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Abstract

In the context of a large-scale solar farm participating in an energy market, we consider the problem

of allocating a capital budget to solar panels and storage to maximize expected revenue over multiple

time periods. This problem is complex due to many factors. To begin with, solar energy production is

stochastic, with a high peak-to-average ratio, thus the access link is typically provisioned at less than peak

capacity, leading to the potential for waste of energy due to curtailment. The use of storage prevents

power curtailment, but the allocation of capital to storage reduces the amount of energy produced.

Moreover, energy storage devices are imperfect and their costs diminish over time. We mathematically

model these constraints and demonstrate that the problem is still convex, allowing efficient solution.

Numerical examples demonstrate the power of our model in doing a sensitivity analysis to various

design assumptions. We find that it is typically optimal to invest 90-95% of the initial capital on solar

panels and the rest on storage. Interestingly, it is best to defer investment on lead-acid batteries (but not

Lithium-ion batteries) closer towards the end of lifetime of the PV panels.

I. INTRODUCTION

One of the defining features of the modern energy landscape is the rise of large-scale solar

farms. Driven by financial incentives and the continuing exponential decrease in costs, these farms

can produce hundreds of megawatts of peak power, matching conventional sources. Indeed, in
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May 2012, more than 50% of the load in Germany was met from PV sources alone [9], a fact

that would have been inconceivable a decade ago.

The energy generated by small solar farms is easily absorbed into the existing transmission

grid. As farm sizes grow, however, this situation is likely to change. Large solar farm operators

in many countries are already dispatchable, that is, they must curtail production when asked

to do so. It is likely that future large solar farm operators will be asked to participate in the

generation market, on a level playing-field with traditional generators, as described next.

Traditional large-scale generators of electrical power are paid for power generation by a

“market maker” that buys electricity from generators and sells it to distributors. Market makers

predict the demand for the next day or hour and enter into daily or hourly contracts with

generators who can meet the estimated demand. Importantly, generators need to pre-commit to

a certain constant power level; if they fail to meet their commitment, they must pay a fine.

Given the stochastic nature of solar generation, their participation in a market requiring

constant power-level commitments is challenging. It is only feasible either with very conservative

power commitments or the introduction of energy storage devices (ESDs) that smooth out

variations in solar generation. The focus of our work is in the optimal allocation of a certain

capital budget to solar panels and ESDs to maximize revenue from participation in the day-ahead

or hour-ahead market over the investment time horizon.

To gain an insight into the problem, note that investing the entire budget in solar panels

maximizes the peak output power of the solar farm. However, this peak output power is highly

variable and the farm operator must therefore make conservative commitments, i.e., to a gener-

ation level that they are likely to meet with very high probability, leading to a loss of revenue

from any generation that exceeds this commitment. Instead, it is better to allocate a fraction of

the investment to ESDs to provide less-variable output power. Of course, this comes at the cost

of a lower peak output power. Maximizing revenue requires a careful balance between these

competing forces.

Note that the outputs from our solution include both a budget allocation to PV and ESD

over the lifetime of the solar farm as well as guidelines for choosing the market commitment

that should be made by the farm in each time period, a non-trivial task. Specifically, the key

contributions of our work are:

• modelling the design of a solar PV farm that is participating in an electricity market as a



3

convex optimization problem

• determining “good” target power commitments in each time period to maximize expected

revenue

• gaining engineering insights into the problem through numerical examples using real irra-

diance traces.

We have tried to make our system model as realistic as possible. Specifically, we model the

following: (a) the lifetime of an ESD is typically shorter than that of a solar panel, thus ESDs will

need to be purchased several times over the lifetime of the farm, (b) ESDs are imperfect in that

they exhibit conversion inefficiency and self-discharge and that their charge and discharge rates

are finite, (c) large solar farms are usually sited in remote, unpopulated locations and connected

to the grid over an access link of finite capacity, leading to potential curtailment at times of peak

generation, (d) different ESDs exhibit different types of imperfections, and (e) ESD costs are

anticipated to decline over time. To our knowledge, no prior work has modelled these real-world

constraints all together.

Our work makes several assumptions. We assume that we know the access line capacity and

the irradiance over the course of a year at the solar farm location. We assume we are given the

prices for PV panels and ESDs as well as their price evolution over time. We also assume that

we know the hourly electricity prices over the year. Of course, in practice, these quantities are

unknowable and must be predicted. Therefore, our solution at present does not take into account

the prediction errors.

Nevertheless, we gain many new interesting insights that are insensitive to our assumptions.

For example, we find that it is typically optimal to invest 90-95% of the initial investment on

solar panels and the rest on ESDs. Moreover, we find that it is better to respond to the diurnal

variation in solar power by varying the power commitment once every hour, smoothing out

high-frequency fluctuations with ESDs, rather than committing to a single power level for the

whole day. As well, investment on the lead-acid batteries (but not Li-ion batteries) is best shifted

towards the end of lifetime of PV panels, to account for the battery price decays over time.

The rest of the paper is organized as follows. We discuss the system model and notation

in Section II. We formulate the problem, study it, and simplify it in Section III. We present

our numerical examples in Section IV. We discuss the existing work on solar farm designs in

Section V and conclude the paper in Section VI.



4

Pin

γ +

) = [Pout

chg

ESD

Pio

P c

c P d

t)≤C

Fig. 1: System model

II. SYSTEM MODEL

Figure 1 illustrates our system, consisting of solar PV panels and an ESD. We assume a

discrete-time model, where time is slotted; 0, Tu, 2Tu, . . ., with Tu being the time unit. To simplify

notation, we define t to mean the time t×Tu. We assume t = 0 is the time the PV farm system in

Figure 1 is created. The available power from solar PV panels at any time t is Pin(t). The actual

output power from the solar PV farm, Pout(t), is transmitted over an access line of capacity of C

power units to the grid. The target committed output power is denoted Ps(t) at any time t (and

is not shown in the figure). Note that this commitment cannot exceed the access line capacity,

thus

0 ≤ Ps(t) ≤ C ∀t ≥ 0. (1)

In our problem formulation, Ps(t) for each time t is a control variable, so that this choice can

be made in a way to maximize expected revenue.

We denote by Pio(t) and Pd(t), respectively, the portions of the output power that come

directly from the input solar power and from the ESD. Thus, we can write

Pout(t) = Pio(t) + Pd(t) ≤ Ps(t) ∀t ≥ 0, (2)

where the last inequality implies that the entire system might fail to provide the target output

power at certain times and it is never larger than the target output power.

Given, our notation, the system model in Figure 1 has the following constraints:

0 ≤ Pd(t) + Pio(t) ≤ Ps(t) (3)

0 ≤ Pc(t) + Pio(t) ≤ Pin(t) (4)

0 ≤ Pc(t), Pio(t), Pd(t) (5)
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Besides these constraints, we also model ESD imperfections as follows. The charging (dis-

charging) power must not exceed αc (αd) at any time. The ESD loses a fraction of 1−ηc (1−ηd)
when charging (discharging), because of ESD charging (discharging) inefficiency, due to energy

conversion losses. To achieve a reasonable ESD lifetime, only a DoD fraction≤ 1 of the entire

ESD is allowed to be used. Finally, the stored energy is reduced by a fraction 1 − γ ≤ 1 after

each time unit it is kept in the ESD, due to self-discharge. In summary, if b(t) is the state of

charge evolution at time t, then we have

b(0) = 0 (6)

b(t) = (1− γ)b(t− 1) + ηcPc(t)Tu − Pd(t)Tu/ηd; ∀t ≥ 1 (7)

0 ≤ b(t) ≤ DoD ×B (8)

0 ≤ Pd(t) ≤ αd (9)

0 ≤ Pc(t) ≤ αc, (10)

where B is the size of the ESD.

The output power Pout(t) is transmitted via the access line to be sold in an electricity market.

We believe that the day-ahead electricity market is likely to use one of the two following policies

to pay/charge solar PV owners. In the first policy, the supplier earns $c1(t) for each energy unit it

produces, and pays $p1(t) for each energy unit it falls short at time t during the day of operation.

Thus, the revenue in this policy is given by

Rev1 =
T∑
t=1

(
c1(t)Pout(t)− p1(t)

(
Ps(t)− Pout(t)

))
Tu, (11)

where T × Tu is the lifetime of the PV farm. In the second policy, everything is the same as

before, except that the supplier is rewarded for its target output power Ps(t) rather than its actual

production Pout. In this case, the revenue is

Rev2 =
T∑
t=1

(
c2(t)Ps(t)− p2(t)

(
Ps(t)− Pout(t)

))
Tu, (12)

where c2(t)$ and p2(t)$ are, respectively, the per-energy unit reward and penalty. However, the

revenue formulations in theses two policies from Eq. (11) and Eq. (12) are equivalent if we

redefine the penalty price; i.e., by setting c2(t) = c1(t) and p2(t) = c1(t) + p1(t), keeping in

mind that p2(t) ≥ c1(t). Following existing work (e.g., [5], [12]), we choose Eq. (12) to be the
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objective function for our problem. We simplify notation by using c(t) and p(t) instead of c2(t)

and p2(t). Combining Eq. (2) and Eq. (12) with some manipulations, yields

Rev =
T∑
t=1

(
(c(t)− p(t))Ps(t) + p(t)

(
Pd(t) + Pio(t)

))
Tu. (13)

Given a total budget of $K, our goal is to optimally size a solar PV farm (illustrated in

Figure 1) with the maximum revenue (Eq. (13)) over its lifetime. The budget can be used to buy

either solar PV panels or ESDs. In the next section, we formulate and discuss this problem in

greater detail.

III. PROBLEM FORMULATION

We formulate two versions of the revenue maximization problem in this section. The first

formulation takes Ps as a free variable in the optimization problem, thus allowing us to give

precise guidance to the solar farm owner on the level of market commitment in each time period.

However, our solution is highly dependent on precisely forecasting irradiance in the next few time

periods, making it less robust in practice. In our second formulation, we pick a “reasonable”

choice for Ps for each time period. This reduces the complexity of the problem, makes the

solution more intuitive, as well as less sensitive to errors in the irradiance forecast. However,

the formulation is only quasi-optimal and less comprehensive than the first formulation.

A. First formulation: General Ps

In this section, we size the solar PV farm, while also optimizing over all choices of Ps. There

are two design parameters:

• Optimal budget split between PV panels and ESD: Introducing θpv

Let us denote θpv ≤ 1 the ratio of the total budget invested for PV panels. Denote by i(t) the

available solar power at any time t per unit area at the given location. The available power from

solar PV panels Pin is given by

Pin(t) = αpvAi(t), (14)

where αpv is the efficiency of the solar PV panels and A is the total surface area. We define

Pmax(A) to be the peak power of a PV farm with total surface area A. Then, from Eq. (14), we
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have

Pmax(A) = max
t

(i(t))αpvA. (15)

Given a price per unit peak power u, a solar PV farm with total surface area A costs Pmax(A)u.

Thus, for a given θpv and K, the size of the PV panels is given by

A =
Kθpv

umaxt(i(t))αpv
. (16)

Inserting this value in Eq. (14), yields

Pin(t) =
Kθpv

umaxt(i(t))
i(t)

= θpvP ∗in(t), (17)

where P ∗in(t) is defined to be

P ∗in(t) :=
K

umaxt(i(t))
i(t). (18)

Given a θpv, we compute the PV panel size and Pin, respectively from Eq. (16) and Eq. (17).

In the next section, we discuss how to compute the storage size.

• Optimal investment on ESDs: Introducing θBl

To compute the ESD size for a given θpv, we note that the lifetime of an ESD in years, LB,

is typically much smaller than the lifetime of PV panels in years (T ×Tu)/(24× 365). Thus, in

order to have storage throughout the lifetime of PV panels, we need to buy ESDs n ≥ 1 times,

where

n =

⌈
T × Tu

24× 365× LB

⌉
. (19)

Let θB1 , . . . , θ
B
n be the fractions of the total budget invested in ESD, in each of the n purchases.

The overall budget is either invested in ESD purchase or in buying PV panels. Thus,

θpv +
n∑
l=1

θBl = 1. (20)

Due to the fast improvement of ESD technologies in recent years, ESD prices have an ongoing

price decay, which is expected to continue. We assume an exponential price decay over time;

we take the price in a subsequent year to be (1− d) ≤ 1 of the price in the current year, where
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d is the decay fraction of the storage price per year. Thus, if LB is the ESD lifetime in years

and θBl is the budget ratio investment in ESD in its l’th purchase period, its corresponding size

Bl in that period is given by:

Bl =
θBl K

v × (1− d)(l−1)LB
∀l ∈ {1, . . . , n}

= B∗l θ
B
l ∀l ∈ {1, . . . , n} (21)

where v is the price per unit of storage at t = 0 and B∗l is defined to be

B∗l :=
K

v × (1− d)(l−1)LB
∀l ∈ {1, . . . , n}. (22)

Given the budget split for each ESD purchase θBl at any purchase period l, we can obtain the

ESD size Bl for that period l from Eq. (21).

It turns out that different ESD imperfection parameters scale differently with θBl . This is

because only charging and discharging rate limits are functions of storage size. To be more

precise, suppose that (α∗c , α
∗
d, η

∗
c , η∗d, DoD∗, γ∗) are the ESD imperfection parameters when

θBl = 1 (i.e., investing the entire budget K on buying storage in period l). Then, for any θBl , we

have

αc(θ
B
l ) = θBl α

∗
c ; αd(θ

B
l ) = θBl α

∗
d; ηc(θ

B
l ) = η∗c (23)

ηd(θ
B
l ) = η∗d; DoD(θBl ) = DoD∗; γ(θBl ) = γ∗. (24)

Combining all of the above constraints, we can formulate the revenue maximization problem

P1, given K, C, T , LB, Tu, c(t), p(t), i(t), u, v, d, and ESD imperfections (α∗c , α
∗
d, η

∗
c , η∗d,
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DoD∗, γ∗), as follows

P1 : max
θpv ,(θBl )∀l,Ps(t),
Pd(t),Pio(t),Pc(t)

T∑
t=1

(
(c(t)− p(t))Ps(t)

+ p(t)(Pd(t) + Pio(t))
)
Tu (25)

s.t.

0 ≤ θpv, θB1 , . . . , θ
B
n ≤ 1 (26)

θpv + θB1 + . . .+ θBn ≤ 1 (27)

Bl = θBl B
∗
l ∀l (28)

bl(0) = 0 ∀l (29)

bl(t) = (1− γ∗)bl(t− 1) + η∗cPc(t)Tu − Pd(t)Tu/η∗d ∀t,∀l (30)

0 ≤ bl(t) ≤ DoD∗ ×Bl ∀t,∀l (31)

0 ≤ Pd(t) + Pio(t) ≤ Ps(t) ∀t (32)

0 ≤ Pc(t) + Pio(t) ≤ θpvP ∗in(t) ∀t (33)

0 ≤ Pc(t), Pio(t), Pd(t) ∀t (34)

0 ≤ Pd(t) ≤ θBl α
∗
d ∀t,∀l (35)

0 ≤ Pc(t) ≤ θBl α
∗
c ∀t,∀l (36)

0 ≤ Ps(t) ≤ C ∀t (37)

Problem P1 is LP and hence, is convex. However, solving it requires precise forecasts of

future solar irradiance, something this is notoriously hard to predict. Hence, we propose a new

(simpler) problem P2 that yields a robust and quasi-optimal solution to P1, while being more

intuitive. We first discuss how to choose a reasonable profile for the market commitment value

Ps.

B. Second Formulation: A reasonable choice for Ps: Introducing ∆

An electricity market requires generators to make a constant power commitment for each

market time slot (see Figure 2) and penalizes any violation. The length of these market time

slots, denoted Ts × Tu, is chosen by the market operator and is of the order of about one hour.
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Fig. 3: Illustrating the choice of Ps in a typical day.

Thus, when a solar farm participates in an electricity market, its target output power Ps is very

likely to be a step-wise constant function with the size of each step being Ts. Note that this

type of target output power automatically captures the diurnal fluctuations in solar power, leaving

only the short-term fluctuations to be captured by ESDs. To be more precise, any high-frequency

fluctuation with time correlation smaller than the market time slot Ts can only be absorbed by

ESDs, and low frequency fluctuations that last longer than Ts are best captured by changing the

value of the target power commitment in the electricity market.

These observations suggest that Ps in any market time slot should more or less follow the

diurnal variations in solar power, that is, the average expected solar power production during

each market time slot1. In fact, in our work, we assume that the commitment Ps is the average

of Pin during each time slot of size Ts, but shifted by a value ∆l during purchase period l (see

Figure 3). Introducing this shift of ∆l helps in two ways. First, limited access line capacity

1Note that this is also much easier than to forecast the exact time series of future irradiance values.
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might limit the output power in a market time slot. Therefore, surplus power generated during

a time slot must be carried over to a subsequent slot, so that the target committed power of that

subsequent market time slot should then be larger than its actual average (favouring ∆l > 0).

The second reason is that converting a variable input power to its average over any time slot

is only possible if we have some non-zero amount of stored energy available at the start of the

time period, to cope with a shortfall during the first part of the time period. Thus, an ESD cannot

convert the PV input power to its actual average unless ∆l < 0 in some of the previous time

period. For these two real-world reasons, we have introduced this additional complexity in our

problem formulation.

Let P in(t) at any time t to be the average solar power over the market time slot j that t

belongs to (i.e., jTs + 1 ≤ t ≤ (j + 1)Ts). This is

P in(t) =

∑(j+1)Ts
τ=jTs+1 Pin(τ)

Ts
; jTs + 1 ≤ t ≤ (j + 1)Ts (38)

Assuming that t belongs to purchase period l, we set the target output power to be

Ps(t) = min
(
C, P in(t) + ∆l

)
, ∀t ≥ 0 (39)

where ∆l ≥ 0 is a constant during purchase period l and C is the access line constraint.

Combining Eq. (17)-(38)-(39), we have

Ps(t) = min
(
C, θpvP

∗
in(t) + ∆l

)
, ∀t ≥ 0 (40)

where P
∗
in is defined to be

P
∗
in(t) :=

∑(j+1)Ts
τ=jTs+1

Ki(τ)
umaxt(i(τ))

Ts
; jTs + 1 ≤ t ≤ (j + 1)Ts (41)

Clearly, replacing Ps with Eq. (39) makes the problem non-linear. However, with the following

transformation we can convert the problem to a Linear-Integer Programming (LIP).

We introduce three new variables: an integer vector j(t) ∈ {0, 1} for any t, and real-value

vectors X(t) and w(t) as

X(t) := θpvP
∗
in(t) + ∆l (42)

and

w(t) := j(t)X(t). (43)
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Define M to be a constant upper bound on X(t). This upper bound exists because X(t) is finite.

For instance, a candidate could be the maximum power of a PV farm with θpv = 1. This is

M = Pmax(A)|θpv=1 (44)

The following two constraints are equivalent to the equality in Eq. (43):

0 ≤ w(t) ≤ j(t)M (45)

X(t)− (1− j(t))M ≤ w(t) ≤ X(t). (46)

To see this, consider the two possible choices of j(t) = {0, 1}. Moreover, the constraints on

Eqs. (45)-(46) together with the following constraints ensure that Ps(t) is equal to its value from

Eq. (40):

Ps(t) = (1− j(t))C + w(t) (47)

w(t) ≤ C (48)

(1− j(t))C ≤ θpvP
∗
in(t) + ∆l (49)

This is shown by setting the two possible values of j(t) and observing that the minimum operation

in Eq. (40) is mimicked by enforcing infeasible cases.

Using the above definitions and notation and given K, C, T , LB, Tu, c(t), p(t), i(t), u, v,

d, and ESD imperfections (α∗c , α
∗
d, η

∗
c , η∗d, DoD∗, γ∗), we can write the solar PV farm design
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optimization problem P2 as follows:

P2 : max
θpv ,(θBl )∀l,(∆l)∀l,

Pd(t),Pio(t),Pc(t),j(t)

T∑
t=1

(
(c(t)− p(t))Ps(t)

+ p(t)(Pd(t) + Pio(t))
)
Tu (50)

s.t.

Constraints in Eqs. (26) to (36)

Ps(t) = (1− j(t))C + w(t) ∀t (51)

w(t) ≤ C ∀t (52)

(1− j(t))C ≤ θpvP
∗
in(t) + ∆l ∀t,∀l (53)

X(t) = θpvP
∗
in(t) + ∆l ∀t,∀l (54)

0 ≤ w(t) ≤ j(t)M ∀t (55)

X(t)− (1− j(t))M ≤ w(t) ≤ X(t) ∀t (56)

Note that in the above optimization problem, we have replaced the large vector Ps of size T

in P1 with the vector (∆l)∀l with much fewer elements, i.e., n� T . The above problem is an

LIP and hence allows the use of the simple hill climbing method.

In the next section, we show that the problems P1 and P2 can be simplified for the case of

a static market (where the reward and penalty prices are fixed). This simplification makes the

problems more intuitive and is obtained by proving that some of the free parameters in P1 and

P2 can be expressed in closed forms and excluded from the set of free parameters.

C. Simplification for a static market

Consider a static market, in which the reward c and penalty p prices are fixed, i.e., not a

function of time. For a static market, we show that the optimal charging/discharging strategy is

independent of the solar power trace and other conditions and this substantially simplifies the

problem. In other words, both our problem formulations (P1 and P2) search for the optimal

control strategy of charging/discharging by optimizing the revenue over Pc, Pd, and Pio among

other parameters. In this section, however, we show that the optimal control strategy for a static
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market can be provided in closed-form and hence, Pc, Pd, and Pio can be excluded from the set

of free variables.

Lemma 1 (Optimal control strategy for a static market). Given the system model described in

Section II and the constraints in Eq. (2-10), the optimal values of Pc, Pd, and Pio for a static

market can be expressed in closed-form. In other words, the following values maximize the

revenue in Eq. (13) when c(t) and p(t) are not functions of time

Pio(t) = min(Ps(t), Pin(t)) (57)

Pc(t) = min([Ps(t)− Pin]+, αc,

[DoD ×B − (1− γ)b(t− 1)]+/(ηcTu)) (58)

Pd(t) = min([Ps(t)− Pin(t)]+, αd, (1− γ)b(t− 1)ηd/Tu), (59)

where [x]+ = max(0, x) for any x.

Proof. For a given Ps(t), we need to maximize Pio and Pd to maximize the revenue in Eq. (13).

Observe that it is always the best to maximize Pin first, regardless of Pd and Pc. To see this, note

that Pd is bounded by the existing charge in the ESD, b(t). For each unit of energy that we move

from Pin to Pd, we can only expect an energy return of only a fraction of ηdηc ≤ 1, whereas

Pio is delivered to the output directly with no loss. Thus, we should maximize Pio regardless of

Pd and Pc and find the values of Pd and Pc accordingly.

From Eqs. (3)-(4), the maximum value of Pio is given by

Pio(t) = min(Ps(t), Pin(t)), (60)

which matches the lemma statement. Given this value for Pio and using Eq. (3) and Eq. (4), we

find that at any time t only one the variables Pc and Pd can be non-zero and the other must be

zero. We also know that, given Ps and Pio, the values of Pc and Pd must be maximized. Thus,

from Eqs. (4)-(7)-(8)-(10), the optimal value of Pc is given by

Pc(t) = min([Ps(t)− Pio]+, αc,

[DoD ×B − (1− γ)b(t− 1)]+/(ηcTu)) (61)

= min([Ps(t)− Pin]+, αc,

[DoD ×B − (1− γ)b(t− 1)]+/(ηcTu)), (62)



15

where in the second line we inserted the value of Pio from Eq. (60).

Similarly, the optimal value of Pd(t) using Eqs. (3)-(7)-(8)-(9), is given by

Pd(t) = min([Ps(t)− Pio(t)]+, αd, (1− γ)b(t− 1)ηd/Tu)

= min([Ps(t)− Pin(t)]+, αd, (1− γ)b(t− 1)ηd/Tu).

Thus, Eqs. (57-59) are the optimal values of Pio, Pc, and Pd, when optimizing for the revenue.

Based on the above lemma, the optimal control strategy in our problem follows these straight-

forward static rules: The input power Pin(t) is primarily used to serve the target output power,

delivering min(Pin(t), Ps(t)) to the output line. The leftover (if any) [Pin(t)−Ps(t)]+ is stored.

The energy is stored to the ESD with power Pc(t) at any time t. If, at a given time t, the available

solar power is insufficient (i.e., Pin(t) < Ps(t)), the energy stored in the ESD, if any, can be

used to make up the difference.

In a static market, storing energy in the ESD when we have a chance to sell it, is always

harmful because: (1) there is no gain in terms of revenue to postpone selling energy (2) we

might lose some revenue because the ESD may become full, and (3) we lose stored energy

due to self-discharge. This static control strategy, however, is not always optimal in a dynamic

market, because it might be more beneficial to retain energy in the ESD if we know that the

market price will soon increase.

Lemma 1 shows that we can exclude Pc, Pio and Pd from the set of free parameters in the

optimization problem in Eqs. (50-56). Moreover, we know that w(t) and j(t) are defined only

to enforce Ps(t) to be the closed-form stated in Eqs. (40-41). This leaves us with only three free

parameters in the optimization problem: θpv, θBl , and ∆l.

θpv controls the trade-off between larger input power and the reliability of the output power.

Increasing θpv increases the output power Pout (and hence Ps), but makes it more bursty, leading

to a potential increase in the penalty. Thus, it can potentially increase both the reward and the

penalty.

(θBl )∀l control the trade-off between investing in larger ESDs and how much value they add

earlier in the lifetime of the farm, given the anticipated price decay of ESDs. Increasing θBl for

small values of l gives us a higher chance to make the input power smoother and reduce the

penalty. However, we have a chance to buy much larger ESDs later when the ESD prices drop.
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Fig. 4: The impact of the size of budget allocation to PVs (θpv) and market time slot duration (Ts) on annualized

revenue.

It is also important to note that increasing the size of the ESD does not add much to the revenue

after a certain threshold, when all input variations have been evened out.

Finally, ∆l, for any purchase period l, optimizes the target output power. Increasing ∆l

decreases Ps and the potential reward, but may decrease the penalty by facilitating the output

power flattening for a smaller target power.

IV. NUMERICAL EXAMPLES

We illustrate the use of our model by using it to design a solar PV farm with storage at

a given location characterized by its irradiance trace. We use our second problem formulation

(P2) in Eqs. (50-56), while exploiting Lemma 1, assuming a static market with the reward and

penalty prices, respectively, set to c = $291/MWh and p = 2 ∗ c, unless otherwise stated. The

price (including hardware and installation) and the lifetime of a PV panel is, respectively, set to

u = 1.63 $/Watt and 20 years, which are the regular values in June 2014 [1]. We assume that our

total initial budget is enough to build a 1MW solar farm with no storage; thus K = $1, 630, 000.

We use the solar irradiance dataset (i.e., i(t) in our notation) from the atmospheric radiation

measurement website [2] from the C1 station in the Southern Great Plains permanent site with a

1-minute time resolution. The yearly storage price decay factor d is set to 0.05. Unless otherwise

stated, the access line capacity is set to C = 0.5MW. Although our problem formulation can

be applied to a large set of ESDs, for simplicity, we only assume two widely-used storage
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Fig. 5: Optimal θpv as a function of C. For the lines tagged with star, the battery price is halved and the penalty

is increased to p = 3c.

technologies for our numerical examples; Lithium-ion (Li-ion) and Lead-acid (PbA) batteries.

Their characteristics are given in Table I.

A. The impact of budget allocation to PVs and market time slot on revenue

The overall revenue is greatly affected by the budget allocation to panels versus ESDs. Figure

4 shows how the annualized revenue (total revenue divided by the solar farm lifetime in years) is

influenced by varying the fraction of the budget allocated to PVs and the duration of the market

time slot (in hours). The line marked as the ‘ideal upper bound’ is the maximum possible revenue

with no penalty or curtailment (i.e., p = 0 and C =∞), where it is optimal to invest the entire

budget in solar PV panels (i.e., θpv = 1). When there is a penalty, it is necessary to invest some

part of the budget in an ESD. Nevertheless, because the ESD size is never adequate to fully

capture all input variations, the achieved revenue is always less than the optimal.

The larger the size of the market time slot, the greater the role of ESDs in removing within

time-slot fluctuations in power production, and hence the smaller the optimal budget allocation

to PVs. We see that when Ts = 24h, the optimal PV investment is 40%, whereas with a Ts =

1h, the optimal PV investment rises to more than 90%.

Figure 4 also shows that the overall revenue increases as Ts decreases. This is because the

diurnal variation in solar production is best removed by changing the target power at each time

slot than using ESDs. The shorter the time slot, the easier it is to prevent overflow and underflow
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in the ESD. There is significant improvement in the maximum achievable revenue as the time

slot decreases from 24 hours to 1 hour, but there is negligible improvement from Ts = 1h to

Ts = 1/2h.

B. The role of access link capacity

A limited access link capacity can cause curtailment of power from the solar farm, making

storage necessary to avoid revenue loss from wasted power. Figure 5 illustrates the optimal value

of θpv as a function of the access line capacity C. We have also added curves, tagged with a star

in the legends, that correspond to lowering the per-unit battery prices (in Table I) by 50% and

simultaneously increasing the penalty (p = 3c). These are meant to characterize a possible future

scenario enabled by changes in battery technology and the evolution of electricity markets.

To begin with, Figure 5 shows that the optimal investment split between PV panels and storage

is highly dependent on C. The optimal allocation of budget to storage (smaller values of θpv )

is greater as C decreases. This is because, for large values of the access line capacity, storage is

used only to mitigate the sub-hourly fluctuations of the incoming solar power. As the access line

capacity decreases and becomes a meaningful constraint, the ESD must also compensate for the

power curtailment due to limited C and has to store energy across time slot boundaries. Thus, a

larger storage is needed and more gain is expected to be obtained by investing more on ESDs.

As can be observed in Figure 5 , the monotone increase of θpv vs. C has a saturation point.

This is the point at which C is not a constraint anymore and storage is only used to mitigate

sub-hourly fluctuations. Finally, the curves corresponding to the hypothetical prices show that

investing in storage is much more appealing when storage prices decrease and penalties increase.

These trends hold for both battery technologies.

Figure 6 shows the relative revenue gain obtained by adding storage, (Revenue with storage−
Revenue without storage)/Revenue with storage, as a function of the access line capacity. We

compute and use the optimal θpv to calculate the revenue for each value of C. Once again,

this figure confirms that the smaller the access line capacity, the more pronounced the role of

storage as discussed above. We also observe that the relative gain monotonically decreases as C

increases until a saturation point after which increasing C has a negligible impact on revenue.

Finally, Figure 6 shows that Li-ion batteries perform better than PbA batteries for all values of

C.
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C. Optimal investment spread on ESDs (θBl )

Unlike prior work, our model allows us to give insightful guidance to solar farm operators on

the right time to buy different types of energy storage. Figure 7 shows the optimal allocation

of budget to storage during each purchase period for various values of C and choice of battery

technologies. We use the optimal θpv to create each curve. For large values of C, when storage

is not critically needed to avoid curtailment, due to the imperfections of PbA batteries, it is

best to buy them only when their price has decayed enough to outweigh these imperfections.

Thus, most of the purchase of PbA batteries is towards the end of the investment period. Li-

ion batteries, with fewer imperfections, in contrast, should be bought nearly uniformly in each

time period. In contrast, for small value of C, when storage is critically needed, it is best to

spread the investment on ESDs almost uniformly across all purchase periods for both Li-ion

and PbA batteries. This is because sacrifices in the earlier periods are not justified by the better

performance of later periods.

V. RELATED WORK

There is extensive work on sizing or analyzing the performance of battery-PV systems.

Prior work can be categorized into two main classes: stand-alone problems and grid-connected

problems (please see [11], [17], [21] for an extensive review of existing related work).
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Stand-alone problems are those in which the system can only rely on solar power and storage

to meet the demand power. Several papers studied the optimal sizing and cost analysis of stand-

alone photovoltaic systems [10], [11], [16], [18]. The objective in stand alone systems is to

minimize the cost of battery-PV system, while still meeting the power demand with a target loss

of load probability. Cost minimization is either in terms of minimizing the initial capital cost of

the system [19], [22] or the annualized cost of the system accounting for different lifetime of

batteries and PV panels [8], [23]. Annualized cost minimization is further extended to a general

target output power in [7].

Grid-connected scenarios themselves are divided into two classes: residential installations and

solar PV farms. Residential installations of PV systems have the option to serve the demand

from PV panels, storage, or the grid. The price of buying/selling electricity to the grid is a

function of the time of the day and season. Residential installations mostly aim at selling their

excess power to the grid and buying their power shortage from the grid. These options create

many challenging problems with different objective functions. Barra et al. [4] optimally size PV

panels and storage such that a minimum target fraction of the total demand is guaranteed to

be met by the battery-PV system and the cost of energy is minimized. Azzopardi and Mutale

minimize the annual net cost, using a case study of a residential installation where energy can be

stored, used, or sold [3]. They consider fluctuations in time of use pricing and use mixed integer

programming to find the optimal size of each system component. Using a similar system model,
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Ru et al. [20] provide an optimization problem to determine the critical size of the battery after

which an increase in size gives no performance benefit. Other work maximizes the benefit minus

cost of a grid-connected solar PV panel with no storage [14], [15]. In a similar line of research,

we find grid-connected wind farms design problems. However, designing a solar PV farm is

very different from a wind farm due to many factors, including the different stochastic nature of

solar and wind and different hardware constraints. For instance, the quantum of solar PV panels

is quite small (one panel) which makes them flexible to be sized with high resolution, whereas

wind turbines come in few different sizes, making the set of choices limited and integer [13].

Our work is different from the listed related work, because: 1) No prior work studied designing

a farm aiming at maximizing its overall revenue throughout its lifetime. They rather design it

such that the load is guaranteed to be met, or maximizing revenue for a given pre-designed

renewable farm [5], [12]. Thus, in those problems, meeting the load with some target allowable

uncertainty is the objective or a constraint, whereas we are optimizing over the revenue with

no constraint on meeting a demand load. It is worth noting that in our system, the demand

power is mapped to the target output power, which is itself a free variable in the optimization

problem. In contrast, the demand power in the problem formulations found in the literature is

fixed and given. 2) The transmission line constraint has never been considered in prior designs.

This is because, the previous work mostly either considers a residential or a stand-alone system

for which there is no need for power transmission. 3) The optimization problem formulation is

difficult. In prior work, AI techniques such as genetic algorithm, particle swarm optimization

and simulated annealing [17], [21] are used to provide only suboptimal solutions. However, we

manage to prove the convexity (thus, facilitating hill climbing) and even further use a more

simplifying lemma which together lead to an extremely fast implementation.

VI. CONCLUSIONS

Our work studies the optimal allocation of a certain capital budget to solar panels and ESDs to

maximize revenue from the day-ahead or hour-ahead market over the investment time horizon.

Unlike prior work, we have carefully modelled several real-world constraints, yet have formulated

a convex problem that can be solved quickly using straightforward hill-climbing. Numerical

evaluation using real irradiation traces show that it is typically optimal to invest 90-95% of

the initial investment on solar panels and the rest on ESDs. We find that varying the power
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commitment level every hour is the best way to account for diurnal variations in solar power,

rather than committing to a single power level for the whole day. Moreover, investment on the

lead-acid batteries (but not Li-ion batteries) is best shifted towards the end of lifetime of PV

panels, to account for the battery price decays over time.

The primary limitation of our work is that it requires long-term, fine-grained traces of solar

irradiation and energy prices, something that may not be available for all potential solar farm

locations. Moreover, our numerical examples assume a constant energy and penalty price, rather

than the time-varying prices typical of the market today. We also assume a fixed line capacity

C whose size cannot be increased through additional investments. Finally, we study only two

types of ESDs. We hope to address these limitations in our future work.
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Name Description (units)

K Total available budget ($)

θpv The fraction of the budget for PV panels

θBl The fraction of the budget for ESD’s l’th purchase

C Access capacity (MW)

∆l Vertical shift used in Ps in purchase period l (MW)

Ps(t) The target output power at time t (MW)

Pin(t) The available power from PV panels at time t (MW)

Pc(t) The storage charging power at time t (MW)

Pd(t) The share of output power from storage at time t (MW)

Pio(t) The share of output power from input at time t (MW)

Pout(t) The output power from the solar PV farm at time t (MW)

i(t) Solar irradiance at time t (MW/m2)

t = 0 When we plan to build the farm

T Lifetime of the PV farm in number of time units Tu

LB Lifetime of the ESD (years)

Tu The size of the time unit (h)

Ts Market time slot in number of time units Tu

Pmax(A) maxt Pin(t) of PV panels of size A (MW)

B ESD size (MWh)

A Total surface area of solar PV panels (m2)

pB Storage price per unit of energy ($/MW)

P in(t) Hourly average of Pin at time t (MW)

αpv The efficiency of solar PV panels

αc(αd) ESD charging (discharging) power limit (MW)

ηc(ηd) ESD charging (discharging) efficiency

γ ESD leakage rate

DoD ESD depth of discharge

c(t) Revenue for each energy unit at time t ($/MWh)

p(t) Penalty for each imbalanced energy unit at time t ($/MWh)

d ESD price decay rate per year

v Price per unit of storage size at time t = 0 ($/MWh)

u Price per unit of 1MW PV panel at time t = 0 ($/MWh)

n Total number of ESD purchase opportunities
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Li-ion PbA

DoD 0.8 0.8

Round-trip efficiency (ηcηd) 0.85 0.75

Charge time (B/αc) 3h 12h

Discharge/Charge rate ratio (αc/αd) 5 10

Self-discharge (γ) ≈ 0 ≈ 0

Lifespan (LB) 5 years 4 years

Per-unit price (v) 400$/KWh 200$/KWh

TABLE I: ESD characteristics at room temperature and averaged over its lifetime [6], [24].


