Renormalization of NoSQL Database Schemas

Michael J. Mior Kenneth Salem

Abstract

NoSQL applications often use denormalized databases in order to meet perfor-
mance goals, but this introduces complications. In particular, application evolution
may demand changes in the underlying database schema, which may in turn require
further application revisions. The NoSQL DBMS itself can do little to aid in this
process, as it has no understanding of application-level denormalization.

In this paper, we describe a procedure for reconstructing a normalized conceptual
schema from a denormalized NoSQL database. Exposing the conceptual schema pro-
vides application developers with information that can be used to guide application
and database evolution. The procedure’s input includes functional and inclusion
dependencies, which may be mined from the NoSQL database. We illustrate the
effectiveness of this procedure using several application case studies.

As discussed in the previous chapter, although NoSQL systems may not require ap-
plications to define rigid schemas, application developers must still decide how to store
information in the database. These choices can have a significant impact on application
performance as well as the readability of application code [11]. For example, consider an
application using HBase to track requests to an on-line service. To store records of requests
in an HBase table, the application must decide how to represent the requests. Should there
be a record for each request, or perhaps one record for all the requests from a single client?
What column families will be present in the table, and what will they represent? The same
requests may be stored in multiple tables since the structure of tables determines which
queries can be asked. The choice of data representation depends on how the application
expects to use the table, i.e., what kinds of queries and updates it needs to perform. These
kinds of decisions are automated with NoSE, but many existing applications have manually
designed schemas. In this case, since the NoSQL system itself is unaware of any schema
design decisions, it can provide little to no help in understanding what is being represented
in the database.

In our on-line service example, request information might be stored twice, once grouped
and keyed by the customer that submitted the request, and a second time keyed by the
request subject or the request time. If the application updates a request, or changes the
information it tracks for each request, these changes should be reflected in both loca-
tions. This denormalization (duplication of data) is done by the application developer.
The database system is unaware of this denormalization and unable to help manage up-
dates and queries over this denormalized data. We aim to recover explicit knowledge of
application-level denormalization through a task we refer to as schema renormalization.
This chapter addresses the schema renormalization problem through the following technical
contributions:

e We present a complete semi-automatic technique for extracting a normalized con-
ceptual schema from an existing denormalized NoSQL database. Our technique
works with different types of NoSQL systems (e.g., Cassandra, MongoDB) through
a common unifying relational representation of the physical structures in the NoSQL
database. It produces a normalized conceptual schema for the database, such as the
one represented graphically an entity-relationship diagram, in Figure 1. In addition,
it produces a mapping from each NoSQL physical structure to the conceptual model.
Connecting the physical and conceptual schemas this way increases their utility, as
discussed in Section 6.

e We develop an automatic normalization algorithm (Section 4), which forms the core of
our full semi-automatic approach. This algorithm uses both functional and inclusion
dependencies to extract the conceptual model from the NoSQL system’s physical
structures. Our algorithm ensures that the resulting model is in interaction-free
inclusion dependency normal form, indicating the redundancy implied by the input
dependencies (both functional and inclusion) has been removed from the schema. To
the best of our knowledge, this is the first normalization algorithm which does this.

e Our normalization algorithm requires functional and inclusion dependencies as input.
These may be provided by a knowledgeable user, or may be mined from an instance
of the NoSQL databases. Our third contribution is a technique for adapting existing
relational dependency mining techniques to provide the dependencies required by the
normalization algorithm (Section 5).

e Finally, in Section 7, we present a series of case studies which show the full schema
renormalization process in action for several NoSQL applications. We use these
case studies to highlight both the advantages and the limitations of our approach to
renormalization.

ProjName —— Project |—— ProjID

DeptID
WorkingOn
DeptName
Department
Employee [(—— EmplD
Manages
EmpName

Figure 1: Schema example after renormalization

The conceptual data model that our algorithm produces can serve as a simple reference,
or specification, of the information that has been denormalized across the workload-tuned
physical database structures. We view this model as a key component in a broader method-
ology for schema management for NoSQL applications. Current processes for managing
schema evolution in NoSQL datastores are entirely manual and error prone. If the applica-
tion workload changes, or if new types of data are added to the database, a developer must
evaluate how the physical schema must evolve to support the change. This process must
be repeated each time the application evolves, with the potential for errors each time.

We would like to support an alternative methodology for schema evolution, which is
illustrated in Figure 2. The first step is construction of a normalized conceptual data model
over the denormalized schema. This is the problem we address in this thesis. This concep-
tual model enables several new use cases. Through the knowledge of the denormalization
present in the existing physical structures, we can determine efficient plans for executing
ad-hoc queries over the denormalized data. In addition, the application developer then
can “lift” existing applications by describing the application’s existing queries and updates
against the conceptual model. Instead of directly changing the physical schema, appli-
cation developers can then evolve the application at the level of the conceptual model,
e.g., by adding additional data, or by adding or modifying (conceptual) queries. Once the
application has been evolved at the conceptual level, existing schema design tools and tech-
niques, such as NoSE and NoAM [3], can then be used to generate a new, workload-aware,
denormalized physical database design for the target NoSQL system.

logical evolve new logical

model model

renormalize redesign

physical new physical

model model

Figure 2: NoSQL schema evolution lifecycle

1 Renormalization Overview

We renormalize NoSQL databases using a three step process. The first step is to produce
a generic physical schema that describes the physical structures that are present in the
NoSQL database. This step may be performed manually, although some tools exist to
aid in automation, which we discuss later. The generic physical schema serves to abstract
differences among the database models of different types of NoSQL systems. For example,
HBase uses tables with one or more column families, while MongoDB stores collections of
JSON documents. The generic physical schema hides these differences, providing a uniform
way to represent the physical structures that are present in the NoSQL store. It does not
capture all of the characteristics of these structures. In particular, it does not capture how
they can be used by applications, and it does not capture features of the structures that
affect performance. Rather, it focuses on describing the information that is present in these
structures, which is what is needed for renormalization. We describe the generic physical
model in more detail in Section 2, and illustrate how it can be produced for different types
of NoSQL systems.

The second step in the renormalization process is to identify dependencies among the
attributes of the generic physical model. The required dependencies can be provided by a
user with understanding of the NoSQL system’s application domain [20] or automatically
using existing dependency mining techniques, which we explore in Section 5. We discuss
the required dependencies further in Section 3.

The final step in the renormalization process is to normalize the generic physical schema
using the dependencies, resulting in a logical schema such as the one represented (as an ER
diagram) in Figure 1. This step is automated, using the procedure described in Section 4.
Our algorithm ensures that the normalized schema is in inclusion dependency normal form
(IDNF) which informally means that redundancy in the physical schema captured by the
provided functional and inclusion dependencies is removed.

Although we do not discuss this further in this thesis, it is also possible to apply this
three-step methodology iteratively, to incrementally renormalize a database. In particular,
one can start with a partial physical schema (e.g. a single table), renormalize it, and
then gradually add to the schema and renormalize until the full physical schema has been
renormalized.

2 The Generic Physical Schema

The first step in the renormalization process is to describe the NoSQL database using a
generic schema. The schemas we use are relational. Specifically, a generic physical schema
consists of a set of relation schemas. Each relation schema describes a physical structure in
the underlying NoSQL database. A relation schema, in turn, consists of a unique relation
name plus a fixed set of attribute names. Attribute names are unique within each relation
schema.

The procedure for doing this depends on the type of NoSQL database that is being
normalized. Here, we illustrate the process using examples based on three different types
of systems: Cassandra, HBase, and MongoDB. Our examples are based on RUBIS, an
online auction application which we describe in more detail later, in Section 7.1.

Cassandra: NoSQL systems differ in the amount of schema information that they
understand. In Cassandra, data is stored in tables, which applications can define using
CQL, an SQL-like language. CQL includes a CREATE TABLE statement, which allows the
application to define the structure of a table. Figure 3 shows an example of a CQL definition
of a single table from the RUBiS database. This table records the IDs of bids for each
item under auction. Information about the bids, such as the bid date, is denormalized into
this table so that an application can retrieve it without having to perform joins, which
Cassandra does not support.

If the NoSQL database includes a well-defined schema, as in this example, then de-
scribing the physical schema required for renormalization is a trivial task. Figure 3 also

CQL

CREATE TABLE ItemBids(itemID uuid, bid decimal,
bidID uuid, quantity int, date timestamp,
PRIMARY KEY(itemID,bid,bidID));

Generic schema

ItemBids(itemID, bid, bidID, quantity, date)

Figure 3: A CQL ItemBids table, and corresponding schema

bids:25,b9734 bids:24,b3267 bids:22,b9907
16,2016-05-02 6,2016-05-02 8,2016-05-01
bids:65,b7633 bids:60,b9028

1,2016-04-09 ,2016-04-01

2315

2416

Figure 4: An ItemBids table in HBase

shows the generic relation schema for the CQL ItemBids table. The generic schema sim-
ply identifies the attributes that are present in the table, and gives names to both the
attributes and the table itself. In the case of Cassandra, these names can be taken directly
from the CQL table definition. The PRIMARY KEY declaration in the CQL table definition
also provides information about functional dependencies among the tables attributes. We
defer the further discussion of these dependencies to Section 3.

HBase: Like Cassandra, HBase stores data in tables. Each table contains one or more
column families. However, HBase understands only table names and the names of the
tables” column families. Individual columns in each column family are not fixed. Different
rows in the same table may have different columns. Figure 4 shows two rows from an
HBase table that stores the same information (about bids for each item) that a Cassandra
application would store in the table from Figure 3. The table includes one row per item,
and a single column family called bids. In each row, there is a column for each bid for
that row’s item. Column names are composite values representing the bid amount and a
bid identifier (a reference to a row in another HBase table). Cells hold composite values
identifying the bid quantity and bid date.

The HBase ItemBids table can be modeled by the same generic schema that was
shown in Figure 3. In this case, each row in the HBase table results in multiple rows in the

{ _id: 2315, bids: [
{ _id: b9734, amount: 25,
quantity: 16, date: "2016-05-02"},
{ _id: b3267, amount: 24,
quantity: 6, date: "2016-05-02"},
{ _id: 19907, amount: 22,
quantity: 8, date: "2016-05-01"}
1}

{ _id: 2416, bids: [
{ -id: b7633, amount: 65,
quantity: 1, date: "2016-04-09"},
{ -id: 19028, amount: 60, date: "2016-04-01"}

1}
Figure 5: An ItemBids collection in MongoDB

generic relation — one row per bid. To identify this model, the user must understand that
column names are composites of bid values and bid identifiers, and similarly that the cell
values are composites. The user must also understand that row keys are item identifiers.
This interpretation is commonly imposed on the data when it is read from the HBase table
by an application. Thus, a user with knowledge of the application can identify attributes
either directly from the database or through their application knowledge.

MongoDB: Unlike Cassandra and HBase, MongoDB stores data in collections of doc-
uments. Each document in a collection is a JSON object containing at minimum a primary
key. The only metadata available from MongoDB is the names of these collections. While
each document is permitted to contain arbitrary JSON data, in practice, documents within
the same collection have some common structure. Figure 5 shows how the same informa-
tion that is recorded in the HBase table from Figure 4 might be represented in a MongoDB
document collection, ItemBids. Each document contains an ID as well as an array of bids
for the item. The ID for each bid references another collection. The ItemBids collec-
tion could be modeled using the same generic relation schema that was used to model the
ItemBids table for HBase and Cassandra.

In general, we anticipate that the definition of a generic physical schema for an appli-
cation will require user involvement. However, there are tools that may assist with this
process. For example, several authors have proposed methods for extracting a schema from
JSON records in a document store, which could be applied to extract the generic physical
schema required for renormalization [16, 17, 27]. These methods generate nested schemas,

but nested properties can be flattened by concatenating their names. Similarly, arrays
can be flattened by including multiple rows for each document, as we have done in this
example.

3 Dependency Input

The second step of the renormalization process is to identify dependencies among the
attributes in the generic physical schema. Our normalization algorithm is able to use two
types of dependencies: functional dependencies and inclusion dependencies. These two
forms of dependencies are easy to express and are commonly used in database design [19].

These dependencies can be input manually, by a user who is familiar with the appli-
cation and its database. Alternatively, dependencies can be mined from an instance of
the underlying NoSQL database. In this section, we describe the types of dependencies
that our normalization algorithm expects. We defer discussion of dependency mining to
Section 5.

Functional dependencies (FDs) are of the form R: A — B, where R is a relation from
the physical schema and A and B are sets of attributes from R. For example, for the
ItemBids relation described in Section 2, the user might identify the following functional
dependencies:

itemID, bid, bidID — quantity, date
bidID — itemID, bid.

The first may be identified because itemID, bid, and bidID together form a row key for
the physical relation. The latter may be identified based on knowledge of the application
domain. We expect the functional dependencies provided as input to our algorithm are
given in the order they should be processed. That is, the schema will be normalized starting
with the first dependency in the list.

Inclusion dependencies (INDs) are of the form R(A) € S(B) where R and S are
physical relations, A is a set of attributes in R and B is a set of attributes in S. The
dependency states that for any tuple in R, there exists a tuple in S where the values of
attributes in B match the values of the attributes in A for the tuple in R. To represent
both the inclusion dependencies R (A) C S (B) and S (B) C R (A), we use the shorthand
R(A) = S(B). Inclusion dependencies are useful to determine when an application has
duplicated attributes across multiple physical structures.

For input to our algorithm, we require that all INDs are superkey-based. That is, for an
IND R(A) C S(B), B must be a superkey of S. We do not believe that this is a significant
restriction since we intend for inclusion dependencies to be used to indicate foreign key
relationships which exist in the denormalized data. Indeed, Mannila and Réiha [19] have
previously argued that only key-based dependencies are relevant to logical design.

4 Normalization Algorithm

Levene and Vincent [18] define a normal form for database relations involving functional
and inclusion dependencies referred to as inclusion dependency normal form (IDNF). They
have shown that normalizing according to IDNF removes redundancy from a database
design implied by the set of dependencies. However, one of the necessary conditions for
this normal form is that the set of inclusion dependencies is non-circular. A set of inclusion
dependencies I : Ry (A1) € ... C1,: R, (A,) is circular if R; = R,,. This excludes useful
schemas which express constraints such as one-to-one foreign key integrity. For example,
for the relations R (A, B) and S (B, C') we can think of the circular inclusion dependencies
R(A) = S (B) as expressing a one-to-one foreign key between R (A) and S (B).

Levene and Vincent also propose an extension to IDNF, termed interaction-free inclu-
sion dependency normal form which allows such circularities. The goal of our normalization
algorithm is to produce a schema that is in interaction-free IDNF. This normal form avoids
redundancy implied by functional and inclusion dependencies while still allowing the ex-
pression of useful information such as foreign keys. We provide more details on this normal
form in Section 4.5. As we show in Section 7, this produces useful logical models for several
real-world examples.

Figure 6 provides an overview of our normalization algorithm, which consists of four
stages. In the reminder of this section, we discuss the normalization algorithm in more
detail. We will make use of a running example based on the simple generic (denormalized)
physical schema and dependencies shown in Figure 7.

Our normalization algorithm first applies dependency inference rules, as we discuss in
Section 4.1. Second, the BCNFDecompose algorithm implements BCNF decomposition. This
removes any redundancy according to the set of FDs. Next, the Fold algorithm removes
redundant attributes and relations according to the set of INDs. Finally, BreakCycles
breaks any inclusion dependency cycles which are not proper circular, to ensure that the
resulting schema is in interaction-free IDNF.

Data: A set of relations R, FDs F, and INDs 1
Result: A normalized set of relations R’
begin

// Perform dependency inference

F/, I" < Expand(F, I)

// Normalize according to BCNF

R/,I"" + BCNFDecompose (R, F,It)

// Remove redundant attributes and relations
R’ 17" « Fold(R/,F,I")

// Break remaining circular INDs

R"”, It" « BreakCycles(R’,I'")

Figure 6: Algorithm for normalization to interaction-free IDNF

4.1 Dependency Inference

To minimize the effort required to provide input needed to create a useful normalized
schema, we aim to infer dependencies whenever possible. Armstrong [2] provides a well-
known set of axioms which can be used to infer FDs from those provided as input. Similarly,
Mitchell [22] presents a similar set of inference rules for INDs.

Mitchell further presents a set of inference rules for joint application to a set of FDs
and INDs. We adopt Mitchell’s pullback and collection rules to infer new functional de-
pendencies for inclusion dependencies and vice versa. As an example of the pullback rule,
consider the following dependencies for our example in Figure 7:

Employees : EmpID — EmpName
EmpProjects (EmpID, EmpName) C Employees (EmpID, EmpName) .

In this case, we are able to infer an additional functional dependency:
EmpProjects : EmpID — EmpName.

This case is equivalent to propagating primary keys of different logical entities (in this case,
employees) across different relations.

10

Physical Schema

EmpProjects(EmplID, EmpName, ProjID, ProjName)
Employees(EmplID, EmpName, DeptID, DeptName)
Managers(DeptID, EmpID)

Functional Dependencies

Employees : EmpID — EmpName, DeptID
Employees : DeptID — DeptName

EmpProjects : ProjID — ProjName
Managers : DeptID — EmplID

Inclusion Dependencies

EmpProjects (EmplID, EmpName) C Employees (.. .)
Managers (EmpID) C Employees (.. .)
Employees (DeptID) C Managers (.. .)

When attributes have the same names, we use ... on the right.

Figure 7: Example generic physical schema and dependencies.

11

The collection rule allows the inference of new inclusion dependencies. Assume the
EmpProjects relation also contained the DeptID attribute. We could then express the
following dependencies:

EmpProjects (EmplID, DeptID) C Employees (.. .)
EmpProjects (EmpID, EmpName) C Employees (. . .)
Employees : EmpID — DeptID

From this, we could infer the new inclusion dependency
EmpProjects (EmpID, EmpName, DeptID) C Employees (.. .).

This can be seen as collecting all attributes corresponding to a single logical entity. As we
will see by example, this allows the elimination of attributes and relations via the Fold
algorithm to reduce the size of the resulting schema while maintaining the same semantic
information.

There is no finite complete axiomatization for FDs and INDs taken together [5]. Our
Expand procedure, which uses only Mitchell’s pullback and collection rules for combined
inference from FDs and INDs, is sound but incomplete. However, it does terminate, since
the universe of dependencies is finite and the inference process is purely additive. Although
Expand may fail to infer some dependencies that are implied by the given set of FDs and
INDs, it is nonetheless able to infer dependencies that are useful for schema design.

4.2 BCNF Decomposition

The second step, BCNFDecompose, is to perform a lossless join BCNF decomposition of the
physical schema using the expanded set of FDs. We use a procedure similar to the one
described by Garcia-Molina et al. [11].

When relations are decomposed, we project the FDs and INDs from the original relation
to each of the relations resulting from decomposition. In addition, we add new inclusion
dependencies which represent the correspondence of attributes between the decomposed re-
lations. For example, when performing the decomposition R (ABC) — R' (AB), R" (BC)
we also add the INDs R’ (B) C R"(B) and R" (B) C R'(B). In Appendix B, we prove the
soundness of these dependency inferences.

In our running example, we are left with the relations and dependencies shown in
Figure 8 after the Expand and BCNFDecompose steps. The Employees relation has been

12

Physical Schema

Employees (EmpID, EmpName, DeptID) Departments (DeptID, DeptName)
EmpProjects (EmpID, ProjID) EmpProjects’ (EmpID, EmpName)
Projects (Pro 1D, ProjName) Managers (DeptID, EmpID)

Functional Dependencies

Employees : EmpID — EmpName, DeptID Departments : DeptID — DeptName
Managers : DeptID — EmpID EmpProjects’ : EmpID — EmpName
Projects : ProjID — ProjName

Inclusion Dependencies

EmpProjects (EmpID) C Employees (.. .)
C

EmpProjects’ (EmpID, EmpName) C Employees (.. .)

)

)
EmpProjects’ (EmpID) = EmpProjects (.. .)
Projects (ProjID) = EmpProjects (. ..)
Employees (DeptID) C Departments (. . .)
Managers (DeptID) C Departments (.. .)

Figure 8: Relations and dependencies after BCNF decomposition.

Note that = is used to represent bidirectional inclusion dependencies.

decomposed to add Departments. Also, the EmpProjects relation has been decomposed
to add EmpProjects’ and Projects. For illustrative purposes, we have manually given
new relations sensible names. In practice, the user would need to choose relation names

once the normalization process is complete.

4.3 Folding

context of conceptual schema design [1].

Casanova and de Sa term the technique of removing redundant relations folding in the
Our algorithm, Fold (Figure 9), identifies any
attributes or relations which are recoverable from other relations, based on the INDs. These
attributes and relations are redundant and the Fold algorithm removes them from the

13

Function Fold(R, I) is
Data: A set of relations R, FDs F, and INDs I

Result: A new set R’ without redundant attributes/relations
R '+ R
do
// Remove redundant attributes
foreach IND R(A) C S(B) in I do
// Find FDs implying attributes in R are redundant
foreach FD C — D | CD C A in F do
// Remove attributes which are in the RHS of the FD
R« R'\{R}U{R(A\ D)}
// Remove redundant relations
foreach IND pair R(A) =S (B) in I do
if R(A) = R then
// All attributes are also in the other relation
R +R'\R
if Pk(R(A)) = Pk(S(B)) then
// Merge R and S
T+ AUB
if R\ {R,S}U{T} is in BCNF then
| R'«R\{R,S}U{T}

until R’ is unchanged from the previous iteration;

Figure 9: Relation folding based on INDs

schema. More abstractly, folding removes attributes which can be recovered by joining with
another relation and relations which are redundant because they are simply a projection
of other relations. Fold also identifies opportunities for merging relations that share a
common key.

It is not necessary to perform the Fold step to ensure that the resulting schema is in
interaction-free IDNF. However, if two schemas contain equivalent information, we believe
the smaller is more useful as it is a more concise representation of the application domain
and does not result in any loss of information. We do not make any claims that Fold
produces a minimal schema in interaction-free IDNF, but the opportunities for reduction
we have identified are useful in practice. For example, consider the EmpProjects’ relation

14

which contains the EmpName attribute. Since we have the inclusion dependency
EmpProjects’ (EmpID, EmpName) C Employees (. . .)
and the functional dependency
Employees : EmpID — EmpName

we can infer that the EmpName attribute in EmpProjects’ is redundant since it can
be recovered by joining with the Employees relation. With the EmpName attribute
removed, we see that we have the inclusion dependency

EmpProjects’ (EmpID) = EmpProjects (.. .).

Since EmpProjects’ is simply a projection of an attribute from EmpProjects, the
EmpProjects’ relation can be removed. It is important to note that the inclusion depen-
dencies are bidirectional so that the exact set of tuples represented by the relation being
removed is recoverable.

Finally, we consider an example of merging. Suppose the original schema contained an-
other relation which stores the addresses of all employees, EmpAddress (EmpID, Address).
Assuming we had an address for each employee, we can express the inclusion dependency

Employees (EmpID) = EmpAddress (. ..) .

We can then merge Employees and EmpAddress by adding the Address attribute to
the Employees relation.

Lemma 1. Fold does not introduce any BCNF violations.

Proof. When removing relations with Fold, clearly no BCNF violations are created. The
attributes removed by Fold are never keys of the relation, so they also do not introduce
BCNF violations. When attempting to merge relations via Fold we explicitly avoid merging
if a BCNF violation would be introduced. [

4.4 Breaking IND Cycles

Mannila and Réaiha [19] use a technique, which we call BreakCycles (Figure 10), to break
circular inclusion dependencies when performing logical database design. We adopt this
technique to break inclusion dependency cycles which are not proper circular.

15

Function BreakCycles(R, I) is
Data: A set of relations R and INDs I

Result: A set of relations R’ with cycles removed and new dependencies I

R + R

foreach Set of circular INDs Ry (X1) € Ro(Y2)--- C R, (X,,) € Ry (Y1) in I do
Rll — X1Y1

Rll/ < Y] + attr (Rl) - X

R e R\ (R URS RY)

It « I+UR/1 (Xl) - RQ (YQ)

IT«+ ITUR| (Y1) C R} (V1)

I+« I+ R, (X,) C R} (V1)

IT I\ {Ry (X1) € Rz (Y2),C R, (X,,) € R1 (V1)}

Figure 10: Breaking circular inclusion dependencies

In our running example, we have an inclusion dependency cycle which is not proper
circular created by the following two INDs:

Managers (EmpID) C Employees (.. .)
Employees (DeptID) C Managers (.. .).

Applying the BreakCycles algorithm removes DeptID from the Employees relation
and adds a new relation WorksIn(EmpID, DeptID). We then add the following inclusion
dependencies to the WorkslIn relation:

WorksIn (EmpID) C Employees (. . .)
WorksIn (DeptID) C Managers (.. .) .

The inclusion dependency Employees (DeptID) C Managers (.. .) is also removed, breaking
the cycle.

Lemma 2. BreakCycles does not introduce any BCNF violations.

Proof. BreakCycles decomposes a relation into two relations with the only functional
dependency defined establishing a primary key. The only new dependencies added are
inclusion dependencies between corresponding attributes in the decomposed relations. This
does not permit the inference of any new functional dependencies. Therefore, the final
schema is still in BCNF with respect to F'. O

16

4.5 IDNF

The goal of our normalization algorithm is to produce a schema that is in interaction-free
IDNF with respect to the given dependencies. The following conditions are sufficient to
ensure that a set of relations R is in interaction-free IDNF with respect to a set of FDs F
and INDs I:

1. R is in BCNF [3] with respect to F.
2. All the INDs in I are key-based or proper circular.
3. F and I do not interact.

A set of INDs is proper circular if for each circular inclusion dependency over a unique set
of relations Ry (X1) C R2(Y2), R2(X2) C R3(Y3), ..., Ru(Xy) € Ri(Y1), we have X; =Y;
for all .

Lemma 3. The schema produced by the normalization algorithm of Figure 6 is in interaction-
free IDNF with respect to the given sets of FDs and INDs.

Proof. Rule 1 is satisfied because BCNFDecompose produces a schema that is BCNF with
respect to F/, and therefore with respect to F. Furthermore, the subsequent Fold and
BreakCycles algorithms do not introduce any BCNF violations.

Rule 2 states that all remaining INDs must be key-based. The given set of INDs (I)
is superkey-based by assumption. We can show that all of the additional INDs created by
the algorithm are also key-based. Furthermore, none of the schema transformations can
result in non-key-based INDs. A complete proof of this is given in Appendix D.

To show that the final schema satisfies rule 3 (non-interaction of FDs and INDs), we
make use of a sufficient condition for non-interaction given by Levene [18]. A set of FDs
F and INDs I over a set of relations do not interact if the relations are in BCNF with
respect to F, I is proper circular, and F|J1I is reduced. As stated above, the final schema
is in BCNF. All inclusion dependencies are proper circular since we explicitly break any
cycles which are not via the BreakCycles algorithm. It remains to show that the set of
functional and inclusion dependencies are reduced.

A set of functional inclusion dependencies F and I is reduced if for every inclusion
dependency R(X) C S (Y), there are only trivial functional dependencies involving at-
tributes in the set Y. We have already shown that the final set of inclusion dependencies
is key-based, implying that Y is a key of S. Since the set Y is a key, F can only contain
trivial functional dependencies involving Y. Therefore, F [JTI is reduced and the schema is
in interaction-free IDNF.]

17

5 Dependency Mining

As we noted in Section 3, the dependencies required by our algorithm can be directly
specified by a knowledgeable user, or mined from an instance of the underlying database.
In this section, we consider the latter option in more depth.

5.1 Mining for NoSQL Normalization

Dependency mining tools operate by examining a database instance to discover all depen-
dencies that hold on it. In order to mine dependencies, such tools collect statistics on the
distribution of values in each column in an attempt to discover relationships. We make use
of Apache Calcite [1] to provide an interface between NoSQL databases and dependency
mining tools, so that the tools can obtain the metadata and statistics they require. Calcite
is a data management framework which presents a SQL query interface on top of a variety
of database backends. We have used TANE [15] for mining functional dependencies and
BINDER [23] for mining inclusion dependencies. These algorithms both produce all valid
dependencies which hold on the given instance.

The problem with using mined dependencies is that many of them will be spurious. For
example, suppose in the employees relation of a company database we have the functional
dependency Department, Salary — FirstName. This expresses that all employees in a de-
partment with the same salary have the same first name. While this might hold for some
particular instance of the schema, it is unlikely to represent semantically meaningful infor-
mation. Another valid dependency on the same relation may be DeptID — Department.
We would prefer to perform BCNF decomposition using the second dependency since it
would result a table with a primary key of DeptID, which is likely to be more useful than
one with key (Department, Salary).

We use two techniques to reduce the impact of spurious dependencies: 1) ranking of
functional dependencies for the selection of primary keys for a relation and 2) ranking of
functional dependencies for the selection of a BCNF-violating dependency for decompo-
sition. Any time we generate a new relation, we use heuristics to select a primary key.
Functional dependencies representing other possible candidate keys are then ignored when
performing BCNF decomposition. Instead, we use heuristics to rank the remaining depen-
dencies to select the next violating functional dependency to use for decomposition. Note
that we still consider all valid functional dependencies which violate BCNF. However, by
selecting a good order for decomposition, some spurious functional dependencies no longer

18

apply when their attributes are split into separate relations. Avoiding decomposition based
on these dependencies results in a more logical schema as output.

We make use of three heuristics to identify functional dependencies which are likely to
represent keys:

1. Length: Keys with fewer attributes
2. Value: Keys with shorter values

3. Position: Keys occurring further left in the relation definition without non-key
attributes between key attributes.

We use these heuristics for both primary key and violating dependency selection. Since
we target NoSQL databases, we do not blindly apply the value length heuristic to all
columns. This is because data types exist which are explicitly intended to represent unique
identifiers. For example, Cassandra allows columns of type UUID and MongoDB docu-
ments can have values of type ObjectId. These are both long pseudorandom values intended
to allow concurrent creation without collision. Thus, although the values are long, we know
that these values are likely to represent key attributes. We assign such columns the highest
score according to the Value heuristic.

Papenbrock and Naumann [21] used similar heuristics in an algorithm for BCNF nor-
malization of a schema using mined functional dependencies. (They did not consider iden-
tifier types, since they did not target NoSQL databases.) They also propose an additional
heuristic which measures duplication across sets of column values in a dependency. We
did not use this heuristic since it increases complexity by requiring joint statistics across
multiple columns, and our algorithm produces positive results without this heuristic.

6 Applications of the Logical Model

The logical schema produced by the renormalization process is useful as a form of documen-
tation of the information that is embodied, in denormalized form, in a NoSQL database.
However, the logical schema has other applications as well. Our original motivation for this
work was to be able to provide a conceptual model of an existing NoSQL database as input
to a NoSQL schema design tool, such as NoSE. Given a conceptual model of the database,
as well as a description of the application workload, NoSE generates a physical schema

19

Logical schema query
SELECT EmpName, ProjID, ProjName FROM Projects
NATURAL JOIN Employees WHERE EmpName = 7

Physical schema query
SELECT EmpName, ProjID, ProjName FROM EmpProjects WHERE EmpName = 7

Figure 11: Query rewriting against the logical schema

optimized to support that workload. By combining renormalization with a schema design
tool, we can optimize the physical schema design of an existing NoSQL-based application.

It may also be useful to express application queries and updates directly against the
logical model. This can provide a means of executing new, ad-hoc queries over an existing
NoSQL database without the need to understand how the data is denormalized. In the
remainder of this section, we discuss how we can execute queries expressed over the logical
model using information gathered during the execution of our normalization algorithm.

6.1 Ad-Hoc Query Execution

One of the main advantages of using dependency information to construct the logical
schema is that we can use the same information to assist with executing queries written
against the logical schema. Because NoSQL databases often lack the ability to perform any
complex processing of queries, developers express queries directly in terms of structures
from the physical schema. This tightly couples the application to a particular schema
and makes changes in the schema difficult. With an appropriate logical schema for the
application, we can rewrite queries written against this logical schema to target specific
physical structures as in Figure 11. In this case, we can identify that the EmpProjects
relation materializes the join in the logical schema query and is therefore able to provide an
answer. Qur aim is for this rewriting to happen transparently and to enable the possibility
of changing the rewriting as the physical schema changes.

As we show in the following section, we can produce queries on the logical schema which
correspond to data stored in the original structures in the physical schema. We can think of
these queries as defining materialized views over the logical schema which correspond to the
physical schema. The application developer can use these queries directly in cases where
the application directly used data from these structures without additional manipulation.
This simplifies rewriting existing application queries if a developer wishes to move to using
the logical model. For more complex queries, we can use existing techniques to rewrite the

20

queries to make use of the materialized views [13].

These queries can be translated on-the-fly to enable ad-hoc query execution. For ex-
ample, Apache Calcite [I] is a dynamic data management framework which connects to
different backends, including those for NoSQL datastores. We are currently exploring rules
for view-based query rewriting in Calcite to enable the necessary transformations. We
leave a full implementation of this approach as future work.

6.2 View Definition Recovery

In order to allow logical queries to execute against the existing physical schema, we must
have a way of understanding how the existing physical structures map to the logical schema.
Fortunately, we can use information saved from the normalization process to produce
this mapping. We simply think of each physical structure in the original schema as a
materialized view. We can recover a query which serves as the materialized view definition
by tracking a small amount of additional information during the normalization process.

For an example of view definition recovery, consider the EmpProjects relation from
Figure 7. Before performing normalization, our set of relations is equivalent to the input
so our view definition for EmpProjects is SELECT EmpID, EmpName, ProjID, ProjName
FROM EmpProjects. Considering only the EmpProjects relation, we have the following
functional dependencies:

EmpID — EmpName and
ProjID — ProjName.

When we perform BCNF decomposition, the normalization algorithm splits EmpPro-
jects into three relations. We call the relation with employee data EmpProjects’, the
relation with project data Projects, and keep the remaining relation expressing the asso-
ciation with the name EmpProjects. We can now write the view definition to include a
join based on the decomposition. Our view definition then appears as below:

SELECT EmpID, EmpName, ProjID, ProjName FROM EmpProjects JOIN EmpProjects’

ON EmpProjects.EmpID = EmpProjects’.EmpID
JOIN Projects ON EmpProjects.ProjID = Projects.ProjID.

A similar process of creating joins applies when running the BreakCycles algorithm.
The other transformation which affects the view definitions is Fold. When removing

21

relations, the transformation is a simple rename of the relation in the view definition.
For example, after the Fold step of our algorithm is performed on the EmpProjects’
relation, we see that it can be removed as was discussed in Section 4.3. This is because the
data in EmpProjects’ can be recovered from the Employees relation. We can simply
replace all instances of EmpProjects’ in the definition above with Employees. We do
not show an example, but a similar renaming applies when Fold removes an attribute with
the addition that a join is also created involving the relation which contains the removed
attribute.

For a relation R, we can recover the list of logical structures it references by recursively
visiting the list of relations decomposed to produce R until we reach physical structures
from the original schema. Since all of our inclusion dependencies are superkey-based, all
of the view definitions will consist of foreign key joins. More specifically, a materialized
view definition for the relation R will be of the form SELECT attr (R) FROM R; JOIN R, ON
Ry.A = Ry.B--- JOIN R,_1.X = R,.Y where attr (R) is a list of the attributes in R and
Ry through R, are the relations the query must join.

Using these materialized view definitions, we can answer queries written against the
logical schema using view-based query rewriting as discussed in the previous section. The
goal of view-based query rewriting is to answer a query using a set of materialized views,
which is exactly what we are trying to accomplish. We note that the view definitions we
described above are all conjunctive queries. It has recently been shown that conjunctive
query determinacy is undecidable in general [12]. However, there are useful subclasses of
conjunctive queries for which determinacy is decidable [25].

7 Case Studies

This section presents case studies of several denormalized database schemas to show how
ESON is able to recover a useful schema. We discuss both cases where dependencies
were specified manually and where the dependencies were mined using an instance of the
denormalized schema.

7.1 RUBIS

RUBIS [0] is a benchmark based on a Web application for online auctions. The authors
also developed a schema design tool called NoSE [21], which performs automated schema
design for NoSQL systems. We used NoSE to generate two Cassandra schemas for RUBIS,

22

each optimized for a different workload (a full description is given in Appendix E). In each
case, NoSE starts with a conceptual model of the RUBiS database, The conceptual model
includes six types of entities (e.g., users, and items) with a variety of relationships between
them. The first physical design consists of 9 Cassandra column families, while the second,
larger design has 14 column families.

As our first case study, we used NoSE’s denormalized Cassandra schemas as input to our
normalization algorithm so that we can compare the normalized schemas that it produces
with the original conceptual schema that NoSE started with. For each physical schema, we
tested our algorithm with two different sets of dependencies: one set manually generated
from the physical schema, and a second set mined from an instance of that schema using
the mining technique discussed in Section 5. This resulted in a total of four tests.

For both schemas, renormalization using manually identified dependencies resulted in
a conceptual model that was identical (aside from names of relations and attributes) to
the original conceptual schema used by NoSE, as desired.

For the two tests with mined dependencies, the renormalization program produced the
original conceptual schema, as desired, in the case of the smaller (9 column family) Cas-
sandra schema, but not in the case of the larger (14 column family) Cassandra schema.
For the smaller schema, the mining process identified 61 functional dependencies and 314
inclusion dependencies. The dependency ranking heuristics were critical to this success.
Without them, spurious dependencies lead to undesirable entities in the output schema.
For example, one contains only the fields BidValue and BidQuantity, which is not a
semantically meaningful entity. For the larger schema, mining found 86 functional depen-
dencies and 600 inclusion dependencies, many of them spurious. In this case, the ranking
heuristics were not sufficient to eliminate undesirable decompositions during renormaliza-
tion. No set of ranking heuristics will be successful in all cases, but it is clear that this is
an important area for improvement in future work.

The large schema test with manually chosen dependencies provided a good example
of relation merging using Fold step of our algorithm. In the conceptual schema, there
is a Comments entity set which has relationships to the user sending and receiving the
comment. The denormalized schema has two separate relations which store the comments
according to the sending and receiving users. After performing BCNF decomposition, we
end up with relations similar to the following (simplified for presentation):

CommentsSent (id, sending_user, text)

CommentsReceived (id, receiving_user) .

We also have inclusion dependencies which specify that the comment_id attribute in both
relations is equivalent, i.e. CommentsSent (id) = CommentsReceived (...). Since the key

23

Publishers(_id, name, founded, book)
Books(_id, title, author)

Patrons(_id, name, address.city, address.state,
loans._id, loans.title,
loans.author. id, loans.author.name)

Authors(_id, name)

Figure 12: Physical relations from MongoDB schema

of these relations is equivalent, the Fold algorithm will merge these two relations producing
Comments(id, receiving_user, sending_user, text).

These examples show that functional and inclusion dependencies are able to drive mean-
ingful denormalization. Runtime for the normalization step of our algorithm was less than
one second on a modest desktop workstation in all cases.

7.2 MongoDB

Stolfo [26] presents a case study of schema design in MongoDB to explore design alterna-
tives. We extract a design from the examples to show how our normalization process can
produce a suitable logical model. The system being designed is for library management
and deals with patrons, books, authors, and publishers. While the case study shows dif-
ferent possible schemas, we have selected one for demonstration purposes and we present
example documents for this schema below. This model contains a significant amount of
denormalized data inside the collection of patron documents.

As described in Section 2, we first defined a physical relational schema capturing the
information in the MongoDB database documents. This is shown in Figure 12. The
MongoDB patron documents included an array of book loans for each patron. To produce
the physical schema, we flattened the loan attributes into the Patron relation, and added
the key of each array element as part of the superkey the Patron relation. We also
manually identified a (non-exhaustive) set of functional and inclusion dependencies over
these relations, as shown in Figure 13.

The denormalization in this schema consists of the duplication of patron, book, and
author information in the patron documents. For this application, the algorithm was able

24

Publishers : _id —name, founded, book
Books : _id —title, author
Patrons : _id —name, address.city,
address.state, loans._id

Authors : _.id —name

Publishers(book) C Books (_id)
Books(author) C Authors (-id)
Patrons(loans.{_id, title,
author._id}) C Books (-id, title, author)
Patrons(loans.author.
{4d, name}) C Authors (_id, name)

Figure 13: Dependencies on MongoDB physical relations

to identify the denormalization and produce a logical model without duplication. The
logical schema produced by our normalization algorithm removes this denormalization.
We note that the dependencies in Figure 13 do not contain any functional dependencies
involving loans, which were nested in patron documents in MongoDB database. However,
the Expand step of our algorithm is able to infer such functional dependencies based on
the inclusion dependencies between Patrons and Authors/Books and the FDs on those
relations. The BCNFDecompose step separates the redundant title and author information
from the Patrons relation using these FDs. Finally, the Subsume step removes this data
since it is duplicated in the Authors and Books relations. This removes all redundancy
which was present in the original schema in Figure 12. Relationships between publishers,
authors and their books were also recovered. The final schema represented as an ER
diagram is shown in Figure 14.

7.3 Twissandra
Twissandra [10] is a simple clone of the Twitter microblogging platform using Cassandra

as a database backend. The application stores data on only two different entities: users
and tweets. FEach tweet has an associated user who created the tweet and each user can

25

Author [—— _id

address city Ad
) name
d —— Patrons Books
address state title
PublishedBy Publisher —— .d
name founded

Figure 14: MongoDB example schema entities

users (uname, password)

following (uname, followed)

followers (uname following)

tweets (tweet_id, uname, body)

(tweet id
userline (tweet_id, uname, body)
(

timeline (uname, tweet_id, posted_by, body)

Figure 15: Twissandra physical relations

“follow” any number of other users.

The Twissandra schema consists of six column families. There is one for both users
and tweets keyed by their respective IDs. Two additional column families store the users a
particular user is following and separately, their followers. Denormalizing this relationship
allows efficient retrieval of users in both directions. Finally, there is a column family storing
all data on tweets by user and a column family which stores tweets for all users a user is
following. Both of these final two column families contain denormalized data on tweets.
The relations corresponding to these column families are given in Figure 15.

Figure 16 shows all the functional and inclusion dependencies which we can express over
the Twissandra schema. Note that we use = to denote a bidirectional inclusion dependency
and we omit attribute names from the right-hand side of inclusion dependencies when the
attribute names are the same as on the left-hand side.

26

tweets : tweet_id — uname, body
userline : tweet_id — uname, body
timeline : tweet_id — posted_by, body

users . uname — password

followers (uname, following) = following (followed, uname)

userline (uname) C users (.. .)

timeline (uname) C users (. ..)

timeline (uname, posted_by llowing (.. ., followed)

-

Cu

C users (uname)
C fo

C followers (following, . . .)

) =
)
)
timeline (posted_by)
)
timeline (posted_by, uname)

)

userline (tweet_id, uname, body) = tweets (.. .)

Figure 16: Dependencies on Twissandra physical relations

Figure 17 shows a complete ER diagram for Twissandra, which represents the desired
result. However, the conceptual model produced by our normalization process includes one
additional relation aside from users and tweets. The conceptual schema produced by our
algorithm is still fully normalized in interaction-free IDNF. The additional relation occurs
because the normalization process is unable to remove the timeline column family, despite
the fact that the information contained in this column family is still redundant. We can
reconstruct the timeline relation with the query

SELECT f.uname, t.tweet_id, t.uname AS posted_by, t.body
FROM following f JOIN tweets t ON t.followed = t.uname.

This redundancy remains because the dependency defining the timeline table cannot be
expressed using functional or inclusion dependencies. Expressing this denormalization
requires a dependency language which can reference more than two relations. In this case,
the dependency is between timeline, followers, and tweets. Extending our dependency
language and normalization process to include additional dependencies such as multivalued
dependencies [9] would enable us to resolve such issues.

27

password body

uname — | Users Tweets [—— tweetid

Following PostedBy

Figure 17: Twissandra schema entities

8 Conclusion

We have developed a methodology for transforming a denormalized physical schema in a
NoSQL datastore into a normalized logical schema. Our method makes use of functional
and inclusion dependencies to remove redundancies commonly found in NoSQL database
designs. We further showed how we can make use of dependencies which were mined from
a database instance to reduce the input required from users. Our method has a variety
of applications, such as enabling query execution against the logical schema and guiding
schema evolution and database redesign as application requirements change.

There are additional opportunities for further automation of NoSQL schema manage-
ment tasks. One limitation of the logical schema produced by our algorithm is that the
relations are not necessarily given meaningful names. Some heuristics such as looking for
common prefixes in attribute names may be useful. Currently we also require developers
to modify applications manually after we produce the logical model. However, previous
work such as Query By Synthesis [7] has shown that it is possible to extract higher-level
query patterns from imperative application code. A similar approach could be applied to
extract queries from applications which could then be rewritten to use the logical model.
We also discussed the possibility of a query execution engine which could transparently
retarget these queries to operate on different physical models. We expect a combination of
these techniques to improve schema management for NoSQL databases.

28

References

1]
2]

3]

[10]

[11]

[12]

[13]

Apache Calcite, 2018. Retrieved Jun. 14, 2018 from https://calcite.apache.org.

William Ward Armstrong. Dependency structures of data base relationships. In IFIP
Congress, pages 580-583, 1974.

Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, and Riccardo Torlone. Data model-
ing in the NoSQL world. Computer Standards € Interfaces, 2016.

Marco A. Casanova and Jose E. Amaral de Sa. Mapping uninterpreted schemes into
entity-relationship diagrams: Two applications to conceptual schema design. IBM
Journal of Research and Development, 28(1):82-94, Jan 1984.

Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion depen-
dencies and their interaction with functional dependencies. Journal of Computer and
System Sciences, 28(1):29-59, 1984.

Emmanuel Cecchet et al. Performance and scalability of EJB applications. ACM
SIGPLAN Notices, 37(11):246-261, 2002.

Alvin Cheung et al. Optimizing database-backed applications with query synthesis.
In PLDI 13, pages 3—-14, Seattle, WA, USA, 2013.

Edgar F. Codd. Recent investigations into relational data base systems. Technical

Report RJ1385, IBM, Apr 1974.

Ronald Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM TODS, 2(3):262-278, Sep 1977.

Eric Florenzano, Tyler Hobbs, Eric Evans, et al. Twissandra. Retrieved Jun. 14, 2018
from https://github.com/twissandra/twissandra.

Hector Garcia-Molina et al. Database systems: the complete book. Pearson Prentice
Hall, Upper Saddle River, N.J., 2 edition, 20009.

Tomasz Gogacz and Jerzy Marcinkowski. The hunt for a red spider: Conjunctive
query determinacy is undecidable. In LICS ’15, pages 281-292, Kyoto, Japan, 2015.
IEEE Computer Society.

Jonathan Goldstein and Per-Ake Larson. Optimizing queries using materialized views:
A practical, scalable solution. SIGMOD Rec., 30(2):331-342, May 2001.

29

https://calcite.apache.org
https://github.com/twissandra/twissandra

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

Paola Gémez, Rubby Casallas, and Claudia Roncancio. Data schema does matter,
even in NoSQL systems! In RCIS ’16, Grenoble, France, June 2016.

Yké Huhtala, Juha Kéarkkéinen, Pasi Porkka, and Hannu Toivonen. TANE: An effi-
cient algorithm for discovering functional and approximate dependencies. The Com-
puter Journal, 42(2):100-111, 1999.

Javier Luis Céanovas Izquierdo and Jordi Cabot. Discovering Implicit Schemas in
JSON Data, pages 68-83. Springer, Berlin, Heidelberg, Jul 2013.

Meike Klettke, Stefanie Scherzinger, and Uta Storl. Schema extraction and struc-
tural outlier detection for JSON-based NoSQL data stores. In BTW 2015, Hamburg,
Germany, 2015.

M. Levene and M. W. Vincent. Justification for inclusion dependency normal form.
IEEE TKDE, 12(2):281-291, Mar 2000.

Heikki Mannila and Kari-Jouko Raiha. Inclusion dependencies in database design. In

ICDE 86, pages 713-718, Los Angeles, CA, USA, Feb 1986.

Christopher J. Matheus et al. Systems for knowledge discovery in databases. IEEFE
Transactions on knowledge and data engineering, 5(6):903-913, 1993.

M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. NoSE: Schema design for NoSQL
applications. In ICDE ’16, pages 181-192, Helsinki, Finland, May 2016.

John C. Mitchell. Inference Rules for Functional and Inclusion Dependencies, pages
58-69. PODS ’83. ACM, 1983.

Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix Nau-
mann. Divide & conquer-based inclusion dependency discovery. In VLDB ’15, vol-
ume 8, pages 774-785, Hawaii, USA, February 2015.

Thorsten Papenbrock and Felix Naumann. Data-driven schema normalization. In
EDBT 17, pages 342-353, 2017.

Daniel Pasaila. Conjunctive queries determinacy and rewriting. In ICDT ’11, pages
220-231, Uppsala, Sweden, 2011.

Emily Stolfo. MongoDB schema design, 2013. Retrieved Jun. 14, 2018 from
https: //www.slideshare.net /mongodb /mongodb-schema-design-20356789.

30

https://www.slideshare.net/mongodb/mongodb-schema-design-20356789

[27] Lanjun Wang et al. Schema management for document stores. In VLDB ’15, volume 8,
pages 922-933, Hawaii, USA, May 2015.

Appendix A ESON Proofs

Each of the proofs in the section below consists of a claim about the normalization algorithm
in Figure 6. The steps are the proof are given according to each step in the algorithm.

Appendix B All inference of dependencies is sound

Expand

When expanding F and I we use axioms presented by Mitchell [22] which are shown to
be sound.

BCNFDecompose

When performing BCNF decomposition, we add two new inclusion dependencies which
state the equivalence of attributes in the decomposed relations. For example, if we decom-
pose R (A, B,C) into S (A, B) and T (B, C') then we would add the inclusion dependencies
S(B) CT(B) and T (B) C S(B). These inclusion dependencies hold by construction.

We also project any FDs and INDs onto the new tables. Any projected FDs are already
contained in F’ as a result of the axiom of reflexivity. Similarly, the projected INDs are
already contained in I' aside from a simple renaming of relations to the new names after
decomposition. For example, if we decompose R (A, B,C) into R' (A, B) and R" (B,C)
then we consider inclusion dependencies involving R using the attributes A and B and
change them to reference R'. These hold since R’ contains exactly the same (A, B) tuples

as R. A similar argument holds for inclusion dependencies on R containing the attributes
B and C.

Fold

When removing attributes, all relevant dependencies are already contained in F’ and
I since they are projections of other dependencies. When removing relations, there is
no need for any new dependencies and we simply remove any dependencies referencing
the removed relation from I Finally, when merging relations we simply rename existing
inclusion dependencies to reference the merged relation. If we merge R (A, B) and S (A, C)

31

into RS (A, B,C) then we consider separately inclusion dependencies on R involving A
and B and inclusion dependencies on S involving A and C'. RS contains exactly the same
(A, B) tuples as R so any inclusion dependencies involving R will also hold on RS. A
similar argument applies for inclusion dependencies involving S and the attributes A and

C.
BreakCycles

Our technique for breaking cycles is taken from Mannila and R&iha [19]. Suppose
we have a cycle Ry (X;) € Ry(Y2)--- € R, (X,) C Ry (Yy). Ry is decomposed into
Ry (X;UY1) and RY (Y7 \ (attr (Ry) \ X1Y1)). Three inclusion dependencies are added.
R} (X1) € Ry (Y2) which is derived be renaming R to R; which is sound since these
relations contain the same tuples when X, is projected. The same argument holds for
the inclusion dependency R, (X,) € R/ (Y1). Finally, the transformation also adds the
inclusion dependency R; (Y1) C RY(Y;). Since R| and R} both contain values for Y
decomposed from R, this dependency also holds. The original authors also show that the
transformation is information-preserving.

Appendix C All transformations are lossless-join

BCNFDecompose
We use a known algorithm for lossless-join BCNF decomposition.
Fold

When Fold removes an attribute B from a relation R (A, B) it is because there exists
a relation S (C, D) with an inclusion dependency R (A, B) C S(C, D). In this case, we
would add the relation R’ (A) to the schema and remove R. Note that R can be recon-
structed by joining R with S on A = C and projecting A and D (renamed to B), that is

PB/D (HA,D (R] S))

If a relation R is removed by Fold, it is because there is a bidirectional dependency
with a relation S indicating that there is a one-to-one mapping between records in R and
records in S. Therefore, we can remove R since it can be recovered by a simple projection

of S.

Finally, Fold can merge two relations with a common key. If we merge R (A, B) and
S (A, C) to form T (A, B,C) we can recover R and S by simply projecting the appropriate
fields from T

32

BreakCycles

When breaking an inclusion dependency cycle, each of the new relations contains a
key of the decomposed relation. Therefore, we can perform a natural join on this key to
produce the original relation.

Appendix D Inclusion dependencies in the final schema
are key-based

Expand

Two inference rules can generate new INDs. The first is implication via transitivity.
If we have functional dependencies R(X) C S(Y) and S (Y) C T (Z) then we can infer
R(X) CT(Z). Since we assume existing INDs are superkey-based, Z must be a superkey
of T" and the new IND introduces no violations. We can also infer new INDs by exploiting
the set of functional and inclusion dependencies together. Suppose we have the INDs
R(X;) € S(Y1) and R(X3) C S (Ys) as well as the functional dependency R : X; — Xo.
Then we can infer the IND R (X;X;) C S(Y1Ys). Since Y; and Y, are both superkeys
of Y, this new IND is also superkey-based. The second is the collection rule. Since the
right-hand side of INDs created by the collection rule is a superset of an existing IND, the
new IND is also superkey-based.

BCNFDecompose

Assume we have a relation R (XY Z) where X is the key of R and also the functional
dependency R : Y — Z. We would then decompose R into R’ (XY') and R” (Y Z). Suppose
we had another relation S with an IND S (A) C R(X). After decomposing R we would
create the IND S (A) C R’ (X) which by construction is also superkey-based since X is the
key of R'. The situation is slightly more complicated if we had an IND S (UV) C R (X Z).
After decomposition X and Z are in separate relations. We then have the INDs S (U) C
R (X) and S (V) C R"(Z). However, Z is not a superkey of R”. When this situation
occurs, we drop the inclusion dependency S (V) C R”(Z). Note that these inclusion
dependencies are not necessary to satisfy IDNF but they are useful to identify possible
foreign keys in the final schema.

Fold

Fold converts INDs which are superkey-based into key-based INDs. Assume we have an
IND R(AB) C S(CD) where C is the key of S. Then this IND is not key-based. However,

33

since C is a key of S, we must have the functional dependency C — D. Therefore, the
Fold algorithm will identify the attribute B as redundant and remove it from R. This
changes the inclusion dependency to R (A) C S (C) which is now key-based.

BreakCycles

Suppose we have a cycle of the form Ry (X;) C Ry (Ya) - C R, (X,) C Ry (Y1). As
discussed in 4.1, breaking this circularity will result in new relations R} and R{. There are
also new INDs R} (X1) C R, (Y2), R} (Y1) C R} (Y1), and R, (X,,) C R{ (Y1). Given that
the given dependencies (resulting from the Fold step) are key-based, we note that Y3 is a
key of Ry. In addition, since we construct R and R! such that Y; is a key, all new INDs
are also key-based.

Appendix E ESON RUBIiS Example Input

Physical relations used as input for both examples are given here. Relation names are
shown in bold an attributes which are keys are underlined.

E.1 Schema One

1154863668 (categories_id, items_end date, items_id, regions_id, users_id,
items_initial_price, items_max_bid, items_name, items_nb_of_bids)

11888493477 (items_id, items_buy_now, items_description, items_end_date,
items_initial price, items_max_bid, items_name, items_nb_of_bids, items_quantity,
items_reserve_price, items_start_date)

1193173044 (bids_date, bids id, items_id, users_id, bids_bid, bids_qty, users_nickname)
12906147889 (users.id, users_balance, users_creation_date, users_email, users_firstname,
users_lastname, users_nickname, users_password, users_rating)

13157175159 (comments.id, users_id, comments_comment, comments_date,
comments_rating)

i3220017915(bids id, items_id, bids_bid, bids_date, bids_qty)

13722443462 (categories_id, categories_name)

1546546186 (categories_id, items end date, items_id, items_initial price, items_max_bid,
items_name, items_nb_of_bids)

1590232953 (regions_id, regions_name)

34

E.2 Schema Two

i1177375268(buynow_id, buynow_date, items_id)

11557291277 (users_id, comments id, comments_comment, comments_date,
comments_rating)

i1879743023(comments id, users_id, users_nickname)

12049737091 (items id, bids_id, users_id, items_end_date)

12087519603 (items_id, categories_id)

1210798434 (items_id, bids_date, bids_id, users_id, bids_bid, bids_qty, users_nickname)
12269844981 (items.id, users.id, items_end_date)

12366332486 (users_id, buynow_date, buynow_id, buynow_qty)

12594090645 (items id, items_buy_now, items_description, items_end_date,
items_initial_price, items_max_bid, items_name, items_nb_of_bids, items_quantity,
items_reserve_price, items_start_date)

i262196338(items.id, bids_bid, bids_id, bids_date, bids_qty)

13050485475 categories_id, categories_name)

13116489164 (users_id, users_balance, users_creation_date, users_email, users_firstname,
users_lastname, users_nickname, users_password, users_rating)

i409321726(users_id, items_end date, bids id, items_id)

1920605840(categories_id, items.id, items_end_date, items_initial_price, items_max_bid,
items_name, items_nb_of_bids)

1941409494 (users_id, items_end_date, items id)

35

	Renormalization Overview
	The Generic Physical Schema
	Dependency Input
	Normalization Algorithm
	Dependency Inference
	BCNF Decomposition
	Folding
	Breaking IND Cycles
	IDNF

	Dependency Mining
	Mining for NoSQL Normalization

	Applications of the Logical Model
	Ad-Hoc Query Execution
	View Definition Recovery

	Case Studies
	RUBiS
	MongoDB
	Twissandra

	Conclusion
	ESON Proofs
	All inference of dependencies is sound
	All transformations are lossless-join
	Inclusion dependencies in the final schema are key-based
	ESON RUBiS Example Input
	Schema One
	Schema Two

