (A) |= ψ(ā) for at least one ψ ∈ FoldT (ϕ).

Proof (sketch) Follows from Lemma 15 and the observation
that closed queries that correspond to CFD∀nc concepts are
handled using the construction in Definition 16.

Analyzing the above constructions, it is easy to verify that
overall data complexity of CQ answering over CFD∀nc
knowledge bases is in PTIME: an ABox completion can be
realized by a Datalog program that depends only on T , and a
subsequent evaluation of a UCQ (defined by FoldT (ϕ)) is in
AC0. This matches the lower bound established for CFDnc
in (Toman and Weddell 2013) that precludes using perfect
rewriting alone for CQ answering. Also note that |FoldT (ϕ)|
is worst-case exponential in |T | + |ϕ|; this, however, is un-
avoidable as the combined complexity of CQ answering
is hard for PSPACE even for CFDnc while merely NP-
complete for UCQ. Thus, unless NP=PSPACE, the blowup
cannot be avoided. This observation also precludes the var-
ious filtering approaches used previously for the combined
approach (Kontchakov et al. 2010; 2011; Lutz et al. 2013;
Lutz, Toman, and Wolter 2009). Hence the combination of
the combined approach and perfect rewriting is necessary
for CQ answering over CFD∀nc.

6 Related Work
An early version of the CFD dialect first appeared in
(Khizder, Toman, and Weddell 2000); the name was a con-
traction of “CLASSIC with FDs”. The present form ap-
pears in (Toman and Weddell 2009), which also explored the
consequences of adding additional concept constructors on
the complexity of concept subsumption problems. Dialect
CFDnc was recently proposed as a modification of CFD
in (Toman and Weddell 2013), mainly to gain PTIME data
complexity for conjunctive query answering. However, scal-
able OBDA in the sense we have outlined was not possible
with the query answering approach used in this work.

In (Toman and Weddell 2009), the authors outline an al-
ternative approach to computing the certain answers to so-
called attribute connected conjunctive queries for the logic
CFD. The approach reduces such problems to concept sub-
sumption problems in which path agreements are used in
posed question concepts to encode an ABox.

Scalable OBDA based on a perfect rewriting of conjunc-
tive queries was developed for DL-Lite (Calvanese et al.
2007). Note however, that if perfect rewriting suffices to ac-
complish scalable OBDA for a DL dialect, the underlying

ontology must be limited to logics without (general) quali-
fied value or existential restrictions. The combined approach
to scalable OBDA, first shown for a member of the EL fam-
ily of logics (Lutz, Toman, and Wolter 2009), avoids this re-
striction. The combined approach can also be applied to the
DL-Lite family (Kontchakov et al. 2010), even in the pres-
ence of role hierarchies (Lutz et al. 2013). However, for the
reasons outlined in this paper, the underlying logics cannot
support (even limited) use of value restrictions.

7 Summary
We have introduced a new member of the CFD family of
DL dialects called CFD∀nc with the following notable prop-
erties.
• CFD∀nc is a generalization of CFDnc. Consequently, it

inherits the ability of CFDnc to capture terminological
cycles with universal restrictions over functional roles, to
capture a rich variety of functional constraints over func-
tional role paths, and to express disjointness of atomic
concepts. In addition, it is now possible in CFD∀nc to have
universal restrictions occurring on left-hand-sides of in-
clusion dependencies.

• We have established the foundations for scalable OBDA
for CFD∀nc knowledge bases for which both knowledge
base consistency and CQ answering have PTIME data
complexity. In particular, we show how CQ answering
over CFD∀nc knowledge bases can be reduced to the com-
putation of a data completion that can then be stored in a
RDBMS, followed by an execution of relational queries
over the completion.

We have also shown that it is not possible for scalable
OBDA over a CFD∀nc knowledge base K that is based ex-
clusively on either a perfect rewriting approach or on a
combined approach. Moreover, we have shown that (un-
der common complexity-theoretic assumptions) the rewrit-
ten CQ is necessarily worst-case exponential in the size
of the original query. However, work on (1) reducing the
complexity of generated queries in perfect rewriting ap-
proaches (Rosati and Almatelli 2010), e.g., removing mem-
bers of a union of conjunctive queries that are subsumed by
other members, and on (2) using interval encoding to com-
press the expansion of an ABox in combined approaches
(Agrawal, Borgida, and Jagadish 1989; Rodriguez-Muro and
Calvanese 2012) can also be applied in our setting.

The complexity landscape of most of the variants of CFD
have now been resolved. In particular, see (Toman and Wed-
dell 2014) in the case of CFDnc and (Toman and Wed-
dell 2009) for the case of CFD (which allows conjunction
on left-hand-sides of inclusion dependencies, but disallows
negation on right-hand-sides).

There are additional issues relating to CFD∀nc that merit
further investigation. First, it is desirable to incorporate
limited forms of equational constraints while preserving
tractability of reasoning. And second, although the model-
ing utility is unclear, the consequences of allowing PFDs on
the left-hand-sides of inclusion dependencies in CFD∀nc is
still open.
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