Database-Managed CPU Performance Scaling for Improved
Energy Efficiency

[Technical Report CS-2017-3, Cheriton School of Computer Science, University of Waterloo. June 2017]

Mustafa Korkmaz
University of Waterloo

Martin Karsten
University of Waterloo

mkorkmaz@uwaterloo.ca mkarsten@uwaterloo.ca

Kenneth Salem
University of Waterloo

ken.salem@uwaterloo.ca

Semih Salihoglu
University of Waterloo

semih.salihoglu@uwaterloo.ca

ABSTRACT

Dynamic voltage and frequency scaling (DVFS) is a tech-
nique for adjusting the speed and power consumption of
processors, allowing performance to be traded for reduced
power consumption. Since CPUs are typically the largest
consumers of power in modern servers, DVFS can have a sig-
nificant impact on overall server power consumption. Mod-
ern operating systems include DVFS governors, which inter-
act with the processor to manage performance and power
consumption according to some system-level policy.

In this paper, we argue that for database servers, DVFS
can be managed more effectively by the database manage-
ment system. We present a power-aware database request
scheduling algorithm called POLARIS. Unlike operating
system governors, POLARIS is aware of database units of
work and database performance targets, and can achieve a
better power /performance tradeoff by exploiting this knowl-
edge. We implemented POLARIS in SHORE-MT, and we
show that it can improve both power consumption and per-
formance relative to operating system baselines.

1. INTRODUCTION

Shehabi et al. [40] report that, in 2014, data centers in
the US consumed 70 billion kilowatt-hours (kWh) of energy.
This represents 1.8% of total US electricity consumption,
and consumption grew 4% from 2010 to 2014. Power con-
sumption is also an important issue in data center design,
and is directly or indirectly responsible for a significant por-
tion of the total cost of data center ownership (T'CO) [16,
21]. A recent survey by Dayarathna et al. [13] indicates that
servers and the cooling infrastructure (required to remove
server-generated heat) are the largest power consumers in a
typical data center. Since CPUs are responsible for much
of the servers’ power consumption [25, 34] and are also the

primary heat generators [15], power-efficient use of CPUs
can have a positive environmental impact and can help to
reduce the TCO of data centers.

Servers do not always run at maximum capacity, because
workloads fluctuate and can be bursty [12, 14, 18]. To
accommodate such fluctuations, data centers are generally
overprovisioned [19]. Thus, during non-peak times, which
are common, data center resources are not fully utilized [10,
25]. To better match power consumption to the workload,
most server processors support dynamic voltage and fre-
quency scaling (DVFS). DVFS allows the CPU’s voltage and
frequency, and hence power consumption, to be adjusted on
the fly. This permits a performance/power tradeoff. During
periods of low load, when peak performance is not criti-
cal, CPU voltage and frequency can be scaled down to save
power.

In this paper, we consider the problem of CPU power
management for database servers, i.e., servers that are ded-
icated to running a database management system (DBMS).
We focus specifically on systems designed to support trans-
actional workloads against in-memory databases. These sys-
tems handle workloads that have relatively short units of
work, for which there are latency targets.

Our central premise is that DVFS can be managed more
effectively by the DBMS than by the operating system. Mod-
ern operating systems include power governors that manage
DVEFS based on system-perceived load. Unlike the operat-
ing system, the DBMS is aware of database units of work,
such as queries and transactions. Because of this, it can
take database-level performance requirements into account
when managing DVFS. Operating system power governors,
in contrast, are limited to kernel-level metrics, such as CPU
utilization, and generic objectives, such as avoiding utiliza-
tions that are too low. In addition, the DBMS has the abil-
ity to control how database units of work are scheduled to
execution threads. Operating systems are unaware of this
mapping, and are thus unable to control it. In this paper, we
show that, because of these flexibilities, database-managed
DVEFS can provide both better power efficiency and better
performance than operating-system-based alternatives.

The specific problem we address in this paper is power-
aware transaction scheduling in database systems. Given a
set of transactions, each with an associated deadline (la-
tency target), the problem is to choose both the execu-
tion order of the transactions and the processor frequency

at which they will execute. The objective is to minimize
power consumption while ensuring that as many transac-
tions as possible complete before their deadline. In Section 4
of this paper, we present an on-line power-aware schedul-
ing algorithm for non-preemptive requests, called POLARIS
(POwer and Latency Aware Request Scheduling). We fo-
cus on non-preemptive scheduling because many modern
in-memory transaction processing systems, like VoltDB [43]
and Silo [45], are architected to minimize blocking and to ex-
ecute each transaction from start to finish in a single thread
on a single processor core. Non-preemptive scheduling is a
good fit for such systems. We have implemented POLARIS
within the Shore-MT storage manager [24]. Section 6 de-
scribes some of the practical issues that we had to address
in doing so.

We have analyzed POLARIS’ behavior and performance
in two ways. First, in Section 5, we provide a competi-
tive analysis of POLARIS against two existing algorithms
for power-aware scheduling. We compare it against both
an existing on-line preemptive algorithm (OA [52]) and
an optimal off-line preemptive algorithm (YDS [52]). Sec-
ond, in Section 7, we present an empirical evaluation of
our Shore-MT implementation, using transactional (TPC-
C) workloads. Our evaluation compares POLARIS against
two Linux DVFS governors, and also against two in-DBMS
alternatives from the literature. Our results show that PO-
LARIS dominates the alternatives, producing greater power
savings, fewer missed transaction deadlines, or both. We
also show how POLARIS’ effectiveness is affected by two
key factors: (1) load on the system, and (2) scheduling slack,
i.e., the looseness of the transactions’ deadlines. Although
POLARIS dominates the baselines under all conditions, its
benefits are greatest when the load is neither very high
nor very low. Not surprisingly, greater scheduling slack in-
creases the advantage of deadline-aware schedulers, like PO-
LARIS, over deadline-blind frequency scaling alternatives in
the Linux kernel.

2. BACKGROUND

DVFS and related power-management mechanisms are
standardized under the Advanced Configuration and Power
Interface (ACPI) [46]. ACPI is an architecture-independent
framework that defines discrete power states for CPUs and
that allows software to control the power state of the un-
derlying hardware. ACPI defines P-States, which repre-
sent a different voltage and frequency operating points. Py
represents the P-State with the highest voltage and fre-
quency, and hence the highest performance and the high-
est power consumption. Additional P-States, Pi,..., P,
represent successively lower voltage and frequency states,
and hence greater tradeoffs of performance for power re-
ductions. The exact operating point associated with each
P-State varies from processor to processor.

ACPI also defines C-States, which represent the proces-
sor’s idle states. Although POLARIS does not directly man-
age C-states, we give a brief overview here. C-State Cj is
the processor’s normal non-idle operating state, in which
the CPU is active and executing instructions. In Cj state, a
CPU is running in one of the P-States. Additional C-States,
Ci,...,Cp, represent idle states, in which the CPU is not
executing instructions. Higher-numbered C-States represent
“deeper” idle states, in which more parts of the CPU are
shut down. Normally, the deeper the idle state, the lower

the power consumption of the idle processor, but the longer
it takes the processor to return to the normal operating state
(Co) when there is work to do. Since C-States are idle states,
C-State transitions are normally managed by the CPU itself.

Like other modern operating systems, Linux utilizes ACPI
through a variety of kernel modules. Among these is the
generic CPU power control module cpufreq, which supports
a wide variety of CPU architectures. The cpufreq driver
provides a number of power governors, in two groups. The
first group consists of static governors, which can be used to
set a constant P-State for the processor. The other group
includes dynamic governors, which monitor CPU utilization
and adjust the processors P-State in response to utilization
changes. The cpufreq driver subsystem is exposed through
the Linux sysfs filesystem. Through that interface, a sys-
tem administrator or a privileged user-level application can
select a governor, and can adjust governor parameters.

It is also possible for DVFS to be managed directly by the
hardware. One example of this is Intel’s Running Average
Power Limit (RAPL) mechanism [23]. RAPL allows user-
level applications to monitor CPU power consumption. In
addition, given a specified power consumption limit, RAPL
can dynamically adjust processor voltage and frequency lev-
els to keep the CPU’s power consumption within the spec-
ified upper bound. Like operating system based governors,
RAPL is unaware of DBMS-level workload information, such
as transaction deadlines.

3. RELATED WORK

In this section, we discuss related work in three broad cat-
egories: cluster level energy efficiency, single server energy
efficiency for generic applications, and single server DBMS
specific energy efficiency. POLARIS falls into the third cat-
egory.

3.1 Cluster Level Energy Efficiency

Some approaches for improving data center energy effi-
ciency operate at the scale of a cluster or data center as a
whole. One technique is to shut down servers when they
are idle [29, 31]. Another is to focus on energy-efficient
ways of virtual machine placement across the cluster [30,
49]. Facebook controls server power consumption to pre-
vent data center power overloads [48]. PEGASUS [33] is a
system for controlling DVFS across many similar servers. It
targets scenarios in which individual servers cannot be shut
down when load is low. These techniques typically oper-
ate at much longer time scales (e.g., minutes or hours) than
POLARIS, which schedules and manages DVFS for individ-
ual requests on a single server. POLARIS is complementary
to some of these techniques. For example, it can be used
to manage DVFS on servers that are not shut down by a
cluster-level manager.

3.2 Server-Level Energy Efficiency

Another group of studies targets single server energy ef-
ficiency, focusing on software and/or hardware-level oppor-
tunities that do not target a specific type of application.
Spiliopoulos et al. [41] propose an operating system power
governor which uses memory stalls as an input and tries
to optimize CPU energy efficiency accordingly. Sen and
Wood [39] propose an operating system governor that pre-
dicts the system power/performance pareto optimality fron-
tier and keeps the power/performance at this frontier. Al-

though these techniques may help for a variety of applica-
tions, they do not use DBMS-specific information that PO-
LARIS utilizes.

Several studies explore the use of C- States for energy effi-
ciency. These studies show that using C-states is challenging
either because workloads are rarely idle enough to exploit
sleep states [32, 36] or because processors consume a lot of
energy to recover from deep sleep states [25, 38]. Therefore,
some work encourages deeper C-States by extending sleep
periods [5, 35]. In contrast, we focus only on P-states in this
work.

3.3 Server-Level Energy Efficiency in DBMSs

Several studies describe techniques for improving energy
efficiency through query optimization and query operator
configuration. Tsirogiannis et al. [44] investigate servers
equipped with multi-core CPUs by studying power con-
sumption characteristics of parallel operators and query
plans using different numbers of cores with different place-
ment schemes. Their findings suggest that using all of the
available cores is the most power-efficient option for DBMSs
under enough load and parallelism, while different CPU core
frequencies may allow further power/performance tradeoffs.
In the same direction, Psaroudakis et al. [37] take CPU fre-
quency into account along with core selection. They show
that different CPU frequency levels can be more energy ef-
ficient for execution of different relational operators. Both
Xu et al. [50] and Lang et al. [28] explore possibilities of
energy aware query optimization in relational DBMSs. For
this, they propose a cost function having both performance
and power as the objective. They show that DBMSs can
execute queries according to specific power/performance re-
quirements. In contrast to these efforts, POLARIS exploits
deadline information to reduce power consumption.

PAT [51], like POLARIS, uses DVFS to save power un-
der user-defined performance bounds. PAT uses a feedback
control loop mechanism, like PEGASUS [33]. While this
kind of approach can be effective, it operates on a longer
time scale than POLARIS, which adjusts frequencies based
on the deadlines of individual transaction requests. In addi-
tion, since POLARIS is a scheduling algorithm, it is capable
of reordering transactions in addition to adjusting processor
frequency.

Closest to POLARIS are our previous algorithm, LAPS [27]
and Kasture et. al.’s Rubik [26] algorithm. Like POLARIS,
both LAPS and Rubik adjust processor frequency for each
request in a request queue. Unlike POLARIS, LAPS does
not reorder transactions and adjusts processor frequency
only on request completion (see Section 4). Rubik is similar
to LAPS, but adjusts processor frequency on both request
arrival and completion. In our empirical evaluation of PO-
LARIS, we use LAPS and a Rubik-like algorithm, called
LAPS-Arrival, as baselines.

4. POLARIS

In this section, we present POLARIS. For simplicity, we
assume a system consisting of a single processor with a sin-
gle core. In Section 6, we describe how we use POLARIS
in a system with multiple cores. In our setup, one or more
clients submit transaction execution requests to the proces-
sor. There are different types, or classes, of transactions.
Each transaction also has an associated, client-selected soft

l notation [meaning

Q transaction request queue
to currently running transaction
eo running time (so far) of to
C set of possible transaction classes
c(t) class (type) of transaction ¢, ¢(t) € C
a(t) arrival time of transaction ¢
d(t) deadline of transaction ¢
F set of possible processor frequencies
i(e, f) | estimated execution time of class ¢ transac-
tion at frequency f
G(t, f) | estimated queuing time of ¢ at frequency f

Figure 1: Summary of Notation

execution deadline. These deadlines represent latency tar-
gets: the submitting client expects the requested transaction
to finish executing before the specified deadline.

There is a fixed set of frequencies at which the processor
can run. Higher frequencies allow the processor to execute
transactions faster, but they also consume more power. Fig-
ure 1 summarizes notation that we use to describe transac-
tions and processor frequencies.

The goals of the POLARIS algorithm are, first, to ensure
that transactions finish execution before their deadlines and,
second, to minimize the energy consumed by the processor.
Because there are no constraints on the arrival of transac-
tions or on transaction deadlines, it may not be possible for
POLARIS (or any scheduling algorithm) to ensure that all
transactions meet their deadlines.

POLARIS is free to control two aspects of transaction
execution. First, it can control the order in which queued
transactions are executed. Second, it can control the pro-
cessor’s frequency. Next, we describe each of these aspects
of POLARIS.

Transaction Execution Order:

POLARIS runs queued transactions in earliest deadline first
(EDF) order. When a transaction request arrives, it is
placed in a request queue unless the processor is idle, in
which case the new request runs immediately. When a trans-
action finishes executing, the queued transaction request
with the earliest deadline is dequeued and the requested
transaction starts running immediately. Transactions are
executed non-preemptively. That is, each transaction, once
started, runs until it is finished.

Processor Frequency Selection:

POLARIS considers adjusting processor execution frequency
at two points: when a new request arrives, and when a
transaction finishes executing. In each case, POLARIS uses
the procedure shown in Figure 2 to choose a new execution
frequency. This procedure chooses the smallest processor
frequency such that all transactions, including the running
transaction and all queued transactions in @, will finish
running before their deadlines if run at that frequency.

The POLARIS frequency selection algorithm relies on a
transaction execution time model, which predicts the execu-
tion time of a transaction of a given class at a given processor
frequency. We use [i(c, f) (in Figure 2) to represent the pre-
dicted execution time of a class ¢ transaction at frequency
f. For now, we assume that the model is given, and that it
is accurate. A realistic implementation of POLARIS must
have a way of obtaining such a model, and must account

State: Q: queue of waiting transactions
State: fi(c, f): execution time of class ¢ € C at freq f € F
State: to: currently running transaction
State: eg: run time (so far) of ¢o
1: function SETPROCESSORFREQ()
> find mininum freq for current transaction
for each fnew in F, in increasing order do
if fi(to, frew) — €0 < d(t;) then
break
end if
end for
> ensure all queued transactions finish in time
for each t in Q, in EDF order do
S Q(t, facw) + fi(t, fuew) < d(t) then
continue
end if
> frnew iS not fast enough for ¢
> find the lowest higher frequency that is
for each f € F|f > fnew, in increasing order do

O e e R e e i

fnew — f
if (t, f) + ft, f) < d(t) then
break
end if
end for

21: > no further checking once we need highest freq
22: if fnew = maximum frequency in F then
23: set processor frequency to frew
24 return
25: end if
26: end for
27: set processor frequency to frew
28: return

29: end function

Figure 2: POLARIS Processor Frequency Selection

for any inaccuracy in its predictions. We defer discussion of
these issues to Section 6.

In Figure 2, (¢, f) represents the total estimated queueing
time for transaction ¢ € Q, assuming that the processor runs
at frequency f. This is defined as follows:

Lj(taf):ﬂ(toaf)_60+ Z

t'eQ|d(t')<d(t)

', f)

That is, t must wait for the currently running transaction’s
remaining execution time, and must also wait for all queued
transactions with deadlines earlier than t’s.

S. POLARIS ANALYSIS

In this section we analyze the performance of POLARIS
through a competitive analysis against two existing algo-
rithms YDS [52] (Section 5.2) and OA [8, 52] (Section 5.3).
We have two objectives in this section. The first is to pro-
vide a theoretical justification for why POLARIS is an ef-
fective algorithm. The second is to establish a connection
between the behaviors of POLARIS and OA under certain
settings. We provide our analysis under the standard the-
oretical model [7, 8, 52] in which algorithms can scale the
speed of the CPU to arbitrarily high levels and thus execute
every transaction before its deadline. Therefore we focus
only on the energy consumption of algorithms and not their
success rates. We review this standard model in Section 5.1.

Non-Preemptive

Offline j Online

YDS [04

[OPT,,

[POLARIS]

Figure 3: Energy aware scheduling algorithms.

Broadly, energy aware scheduling algorithms can be clas-
sified into four categories along two dimensions as shown in
Figure 3: (1) preemptive vs non-preemptive; and (2) offline
vs online algorithms. Intuitively, offline preemptive algo-
rithms are the most computationally powerful algorithms.
The YDS algorithm [52] is the optimal, i.e., least energy
consuming, offline preemptive algorithm and therefore con-
sumes the lowest possible energy among all scheduling algo-
rithms. In contrast, online non-preemptive algorithms, such
as POLARIS, are the most computationally constrained
ones.

The natural algorithm to compare POLARIS against would
be the optimal offline non-preemptive algorithm, which we
refer to as OPT,,. However, computing the optimal offline
non-preemptive schedule is NP-hard [7], and an explicit de-
scription of OPT,;, is not known. Instead, we provide a
competitive ratio of POLARIS against YDS, which also im-
plies a competitive ratio against OPT,,. As we show in
Sections 5.4 and 5.5, we get a competitive ratio of PO-
LARIS against YDS indirectly through a competitive anal-
ysis against OA, which is an online preemptive algorithm.
In doing so we also meet our second objective of establishing
the connection between POLARIS and OA.

Finally we note that several online non-preemptive algo-
rithms have been developed in literature for variants of the
speed-scaling problem. Examples include algorithms that
maximize the throughput [6] or minimize the total response
time [4] of transactions under a fixed energy budget. How-
ever, no prior work studies the problem of minimizing energy
consumption as we do in this section. Several preemptive
algorithms other than YDS and OA have also been proposed
for various speed-scaling problems. We refer the reader to
references [3] and [17] for a survey of these algorithms.

5.1 Standard Model

In the standard model, a problem instance P consists of n
transactions, where each transaction t arrives with an arrival
time a(t), a deadline d(t), and a workload w(t). The work-
load of a transaction represents the amount of work that it
must perform, which is assumed to be known accurately. Al-
gorithms can scale the speed of the processor to arbitrarily
high levels, and the time required to execute a transaction
t is assumed to be w(t)/f, where f the processor frequency
(speed). The power consumption of the processor is assumed
to be f%, where a > 1 is a constant [11]. The assumption
that a > 1 guarantees the convexity of the power-speed
function, i.e., the faster the speed, the more power the pro-
cessor uses per unit of work that it performs. We observe
that under this model algorithms, including POLARIS, are
idealized and can execute every transaction before its dead-
line, i.e., achieve 100% success rate. This is because (a) they
know transactions’ workloads accurately; and (b) can pick

arbitrarily high speeds to finish any transaction on time.

5.2 Yao-Demers-Schenker (YDS)

The optimal offline preemptive algorithm YDS works as
follows. Given a problem instance P, let an interval be the
time window between the arrival time a(¢;) of some transac-
tion ¢; and the (later) deadline d(t;) of a possibly different
transaction ¢; in P. Define the density of a given inter-
val I to be Ypw(tx)/|I|, where the summation is over all
transactions ¢ such that [a(t),d(t)) is within I. Given P,
YDS iteratively performs the following step until there are
no transactions left in the problem. It finds an interval with
the maximum density, which is called the critical interval.
Let CI be the first critical interval YDS finds. The algo-
rithm schedules the speed of the processor during C'I to the
density of C'I and schedules execution of the transactions in
CI in EDF order. Then, the algorithm removes C'I and the
set of transactions in CTI from P, constructs a new reduced
problem instance P’, and repeats the previous step on P’.
P’ is the same as P except that the interval CI is removed
from the timeline. Specifically, any transaction whose ar-
rival and deadline intersects with CT is shortened exactly
by the time it overlaps with C1.

In its final schedule, YDS potentially preempts a trans-
action ¢ whenever transaction ¢ has an arrival time and a
deadline that spans a critical interval C'I that the algorithm
has picked at some step. That is, YDS might run part of ¢
before the start of the C'I, preempt ¢t when C1T starts, and
the resume executing t after C1.

5.3 Optimal Available (OA)

OA is an online preemptive algorithm based on YDS [52].
Each time a new transaction arrives, OA uses YDS to choose
a schedule for all transactions currently in the system, in-
cluding the new transaction, the currently running transac-
tion (if any), and any other transactions that are waiting
to run. It then runs transactions using that schedule until
a new transaction arrives, at which point it again resched-
ules all transactions in the system using YDS. Bansal et al
showed that OA is a® competitive against YDS [8].

Suppose that a new transaction arrives in the system at
time 7. OA schedules the transactions in the system by run-
ning YDS on a problem instance consisting of the following
transactions:

e The newly arrived transaction, tnew.

e The currently running transaction, ¢,, with its work-
load w(t,) taken to be the remaining workload of ¢,
and with its arrival time taken to be 7.

e Any other transactions waiting in the system, with
their arrival times adjusted to be 7.

We make an important observation here. Note that in the
problem instance constructed by OA, all transactions have
the same arrival time 7. Thus, if there are k transactions
in the system, there are exactly k intervals from which YDS
chooses the first critical interval. The first includes just the
transaction with the earliest deadline, the second includes
the transactions with the two earliest deadlines, and so on.
Furthermore, the first critical interval will include the trans-
action with the earliest deadline, since it is part of all of the
possible intervals. Since YDS schedules transactions in EDF
order, this first transaction must be either to or tnew. Thus,

if d(tnew) < d(to), OA will preempt to and start running
tnew. If, on the other hand, d(to) < d(tnew), to will continue
running after tneq’s arrival, and tpew will run later.

5.4 OA vs. POLARIS

Next, we compare the behavior of OA with that of (ide-
alized) POLARIS . We start by comparing the algorithms
under the scenario in which a newly arriving transaction has
a later deadline than the currently running transaction.

LEMMA 5.1. Suppose that both POLARIS and OA have
the same queue at a point in time, with k total transactions,
one running t. and the rest waiting, with the exact same
workloads. Suppose a new transaction tpe, arrives, and that
d(t;) < d(tnew). Until the arrival of the next transaction,
POLARIS and OA will execute transactions in the same or-
der, and with the same processor frequency.

ProOF. First, we consider execution order. By defini-
tion, POLARIS will finish running ¢, and then run the re-
maining transactions in earliest-deadline-first (EDF) order.
Since t, has the earliest deadline, this amounts to running
all transactions in (EDF) order. OA identifies a critical in-
terval, schedules the transactions in that interval in EDF
order, reduces the problem instance by removing the criti-
cal interval and its transactions, and repeats on the reduced
instance. However, because all transactions have the same
arrival time, all transactions in the first critical interval cho-
sen by OA will have deadlines earlier than all remaining
transactions. Since the resulting reduced problem instances
all have the same structure as the original instance, each suc-
cessive critical interval’s transactions’ deadlines will be later
than those of previously selected intervals, and earlier than
those of subsequently selected intervals. Thus, by schedul-
ing each critical interval in EDF order, OA will execute all
transactions in EDF order, like POLARIS.

Second, we consider processor speed. Let CI; represent
the ith critical interval chosen by OA. Let P; represent the
original problem instance considered by OA, and let P; rep-
resent the reduced problem instance under which C'I;(i > 1)
is chosen. Since both algorithms agree on EDF execution
order, we show by induction on the number of transactions
that POLARIS and OA agree on the processor speed used
to execute each transaction.

Base Case: Consider the transaction with the earliest
deadline in the original, non-reduced problem instance, P;.
OA will run this transaction first, using frequency den(C1I4).
Now consider POLARIS. When ty,¢. arrives, POLARIS will
use SETPROCESSORFREQ (Figure 2) to set the processor fre-
quency. SETPROCESSORFREQ iterates over the transactions
present in the system, including ¢, and tnew. After iterat-
ing over all k 4+ 1 transactions in the system, the selected
frequency will be

1§I?£1§+1 den(I;)

where I; represents the interval consisting of the j earliest-
deadline transactions. Thus, after considering all k41 trans-
actions, the frequency chosen by POLARIS will correspond
to that required by the interval with the highest density, i.e.,
the frequency of the critical interval. Thus, POLARIS , will
set the processor speed to den(C14), the same speed chosen
by OA. Since POLARIS only adjusts processor speed when
transactions arrive or finish, it will remain at den(C1;) until
the transaction completes.

Inductive Step: Suppose that the nth transaction is finish-
ing execution under POLARIS, and that POLARIS has run
it and all preceeding transactions at the same frequencies
that were chosen by OA. Consider the n + 1st transaction.
There are two cases:

Case 1: Suppose that the nth and n + 1st transactions be-
long to the same critical interval under OA. Suppose it is
the mth critical interval, which implies that both transac-
tions ran at speed den(ClI,,) under OA. By our inductive
hypothesis, the nth transaction also ran at speed den(CIy,)
under POLARIS. When the nth transaction completes, PO-
LARIS will run SETPROCESSORFREQ. The set of transac-
tions over which it runs will be exactly those in P,,, minus
those transactions in C'I,, that have already finished execut-
ing, including the nth transaction. When POLARIS runs
SETPROCESSORFREQ, the highest density interval it finds
will be C1,,, but shortened to account for transactions from
that interval that have already finished. The density it finds
for this interval will be exactly den(C1,,), since the work of
the already-completed transactions in C'I,, was done at rate
den(CIy,). Thus, POLARIS chooses den(CI,,) as the exe-
cution frequency for transaction n + 1.

Case 2: Suppose than the nth transaction belongs to C'I,,
and the n 4+ 1st belongs to C'I,,11. In this case, when trans-
action n finishes and POLARIS runs SETPROCESSORFREQ,
the set of transactions remaining at the processor is exactly
those in P, 4+1. Furthermore, transaction n+ 1 has the earli-
est deadline of all transactions in P,,+1. Thus, by the same
argument used in the base case, both OA and POLARIS
choose den(Cly+1) as the processor speed for transaction
n+1. [

Next, we consider the situation in which the newly arriv-
ing transaction ¢, has an earlier deadline than the running
transaction t,. In such a situation, OA will preempt t, and
start running ¢,e.. This is the most power-efficient way to
execute the current transactions. POLARIS ;| which is non-
premptive, cannot do this. Instead, POLARIS will continue
to run t,., but will increase the speed of the processor to
ensure that both t,ew and ¢, finish by t,e.’s deadline. This
is captured by the following lemma;:

LEMMA 5.2. Suppose that both POLARIS and OA have
the same queue at a point in time, with k total transactions,
one running t, and the rest waiting, with the exact same
workloads. Suppose a new transaction tpe. arrives,and that
d(tnew) < d(tr). Until the arrival of the next transaction,
POLARIS will execute transactions in the same order, and
with the same processor frequency, as OA would have if d(t,)
were decreased to d(tnew).

PrOOF. The proof is similar to that of Lemma 5.1, so
we provide a sketch. In the modified problem instance in
which the deadline of ¢, is reduced, no other transactions
have deadlines earlier than ¢, and tnew. Thus, there are
two possibilities for C'I1, the first critical interval chosen by
OA. Either it includes only ¢, and tnew, or it includes ¢,
tnew, and some additional transactions. In the former case,
den(CI) = (w(tr) + W(tnew))/d(tnew). In the latter case, it
is higher.

Now consider POLARIS. When tne. arrives, POLARIS
keeps executing t, since it is non-preemptive. However,
it runs SETPROCESSORFREQUENCY to adjust the proces-
sor frequency. Because of the definition of (¢, f), the

miminum frequency identified for each transaction includes
the (remaining) time for ¢,, even if ¢, has a later dead-
line. Thus, SETPROCESSORFREQ will identify frequency
(w(tr) + wW(tnew))/d(tnew) when it checks tpew, and will
set this frequency if C'I; includes just ¢, and tpew. If CLi
includes more transactions, SETPROCESSORFREQ will find
den(C11) when it checks the last transaction in CI;. [

In general, POLARIS may execute tnew and t, at higher
frequency than would OA (on the unmodified instance), but
all other waiting transactions will run at a frequency no
higher than they would have run at under OA.

5.5 Competitive Ratio of POLARIS

We next prove POLARIS’ competitive ratio against OA
and YDS both on arbitrary and agreeable instances. Ar-
bitrary problem instances are those in which transactions
can have arbitrary workloads, arrival times, and deadlines.
Agreeable instances are those in which transactions have ar-
bitrary workloads but their arrival times and deadlines are
such that for any pair of transactions ¢; and t; if a(t;) <
a(t;) then d(t;) < d(t;). That is there is no transaction t;
that is “squeezed” between the arrival time and deadline
of another transaction t;. Intuitively, agreeable problem
instances capture workloads in which sudden short dead-
line transactions do not occur. Throughout the rest of the
section, Pow[POLARIS(P)] and Pow[Y DS(P)] denote the
power consumed by POLARIS and YDS on a problem in-
stance P, respectively.

We next make a simple observation about POLARIS’
competitive ratio on agreeable problem instances.

THEOREM 5.3. Under agreeable problem instances
Pow[POLARIS(P)] < a®*Pow[YDS(P)]. Therefore PO-
LARIS has a® competitive ratio against YDS and therefore
OPT,p.

PROOF. Recall from Section 5.3 that the only difference
in the behaviors of OA and POLARIS is when a new trans-
action with the earliest deadline in the queue arrives. Note
that in agreeable instances this never happens. Therefore,
in agreeable instances, POLARIS behaves exactly the same
as OA. Since OA has a competitive ratio of «® with respect
to YDS [8], so does POLARIS. [

Next we analyze POLARIS’ competitiveness on arbitrary
problem instances. In the rest of this section, given an ar-
bitrary problem instance P, we let wmaez and wmin be the
maximum and minimum workloads of any transaction in P.
Let c= (14 %) Given a problem instance P = t1, ..., t,,
let P = t},...,t,, be the problem instance in which each
t; and t; have the same arrival times and deadlines, but
w(t;) = ¢ x w(t;). Essentially P’ is the problem instance
where we keep the same transactions as P but increase their
workloads by a factor of c.

Our analysis consists of two steps. First, we establish a
relationship between the power consumed by POLARIS on
instance P and the power consumed by YDS on instance P’.

THEOREM 5.4. Pow[POIARIS(P)] < a®Pow[Y DS(P')]

PrOOF. Our proof is an extension of the proof used by
Bansal et al to show that OA has an a® competitive ra-
tio against YDS [8]. The proof can be found in the Ap-
pendix. [J

We next show that YDS on P’ consumes exactly ¢ times
the power it does on P, proving that Pow[POLARIS(P)] <
(ca)*Pow[YDS(P)]. This shows that POLARIS has a
(ca)® competitive ratio against YDS and therefore OPT,,,.

THEOREM 5.5. Pow[Y DS(P")] = ¢* Pow[Y DS(P)].

PRrROOF. Since we are increasing the workload of each
transaction by a factor of ¢, YDS on P’ will find exactly
the same set of critical intervals, except the density of each
critical interval will be a factor of ¢ larger. This implies that
at any time YDS’ processor speed on P’ will be a factor ¢
faster than on P. Let s(t) be the processor speed of YDS
on P. Since [(cs(t))* = (c*) [, s(t)*, YDS will consume
exactly ¢ more energy on P’ than P. [

The next corollary is immediate from Theorems 5.4 and 5.5.

COROLLARY 5.6. POLARIS has a (ca)® competitive ra-
tio against YDS and therefore OPT,,.

5.6 Discussion

The competitive ratio in Corollary 5.6 has two compo-
nents: a® and c®. One interpretation of this result is that
(idealized) POLARIS has two disadvantages against YDS.
First, it does not know the future, and second it cannot
preempt transactions. Recall that the OA algorithm, which
does not know the future but can preempt transactions, has
a® competitive ratio [8]. Thus, one interpretation we can
give is that the a® component captures POLARIS’ disad-
vantage of not knowing the future. In contrast, the ¢ com-
ponent captures the POLARIS’ disadvantage of not being
able to preempt. Although we do not know if this com-
petitive analysis is tight, it is easy to construct problem
instances in which POLARIS’ power consumption is either
a® or ¢® worse than YDS. Bansal et. al. have given an
agreeable problem instance in which OA performs a® worse
than YDS [8]. Since POLARIS performs exactly the same as
OA on agreeable instances, POLARIS will also perform a®
worse than YDS on this instance. For an informal instance
capturing the second component, consider a two transaction
workload where t; has workload wmqs and arrives at time
0 and has a very late deadline. t2 has a workload wmin and
arrives after an infinitesimally small amount of time after O,
and has a very short deadline. This is the worst situation
for POLARIS, where POLARIS will start ¢; but after im-
mediately seeing ta, because it cannot preempt t1, will try
to finish both ¢; and t2 by the deadline of t2. Whereas YDS
would execute t2 first and then ¢;. By appropriate choices of
the deadlines for ¢1 and t2, POLARIS will perform ¢* worse
than YDS on this instance.

6. POLARIS IMPLEMENTATION

We implemented POLARIS, along with several baseline
algorithms, in Shore-MT [24]. In this section, we present an
overview of the implementation and also describe some of
the practical problems that it addresses.

6.1 Shore-MT

Shore-MT is a multi-threaded data storage manager which
is designed for multiprocessors. Shore-Kits [1] provides a
front-end driver for Shore-MT. It includes implementations
of several database benchmarks, including TPC-C. For the

Corel Core?2
\ \/
\/ \/ Y
Worker,):| |i(Worker ; Worker,,
Figure 4: Clients, workers and request queues

in the POLARIS Shore-MT prototype. Each
client /worker pair is pinned to a seperate core.

remainder of the paper, we refer to the combination of Shore-
Kits and Shore-MT as Shore-MT.

Shore-MT has multiple worker threads, each with an as-
sociated request queue. In the TPC-C implementation, each
request corresponds to a TPC-C transaction of a particular
type, such as NewOrder. Each worker sequentially executes
requests from its queue, using the storage manager to access
data. There are also client threads. In our prototype set-
ting, these clients play dual roles. First, they simulate actual
remote database system clients by generating sequences of
transaction requests. Second, they play the role of a server-
side connection listener by enqueuing those transaction re-
quests into the worker queues.

The POLARIS algorithm is designed to control the pro-
cessor execution speed for a single transaction request queue,
with requests executed non-premptively. This is the execu-
tion model followed by each individual Shore-MT worker
thread. The multi-core CPUs in our test servers allow CPU
frequency to be controlled separately for each core. Thus, we
fixed the number of workers to match the number of cores in
our server, and pinned each worker to a single core. We also
fixed the number of clients to match the number of cores,
and each client submits requests to a single worker’s queue.
Each worker/client pair then uses POLARIS to control the
execution frequency of its assigned core. Figure 4 gives a
high-level view of the way we place Shore-MT threads in
multi-core CPUs.

POLARIS requires action when two types of events oc-
cur: arrival of a new transaction request, and completion
of a request. In our prototype, arrival work is handled by
the client threads, in their role as server-side request re-
ceivers. When a new request arrives, the client enqueues the
request and then runs the POLARIS SETPROCESSORFREQ
algorithm (Figure 2) to set the execution frequency of its
own core. We modified Shore-MT’s request queues so that
requests are queued in EDF order, as required by POLARIS.
Completion work is handled by the worker threads. On
completion of a request, workers pull the earliest-deadline
request from their queues and run SETPROCESSORFREQ to
set the their core’s frequency before executing the dequeued
request.

6.2 Controlling CPU Frequency

There are different mechanisms for controlling CPU core
frequencies. For x86 processors, all of the alternatives ul-
timately rely on Model Specific Registers (MSRs) [2, 23].
MSRs contains CPU related information which can be read
and/or written by software, and which can be used to control
some aspects of the processor, including core frequencies.

One possible and common way to change CPU frequency
on Linux systems is to use the cpufreq driver’s userspace
governor. Application code can specify a core frequency
in a special sysfs system file, and the userspace governor
then uses the cpufreq driver to set core frequency as speci-
fied. The driver, in turn, controls frequency using the MSRs.
This interface is relatively simple to use, but we found that
it introduced substantial latency, as was previously observed
by Wambhoff et al. [47]. Since POLARIS adjusts execution
frequencies on a short time scale (potentially on each trans-
action request arrival or completion), clients and workers in
our prototype modify the MSRs directly via the MSR driver,
which is much faster.

6.3 Execution Time Estimation

POLARIS requires estimates of the execution time (ii(c, f))
for transactions of each class ¢ at each possible processor
execution frequency f. In general, accurate estimation of
request execution times is not easy [20]. However, as es-
timation was not our primary focus, we took a relatively
simple approach in our prototype. Specifically, POLARIS
tracks moving means and standard deviations of measured
transaction execution times for each combination of trans-
action type and frequency. It then predicts execution times
using

ple, f) = apimeas (¢, f) + Bomeas(c, f)

where fimeas(¢, f) and meas(c, f) are the measured mean
and standard deviation and « and 8 are parameters that
control how conservative POLARIS’ estimates are.

Because POLARIS adjusts processor frequency every time
a transaction arrives or finishes execution, it has some built-
in robustness against estimation errors. For example, if PO-
LARIS underestimates the execution time of a transaction,
it has the opportunity to increase processor frequency when
that transaction finishes, if that is necessary to ensure that
the remaining transactions in the queue will finish in time.
Nonetheless, underestimating ji(c, f) can cause transactions
to miss their deadlines. Overestimates, in contrast, may
result in POLARIS choosing unnecessarily high processor
frequencies, which increases power consumption. We exper-
imented with a variety of values of a and g for our TPC-C
test workload. For all of the experiments reported in the
this paper, we used a = 2 and 8 = 0.

7. EVALUATION

Next, we present an empirical evaluation of POLARIS.
The primary goal of our evaluation is to compare POLARIS
against operating-system-based governors, which serve as
our baselines. In addition, we also compare POLARIS
against two in-DBMS baselines to provide some insight into
POLARIS’ performance.

7.1 Methodology

All of our experiments use the Shore-Kits TPC-C bench-
mark implementation, with scale factor 16. Shore-MT’s
buffer pool is configured to be large enough to hold the

Execuction Execution
Time (us) Time (us)
Request @2.8 GHz @1.2 GHz
Type Mean StDev Mean StDev
New Order (45%) 782 964 1698 1802
Payment (47%) 152 465 333 827
Order Status (4%) 222 492 463 968

Stock Level (4%) 2679 753 5790 1384

Figure 5: TPC-C transaction execution times at
maximum and minimum CPU frequency. Percent-
ages indicate the transaction type mix in the work-
load.

entire database. For each experimental run, we choose a
method for controlling core frequencies (POLARIS, or one
of the baselines), and then run the benchmark workload
against our Shore-MT prototype. Each run consists of three
phases: (1) a warmup phase, during which each worker exe-
cutes 20000 transactions, (2) a short training phase (20000
transactions per worker) for warming up POLARIS’ execu-
tion time estimation model, and (3) the test phase, during
which power consumption and system performance are mea-
sured. We changed the TPC-C implementation in Shore-
Kits from a closed-loop design to an open-loop design, so
that we can set a fixed offered load (transaction requests
per second) for the system for each experiment. We ran ex-
periments at three load levels: high, medium, and low. High
load is 90% of the estimated peak throughput for our test
system, which is about 28000 transactions per second. The
medium and low loads correspond to 60% and 30% of the
peak throughput, respectively.

Figure 5 illustrates the characteristics of our TPC-C work-
load, as measured by the execution time estimator in our
prototype. The figure shows execution time of each trans-
action type at the highest (2.8 GHz) and lowest (1.2 GHz)
CPU frequencies for our server. The workload is not sim-
ple. Execution times of different transaction types vary by
an order of magnitude, and there is considerable execution
time variance among transactions of the same class. The fig-
ure also illustrates the range of control offered by DVFS on
our server: moving from the lowest frequency to the highest
reduces execution times by about a factor of two.

We modified the TPC-C request generator to associate a
deadline with each request. Deadlines for transactions of
class ¢ (e.g, NewOrder) are set to be S times the mean ex-
ecution time of class ¢ transactions at the highest processor
frequency, as shown in Figure 5. The deadline slack, S, is
an experimental parameter which controls the tightness of
the deadlines. We experiment with slack in the range from
S =10 to S = 100. Note that since mean transaction exe-
cution times are low, deadlines are tight, even at the high-
est slack we tested. For example, NewOrder transactions
have a mean execution time of about 780 microseconds at
the highest frequency (Figure 5). Thus, the deadlines from
NewOrder transactions range from 7.8 - 78 milliseconds as
S varies from 10 to 100.

For each run, we measure the average power consumed by
the server during the test phase. To measure server power
draw, we used a Watts up? PRO [22] wall socket power
meter, which has a rated +1.5% accuracy. We measured
the power consumption in one-second intervals (the finest

granularity of the power meter) and averaged those over the
test duration. We also measured the power consumption of
the CPUs (alone), as reported through the RAPL MSRs.
However, we use the whole server power, as reported by the
Watts up? meter, as our primary power metric.

In addition to the power metric, we also measure perfor-
mance during the test phase. In each of our experiments,
system throughput (load) is fixed and controlled by our
open-loop request generator. Thus, we are primarily in-
terested in transaction latency. Specifically, we measure the
percentage of transactions that do not finish execution be-
fore their deadline, which we refer to as the failure rate.

We ran experiments with POLARIS and with several in-
DBMS and in-kernel baselines:

Static Frequencies: In these tests, Shore-MT used its de-
fault transaction scheduling and did not control core
frequencies. Instead, we used the Linux cpufreq static
governors to set all cores to run at a fixed frequency.

Dynamic Kernel Governors: In these tests, Shore-MT
used its default transaction scheduling and did not
control core frequencies. We used the Linux cpufreq
dynamic governors to manage core frequencies. We ex-
perimented with two dynamic governors: conservative
and On-Demand. The former favors performance over
power savings, while the latter adjusts core frequencies
more aggressively to save power.

In-DBMS Dynamic Governors: In addition to POLARIS,

we considered two other in-DBMS power governors.
The first is LAPS [27], which we proposed in ear-
lier, preliminary work. Like POLARIS, LAPS sets
core frequencies to meet transaction deadlines, but un-
like POLARIS it uses FIFO scheduling. The second,
LAPS Arrival, is a variant of LAPS that is similar
to Rubik [26]. Unlike LAPS, which adjusts proces-
sor frequencies only on transaction completion, LAPS
Arrival adjusts frequencies both on transaction com-
pletion and arrival. Comparing POLARIS to Rubik
helps to isolate the effect of transaction scheduling
on overall performance, while comparing LAPS and
LAPS Arrival helps to isolate the effect of adjusting
core frequencies on transaction arrival.

In our experiments, we use a server with a two Intel®
Xeon® E5-2640 v3 processors with 128 GB memory using
Ubuntu 14.04 with kernel version 4.2.8, where the cpufreq
driver is loaded by default. For the experiments with in-
DBMS power scheduling algorithms, we disabled the CPU
ACPI software control in the BIOS configuration to pre-
vent the cpufreq driver from interfering with power control.
For the experiments using the static and dynamic kernel
governors, we enabled ACPI software control in the BIOS.
To reduce non-uniform memory access (NUMA) effects and
get more homogeneous memory access patterns, we enabled
memory interleaving in the BIOS.

Each E5-2640 CPU has 8 physical and 16 logical cores
(hyper-threads), thus our system has a total of 16 physical
(32 logical) cores. Each physical core’s power level can be
set separately. The CPU has 15 frequency levels, from 1.2
GHz to 2.6 GHz with 0.1 GHz steps, plus 2.8 GHz. In our
experiments, we chose five of the frequency levels, 1.2, 1.6,
2.0, 2.4 and 2.8 GHz, as the possible target frequency levels

0.30 A
@
0251 2.0‘5‘35’
2
© 0.20 Sy
= O
S 24GHZ™ e
0154 - e 4
* 2.8 GHz
0.10 A
140 150 160 170 180
Average Power(Watt)
* POLARIS > LAPS Arrival Conservative
<« ars =+ OnDemand

Figure 6: Performance and power of different
power management schemes with tight deadlines
(S = 10) under medium load

for POLARIS and the two other dynamic power manage-
ment algorithms, LAPS and LAPS Arrival.

For all of our experiments, our Shore-MT prototype is
configured to use sixteen client threads and sixteen worker
threads. Each client generates requests for a single worker,
and we pinned each client/worker pair to a single physical
core, with the client on one hyper-thread and the worker
on the other. To minimize database contention in these
experiments, each client generates requests for a separate
TPC-C warehouse.

7.2 Experimental Results

Figure 6 summarizes our results for our default scenario:
medium load, and deadline slack S = 10. The figure shows
the average power consumption and failure rate for PO-
LARIS as well as the in-DBMS and in-kernel dynamic base-
lines. For reference, we also show the power consumption of
the three highest static frequencies (2.0-2.8 GHz). The two
lowest static frequencies result in very high failure rates at
this load level, and are not shown. The dashed line connect-
ing the static frequency points represents the Pareto frontier
for power management techniques that control processor fre-
quency without changing the default FIFO transaction exe-
cution order.

With S = 10 at this load level, almost 15% of trans-
actions miss their deadlines even if the processor remains
at the highest frequency (2.8 GHz). The kernel’s Conserva-
tive power governor leaves the cores at the highest frequency
most of the time, and hence its behavior is very close to that
of the high frequency static governor. In contrast, the more
aggressive OnDemand governor reduces power consumption
by almost 35 watts relative to 2.8 GHz. However, it does
this at the expense of the transaction failure rate, which rises
by about one third, to more than 20%. The kernel gover-
nors are unaware of transaction deadlines and transaction
request queues, and base their frequency decisions on CPU
utilization alone.

POLARIS results in even greater power savings than On-
Demand (close to 40 watts relative to 2.8 GHz), with no

0.20
1.6 GHz
P
0.15 A
2
5
24
© 0.10
=
‘=
2,0 GH
0031 o “aGn
2. 7
L 2.8 GH
* B For 52 § aH7
0.00 T T T T T T
130 140 150 160 170 180
Average Power(Watt)
* POLARIS > LAPS Arrival Conservative
<« Lars =+ OnDemand

Figure 7: Performance and power of different
power management schemes with loose deadlines
(S =100) under medium load

increase in the transaction failure rate. Indeed, the transac-
tion failure rate under POLARIS is actually somewhat lower
than that achieved by the 2.8 GHz static governor. This is
possible because POLARIS uses EDF transaction schedul-
ing, in addition to setting the processor execution frequency.
Under this medium workload, the difference in power con-
sumption between the highest and lowest static frequencies
is approximately 60 watts. This range represents the maxi-
mum opportunity for power savings from frequency scaling
under this workload. POLARIS is able to capture about
2/3 of this opportunity, with no increase in the transaction
failure rate.

Figure 6 also shows that POLARIS results in slightly
lower power consumption and much lower transaction fail-
ure rates than the two in-DBMS baselines. LAPS results
in more missed deadlines than LAPS Arrival because it ad-
justs execution frequency only when transactions commit,
while LAPS Arrival adjusts on both completion and ar-
rival of transactions. Interestingly, LAPS’ inability to ad-
just execution frequency upwards when new transactions ar-
rive means that it consumes slightly less power than LAPS
Arrival. However, the price (in missed transaction dead-
lines) for this improvement is very high. POLARIS’ abilty
to re-order transactions by deadline results in an even larger
drop in the failure rate relative LAPS Arrival, with no cor-
responding increase in power consumption.

7.2.1 Effect of Deadline Slack

Next, we consider the effect of deadline slack. We repeated
the medium-load experiment, but this time increased slack
by a factor of ten, to S = 100. Figure 7 shows the power
consumption and failure rates for POLARIS and the base-
lines under this higher-slack scenario.

We observe that POLARIS and all baselines, even those
that are not deadline-aware, have lower failure rates in this
case. This is simply because transaction deadlines have
been relaxed. Power consumption under the in-kernel dy-
namic governors is unaffected by the higher slack (compare
to Figure 6), since they are unaware of transaction deadlines.

10

o
w

o
o

Failure Ratio
(#Failed Trx / #Offered Trx)

o

. it T TR
0.0
150
e ':'_'.‘.';".'_’:'_L'.’:-'-*--« \4;,‘ B T e RS
5 <+«
EC\ *. '<‘-~::~::::_’k -
g2 140 R e
s * .. T g
] e N N e
< ke
ke
ol SR
130
10 40 70 100
Slack
-s- POLARIS -~ LAPS Arrival ke 2.4 GHz
-<¢- LAPS —- Ondemand 2.8 GHz

Figure 8: Performance and power of different
power management schemes under medium load,
as functions of slack (5).

However, both POLARIS and the in-DBMS baselines pro-
duce greater power savings when slack is higher. Both LAPS
and LAPS Arrival reduce power consumption by more than
40 watts relative to 2.8 GHz, while POLARIS’ reduction
approaches 50 watts.

Figure 8 summarizes the effect of slack by showing power
consumption and transaction failure rate as a functions of
slack, for the in-kernel OnDemand governor and the three
in-DBMS governors. (We do not show the kernel’s Conser-
vative governor, which behaves like the OnDemand governor
but with significantly higher power consumption.) While all
techniques have low failure rates at high slack, POLARIS
results in lower failure rates at low slack because of its extra
transaction scheduling flexibility. The figures also show that
the power “gap” between the in-DBMS and kernel governors
increases with slack.

Interestingly, POLARIS maintains a power advantage
over the other in-DBMS governors even at high slack. This
indicates that the combination of deadline-aware scheduling
and deadline-aware frequency scaling can result in greater
power savings than deadline-aware frequency scaling alone.
Figure 9 shows a three-transaction example which illustrates
how this can happen. Each rectangle represents a transac-
tion request. Rectangle height indicates the amount of work
required to complete the request, and width indicates the
request deadline. We assume that the large transaction ar-
rives second. The scenario on the left shows FIFO ordering,
and the slope of the dashed line represents the execution
frequency chosen by a deadline-aware algorithm. The sce-
nario on the right shows earliest deadline execution of the
same transactions, and (reduced) execution frequency that
results.

7.2.2 Effect of Load

work work

Request 3 ,7 ///__ RO
7 /ﬁcqucst 2
7 7 .
’ ’ .
,/ Request 2 4 -
bt Rm;ues_t.S' ’
v /)
,/ Request 1 | {f~Réquest 1
time time
a)First in first out(FIFO) b)Earliest Deadline First(EDF)

Figure 9: An example illustrating the impact of
FIFO vs EDF scheduling on frequency selection.

So far, we have considered only the medium load scenario.
Figures 10 and 11 show power consumption and performance
under high and low load, respectively, as a function of slack.
In both figures, we show only one of the two in-kernel base-
lines (OnDemand), as it is the most competitive with the
in-DBMS techniques in its power/performance tradeoff. In
addition, we show only a few of the fixed-frequency baselines
in each figure to reduce clutter.

The key observation from these figures is that POLARIS
is almost never worse than any of the baselines in terms
of power consumption and transaction performance. The
only exception is at high load with low slack, where the
in-kernel OnDemand governor results in marginally lower
power consumption than POLARIS - though at the cost of
a substantially higher failure rate.

Comparison of Figures 10 and 11 with Figure 8 show the
same general trends in all cases. The power savings achieved
by all of the in-DBMS techniques improves with increasing
slack. In addition, POLARIS’ advantage over the in-DBMS
baselines in terms of failure rate is greater when slack is
tight, since POLARIS has the flexibility to re-order trans-
actions. At high load, POLARIS reduces power by 20-25
watts relative to the 2.8 GHz static governor, which is the
only baseline with failure rates comparable to POLARIS’.
At low load, the differences in power consumption among the
various dynamic governors are relatively small - less than 10
watts, even with high slack.

Although POLARIS dominates the baselines at almost
all load and slack levels we tested, our results show that
the sweet spot for power savings is at medium load. This
is good, since production systems are often provisioned to
operate normally at with utilizations that are neither too
high nor too low.

7.2.3 Energy Efficiency

So far, we have used two metrics (power and transaction
failure rate) to evaluate the behavior of POLARIS and the
baselines. Figure 12 summarizes and restates these results
using a single, combined efficiency metric that reflects both
power consumption and transaction latencies. This metric is
the mean number of successful transactions completed per
joule of energy consumed. Under this metric, the energy
consumed by transactions that miss their latency targets is
considered to have been wasted.

Figure 12 shows that POLARIS is at least as energy ef-
ficient as all of the baselines at all load levels and all slack
levels. The figure shows that energy efficiency is higher
at higher load levels. This is a consequence of the fact
that processors are not power proportional, and it has been
noted by other researchers [9]. It can also be observed in

11

0.5 X
= 4
<] N £
=04
=}
95
5203
~ O
¥
=
SE02
&g
2
£ 0.1
*
0.0
200
190
3]
3
%l
%0% 180 4\:::.:-
R . s o B
170 - Fo e ____—#__‘_—_. — “~:.*
g Fu— . - X i TS - A
160
10 40 70 100
Slack
-- POLARIS -P- LAPS Arrival ke 2.4 GHz
-<- LAPS —- Ondemand 2.8 GHz

Figure 10: Performance and power of different
power management schemes under high load, as
functions of slack (5).

o
)

Failure Ratio
(#Failed Trx / #Offered Trx)
f=J

v
4
A

N

e
=3

160

= @
S S

W
=

Average Power
(Watt)

]

(=}

+
!

!
+
!

i
+
i
I
+
1
i
+
1
!
+
!

!
1
!

i

+

=]

Slack
-s- POLARIS -~ LAPS Arrival ke 2.4 GHz
-<- LAPS —- Ondemand 2.8 GHz

Figure 11: Performance and power of different
power management schemes under low load, as
functions of slack (S5).

peoT Mo

S = b >
(=} (=3 (=3 (=]
peoT WnIpa

Energy Efficiency
S

(Successful Transactions / Joule)

0
S

peo yStH

60
20 40 60 80 100
Slack
-%- POLARIS -~ LAPS Arrival —>»- Conservative -~ 2.0GHz
< LAPS —+- Ondemand == 1.6 GHz =¥ 2.8 GHz

Figure 12: Successful transactions per joule, as a
function of load and slack.

SPECpower_ssj2008 server benchmark results [42]. The fig-
ure also shows that POLARIS’ efficiency advantage over the
baselines is greatest at medium loads, and at tight (low)
slack levels. Medium loads allow POLARIS to utilize the
entire dynamic power range of the processor. At low loads,
both POLARIS and the baselines are limited in their abil-
ity to improve efficiency by the processor’s lower bound on
execution speed. The maximum speed of the processor is
similarly limiting when load is high.

7.2.4 CPU Utilization

Another way to think of processor frequency scaling is as
a kind of fast, fine-grained capacity provisioning mechanism.
Increasing the processor frequency increases its capacity to
do work, at a cost of increased power consumption. Reduc-
ing frequency reduces capacity. From this perspective, the
role of frequency scaling algorithms, like POLARIS and the
baselines, is to reduce processor capacity as much as possible
without causing transactions to miss their latency targets.

By measuring CPU utilization, we can quantify algo-
rithms’ success at adjusting processor capacity. Ideally, with
a perfect frequency scaling technique and processor with a
wide range of possible frequencies, we would see CPU uti-
lization approaching 100%. Figure 13 reports the actual
CPU utilization we observed for POLARIS and the base-
line algorithms at all load and slack levels. At low load,
the utilization of the processor is less than 60% even at the
lowest processor frequency (1.2 GHz). Higher utilizations
(and greater power savings) would require the ability to re-
duce execution frequency below 1.2 GHz. With sufficient
slack, POLARIS and the in-DBMS baselines are able to
approach this limit, indicating that they are achieving the
maximum possible capacity (and hence power) reductions
on this processor. In contrast, the in-kernel baselines have
lower utilizations. At high load, the figure shows that all

12

60
5 R S SRS
R=E2)
88
== 4014 ! s 1 b + + 4 4+ +
Ss + —+ t + —+ t + —+ + +
5 S - — == —X—— _X.ﬁ_._)e__._ D St — == B T X
=2
o Y Y Y Y Y Y Y Y Y Y
20
e e e
55 |, S R
2 R e=3
85 80{g o=t
ZE
e B St Et o Ao m s Ao St m ot Bt
oo 60
52 |feme Y s SRR SR Y o3
40
100
= *""“""'*"::L‘:‘:*::::::#:’f“""'"“*""'*"—*“—*—“m
g -====
3 4 . | ' 4 ! 4 | y 4
88 t } t + t t -+ t
Z2 80
S
= . V) M. 3 M.
DE N A T) ™ ™ T A ™ T
[-Fp=2
@)
60
20 40 60 80 100
Slack
-+%- POLARIS -~ LAPS Arrival —» Conservative - 2.8 GHz
<{- LAPS —+ Ondemand =4+ 1.6 GHz

Figure 13: CPU Utilization under various load
levels

of the frequency scaling algorithms have little room to ma-
neuver, as processor utilization is barely below 80% even
at peak frequency. Medium load, however, allows plenty
of room for capacity adjustment, with processor utilization
varying from about 50% at the highest frequency to almost
100% at the lowest. All of the in-DBMS algorithms, includ-
ing POLARIS, are much more effective than the in-kernel
baselines at driving down frequency and increasing utiliza-
tion.

8. CONCLUSION

In this paper, we have presented a power-aware trans-
action scheduling technique for transactional database sys-
tems, and relate it to other well-known off-line and on-line
algorithms. Unlike operating system power governors, PO-
LARIS is aware of per-transaction latency targets and takes
advantage of them to keep processor execution frequency,
and hence power consumption, as low as possible. On our
server, POLARIS was able to reduce power consumption by
almost 50 watts with no increase in missed transaction dead-
lines. Operating system governors, in contrast, either save
little power or save power at the expense of missed dead-
lines. Through comparision with other in-DBMS baselines,
we showed that it is necessary for POLARIS to control trans-
action execution order and processor frequency to achieve
this performance.

One challenge faced by POLARIS is the need to estimate
transaction execution times at different processor frequen-
cies. The power savings achieved by POLARIS in our ex-
periments were achieved despite noisy estimates. Thus, per-
fect estimation is not necessary for in-DBMS power-aware
scheduling to be effective. However, better estimates would
allow POLARIS to reduce processor frequency more aggres-
sively, and further reduce power.

9.
1]

[5]

[6]

[12]

[13]

[16]

REFERENCES

Epfl Official Shore-MT Page, Shore-Kits. https:
//sites.google.com/site/shoremt/shore-kits.
Accessed: Feb. 2017.

Advanced Micro Devices(AMD). Architecture
programmers manual: Volume 2: System
programming. (24593), 2017.

S. Albers. Algorithms for dynamic speed scaling. In
Symposium on Theoretical Aspects of Computer
Science (STACS2011), volume 9, pages 1-11, 2011.

S. Albers and H. Fujiwara. Energy-efficient algorithms
for flow time minimization. ACM Transactions on
Algorithms (TALG), 3(4), 2007.

H. Amur, R. Nathuji, M. Ghosh, K. Schwan, and
H.-H. S. Lee. Idlepower: Application-aware
management of processor idle states. In Proceedings of
the Workshop on Managed Many-Core Systems,
MMCS, volume 8, 2008.

E. Angel, E. Bampis, V. Chau, and N. K. Thang.
Throughput maximization in multiprocessor
speed-scaling. Theoretical Computer Science,
630:1-12, 2016.

A. Antoniadis and C.-C. Huang. Non-preemptive
speed scaling. Journal of Scheduling, 16(4):385-394,
2013.

N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to
manage energy and temperature. Journal of the ACM
(JACM), 54(1):3, 2007.

L. A. Barroso, J. Clidaras, and U. Hélzle. The
datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):1-154, 2013.

L. A. Barroso and U. Holzle. The case for
energy-proportional computing. IEEE Computer,
40(12), 2007.

D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson,
P. N. Kudva, A. Buyuktosunoglu, J. Wellman,

V. Zyuban, M. Gupta, and P. W. Cook. Power-aware
microarchitecture: design and modeling challenges for
next-generation microprocessors. IEEE Micro,
20(6):26-44, 2000.

Y. Chen, S. Alspaugh, and R. Katz. Interactive
analytical processing in big data systems: A
cross-industry study of mapreduce workloads. Proc.
VLDB Endow., 5(12):1802-1813, 2012.

M. Dayarathna, Y. Wen, and R. Fan. Data center
energy consumption modeling: A survey. IEEE
Communications Surveys Tutorials, 18(1):732-794,
2016.

C. Delimitrou and C. Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
SIGPLAN Not., 49(4):127-144, 2014.

K. Ebrahimi, G. F. Jones, and A. S. Fleischer. A
review of data center cooling technology, operating
conditions and the corresponding low-grade waste
heat recovery opportunities. Renewable and
Sustainable Energy Reviews, 31:622-638, 2014.

X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. ACM
SIGARCH Computer Architecture News, 35(2):13-23,
2007.

13

(17]

(18]

(22]

23]

24]

[25]

(26]

27]

(28]

29]

(30]

M. E. T. Gerards, J. L. Hurink, and P. K. F.
Hlzenspies. A survey of offline algorithms for energy
minimization under deadline constraintsa. Journal of
Scheduling, 19(1):3-19, 2016.

D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Workload analysis and demand prediction of
enterprise data center applications. In IEEE 10th
International Symposium on Workload
Characterization (IISWC), pages 171-180, 2007.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel.
The cost of a cloud: Research problems in data center
networks. SIGCOMM Comput. Commun. Rev.,
39(1):68-73, 2008.

H. Hacigumus, Y. Chi, W. Wu, S. Zhu, J. Tatemura,
and J. F. Naughton. Predicting query execution time:
Are optimizer cost models really unusable? In
Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ICDE
’13, pages 1081-1092, 2013.

J. Hamilton. Cost of power in large-scale data centers.
http://perspectives.mvdirona.com/2008/11/
cost-of-power-in-large-scale-data-centers/,
2008. Accessed: Feb. 2017.

J. M. Hirst, J. R. Miller, B. A. Kaplan, and D. D.
Reed. Watts up? pro ac power meter for automated
energy recording: A product review. Behavior
Analysis in Practice, 6(1):82, 2013.

Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, September 2016.

R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-mt: a scalable storage manager
for the multicore era. In Proceedings of the 12th
International Conference on Extending Database
Technology: Advances in Database Technology, pages
24-35, 2009.

S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks.
Tradeoffs between power management and tail latency
in warehouse-scale applications. In Workload
Characterization (IISWC), 2014 IEEE International
Symposium on, pages 31-40. IEEE, 2014.

H. Kasture, D. B. Bartolini, N. Beckmann, and

D. Sanchez. Rubik: Fast analytical power management
for latency-critical systems. In Proceedings of the 48th
International Symposium on Microarchitecture,
MICRO-48, pages 598-610. ACM, 2015.

M. Korkmaz, A. Karyakin, M. Karsten, and K. Salem.
Towards dynamic green-sizing for database servers. In
International Workshop on Accelerating Data
Management Systems Using Modern Processor and
Storage Architectures - ADMSQ@QVLDB, pages 25-36,
2015.

W. Lang, R. Kandhan, and J. M. Patel. Rethinking
query processing for energy efficiency: Slowing down
to win the race. IEEE Data Eng. Bull., 34(1):12-23,
2011.

W. Lang and J. M. Patel. Energy management for
mapreduce clusters. Proceedings of the VLDB
Endowment, 3(1-2):129-139, 2010.

G. V. Laszewski, L. Wang, A. J. Younge, and X. He.
Power-aware scheduling of virtual machines in
dvfs-enabled clusters, in. In Proc. IEEE Intl Conf.
Cluster Computing, pages 1-10, 2009.

https://sites.google.com/site/shoremt/shore-kits
https://sites.google.com/site/shoremt/shore-kits
http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/

31]

[32]

[45]

J. Leverich and C. Kozyrakis. On the energy
(in)efficiency of hadoop clusters. SIGOPS Oper. Syst.
Rev., 44(1):61-65, 2010.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for
large-scale latency-critical workloads. In Proceeding of
the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, pages 301-312.
IEEE Press.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for
large-scale latency-critical workloads. ACM SIGARCH
Computer Architecture News, 42(3):301-312, 2014.

K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis,
K. Periyathambi, and M. Horowitz. Towards
energy-proportional datacenter memory with mobile
dram. SIGARCH Comput. Archit. News, 40(3):37—48,
2012.

D. Meisner, B. T. Gold, and T. F. Wenisch.
Powernap: Eliminating server idle power. SIGARCH
Comput. Archit. News, 37(1):205-216, 2009.

D. Meisner, C. M. Sadler, L. A. Barroso, W.-D.
Weber, and T. F. Wenisch. Power management of
online data-intensive services. In Computer
Architecture (ISCA), 2011 38th Annual International
Symposium on, pages 319-330. IEEE, 2011.

I. Psaroudakis, T. Kissinger, D. Porobic, T. Ilsche,

E. Liarou, P. Tzn, A. Ailamaki, and W. Lehner.
Dynamic fine-grained scheduling for energy-efficient
main-memory queries. In Proceedings of the Tenth
International Workshop on Data Management on New
Hardware, DaMoN ’14, pages 1:1-1:7. ACM, 2014.

R. Schoéne, D. Molka, and M. Werner. Wake-up
latencies for processor idle states on current x86
processors. Computer Science-Research and
Development, 30(2):219-227, 2015.

R. Sen and D. A. Wood. Pareto governors for
energy-optimal computing. ACM Trans. Archit. Code
Optim., 14(1):6:1-6:25, 2017.

A. Shehabi, S. Smith, N. Horner, I. Azevedo,

R. Brown, J. Koomey, E. Masanet, D. Sartor,

M. Herrlin, and W. Lintner. United states data center
energy usage report, 2016.

V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green
governors: A framework for continuously adaptive
dvfs. In Green Computing Conference and Workshops
(IGCC), 2011 International, pages 1-8. IEEE, 2011.
Standard Performance Evaluation
Corporation(SPEC). Power and Performance
Benchmark Methodology V2.1.
https://www.spec.org/power/docs/SPEC-Power_
and_Performance_Methodology.pdf, November 2012.
Accessed: Feb. 2017.

M. Stonebraker and A. Weisberg. The voltdb main
memory dbms. IEEFE Data Eng. Bull., 36(2):21-27,
2013.

D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy efficiency of a database server.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data,
SIGMOD °’10, pages 231-242. ACM, 2010.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and

14

(49]

[50]

[51]

[52]

S. Madden. Speedy transactions in multicore
in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 18-32, 2013.

Unified EFT Inc. Advanced configuration and power
interface specification. http://www.uefi.org/sites/
default/files/resources/ACPI_6_1.pdf, 2016.
Accessed: Feb. 2017.

J.-T. Wambhoff, S. Diestelhorst, C. Fetzer, P. Marlier,
P. Felber, and D. Dice. The TURBO diaries:
Application-controlled frequency scaling explained. In
Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, pages
193-204, 2014.

Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin,

S. Kumar, B. Li, J. Meza, and Y. J. Song. Dynamo:
facebook’s data center-wide power management
system. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium
on, pages 469-480. IEEE, 2016.

J. Xu and J. A. B. Fortes. Multi-objective virtual
machine placement in virtualized data center
environments. In Proceedings of the 2010 IEEE/ACM
Int’L Conference on Green Computing and
Communications & Int’L Conference on Cyber,
Physical and Social Computing, pages 179-188, 2010.
Z.Xu, Y. C. Tu, and X. Wang. Exploring
power-performance tradeoffs in database systems. In
2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), pages 485-496, 2010.

Z. Xu, X. Wang, and Y. cheng Tu. Power-aware
throughput control for database management systems.
In Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 13), pages 315-324,
2013.

F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced cpu energy. In Symposium on
Foundations of Computer Science, 1995.

https://www.spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
https://www.spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf

APPENDIX

Here we present the proof of Theorem 5.4. Instances P and
P’ are as defined in Section 5.5.

THEOREM 5.4 Pow[POLARIS(P)] < a®Pow[Y DS(P')].

PRrOOF. We assume w.l.o.g., that P and therefore P’ are
contiguous. In other words, for each time ¢t € [0,d(tn) =
d(t,,)] there is a transaction t;, such that a(t;) <t < d(t;).
If the P and P’ are not contiguous, we can break it into
a finite number of contiguous parts and analyze POLARIS
competitiveness in each part and get the same result. We let
sp(t) and sy (t) the speed of POLARIS’ and YDS’ proces-
sors at time t when executing P and P’, respectively. There
are three types of events that will happen at any point of
time. Either a new transaction arrives, POLARIS or YDS
completes a transaction, or an infinitesimal dt amount of
time elapses. We use the same potential function ¢(¢) as in
reference (defined momentarily). We will show that:

(1) ¢(t) is 0 at time ¢t and at the of the final transaction.

(2) ¢(t) does not increase as a result of a task arrival or a
completion of a task by POLARIS or YDS.

(3) At any time t between arrival events the following in-
equality holds:

p(t)* + (1)

Note that if these conditions hold, integrating equation 1
between each arrival events and summing gives:

Pow[POLARIS(P)] < a®Pow[Y DS(P")].

= Y

do(t) . o o
—= <
dt a S

We next define ¢(t) and prove that all three conditions
hold. Let spnaq(t) (for POLARIS no arrival) denote the
speed at which POLARIS would be executing if no new
tasks were to arrive after the current time. By Lemma 5.1 we
proved that when no tasks arrive POLARIS simply executes
YDS on the transactions on its queue. Note POLARIS may
have modified its queue to be T or T in the latest arrival
event prior to current time but after it finalizes its queue,
it simply executes YDS on the transactions on its queue
(recall Lemma 5.1). Throughout the proof we denote the
current time always as to. Let CI,...,CI; be POLARIS’
current critical intervals (note that k will change over time)
and let ¢; be the end of critical interval CI;. Let wp(t,t’)
and wy (¢,t') be the unfinished work that POLARIS and
YDS have on their queue at to with deadlines in interval
(t,t']. Therefore, assuming that no new tasks arrive, at
time ¢, where t; < t < t;41, POLARIS has a planned speed
s$Pna(t) = den(CI;) = % In particular note that
Spna(ti) is the planned speed of POLARIS at time ¢; when
critical interval C'I; begins and the processor speed remains
the same until C'I; 1 begins.

We next make a simple observation about spnq(t). Since
POLARIS runs YDS on the transactions of its queue by
considering their arrival times as the current time, the den-
sity of each critical interval is a non-increasing sequence.
That is, when no new transactions arrive, POLARIS has a
planned processor speed that decreases (or stays the same)
over time, i.e. Spna(ti) > SpPna(ti+1) for all i. We refer the
reader to reference [8] for a formal proof of this observation
(proved for OA).

15

The potential function we use is the following:

$(t) = ay spna(t)* (wp(ti, tivr) — qwy (b, i)
i>0

We next show that claims (1), (3), and (2) are true, in that
order.

Proof of claim (1): First observe that at time 0 and after
the final transaction ends (call ¢maz), both algorithms have
empty queues so all wp and wy values are 0 so ¢(0) and
@(tmax) are 0, so claim (1) holds.

Proof of claim (8): This part of the analysis is identical
to the analysis presented by Bansal et al [8] for OA. We need
to show that when no transactions arrive in the next dt time
equation 1 holds. Notice that when no transactions arrive
in the next dt time, spnq(t;) remains fixed for each ¢ and
YDS executes at the constant speed of sy (to). Therefore:

d (2)

spna(to)® — a®sy (to)™ + R
t

(o(t)) <0
Let’s first analyze how d";it) changes in the next dt time.
Notice that POLARIS will be working at one of the trans-
actions in interval (to,t1] at speed spna(to), so wp(to,t1)
will decrease at rate spno, and other wp(t;,ti+1) remain
unchanged. YDS will be running one transaction typs at
speed sy (to). W.lo.g., let dyps be in interval (tg,trt1].
So wy (tk, tk+1)) will decrease at rate sy (to) and all other

dé(t)
dt

wy (ti,ti+1) will remain the same. Therefore is de-

creasing at a rate:

do(t)

5 = (spna(to) " (=spnalto))—aspna(ti)* " (=5 (to)))

= —aspna(to)” + @’spna(tr)* ™ (sy (to))

Substituting this into equation 2 and recalling the obser-
vation we made above that spna(t;) are a decreasing se-
quence, gives us:

(1 — Oé)SPna(to)a + 0428an(to)ailsy(to) —a“ <0

Let z = % Note we assumed w.l.o.g. that P and

P’ are contiguous both POLARIS and YDS will always be
working on a transaction, so z > 0. Substituting z into the
above equation gives us:

f(z)=(1—-a)z*+a’2*"" —a* <0

By looking at the value f(0), f(oo) and the derivative of
f, one can show that f(z) is indeed less than or equal to 0
for all z > 0. completing the proof. We refer the reader to
reference [8] for the full derivation.

Proof of claim (2): We analyze the changes to ¢(t), sp(t)
and sy (t) under two possible events:

i-Completion of a transaction by YDS and POLARIS:
This part of the analysis is the same as the proof in refer-
ence [8] Notice that the completion of a transaction by YDS
has no effect on the spna(t:), wp(ts, tit1), and wy (¢i,tit1)
for all 4, so does not increase ¢(t). Similarly the completion
of an transaction by POLARIS have no affect on spnq(t:),
wp (ti, ti+1), and wy (¢, tig1), it merely shifts in the index
in the summation of ¢(¢) by 1. This proves partially that
claim (2) holds.

ii-Arrival of a new transaction: Suppose a new trans-
action tne, arrives to POLARIS and t),.,, arrives to YDS’

queue. Recall that cw(tnew) = w(tpew). Suppose t; <
d(tnew) < ti+1. Here our proof differs from the proof in ref-
erence [8] in two ways. First we need to consider two cases
depending on whether ., is the earliest deadline transac-
tion or not. If ¢, has the earliest deadline then, POLARIS’
adds two transactions to its queue and removes one from its
queue. This behavior does not occur in OA so does not need
to be argued when comparing OA to YDS in reference [8].
Second transactions added to POLARIS’ queue and YDS’
queue are different. The proof in reference [8] needs to con-
sider only arrival of same transactions.
We note that the case when t,¢., does not have the earliest
deadline is similar to the argument in reference [8]. Below
we slightly simplify the proof in reference [8].
Case 1: t,ew does not have the earliest deadline: Note
that tpew may change the POLARIS’ critical intervals but
we think of the changes to the critical intervals a sequence
of smaller changes. Specifically, we view the arrival of tpew
and t),.,, initially as arrivals of new transactions t,., s and
1! oo’ With deadlines d(tnew) and workload of 0. We then in-
crease tpe,’s and t,,,.’s workloads in steps by some amount
Z < w(tnew), where the increase of t,,¢,,/’s workload by z in-
creases the density of one of POLARIS’ critical interval C1I;
wp (tjtir1) wp(tj,tjr1+x
(tjr1—t5) (tjr1—t5)
structure of the critical intervals®. In addition, after we in-
crease t,.,,’s workload by z, optionally, one of two possible
events occurs:

from

) but does not change the

(a)Interval C1; splits into two critical intervals with the
same increased density of C';..

(b)Interval CI; merges with one or more critical intervals
with the same increased density of CI;.

In each step we find the minimum amount of x that will re-
sult in this behavior, and recurse on the remaining workload
of thew. We argue that in each recursive step the potential
function does not increase. Once t,..,’s workload becomes
equal to w(tnew), we have a final step where we add a work-
load of w(thew) — W(tnew) to th, and again argue that this
does not increase the potential function.

- Recursive step: This analysis is the same as the recur-
sive step from reference [8] . We start by noting that after
the increase in the density of CI;, the splitting or merging
of critical intervals have no effect on ¢(t) because it just in-
creases or decreases the number of indices in the summation
but does not change the value of ¢(t). So we only analyze
increasing the density of CI; by amount of . In this case,
wp (tj,tit1)

(tj+1—t5)

. Thus the potential function changes as

spna(tj) (or the density of CI;) increases from

(wp (tj,tjr1)+e))
to (tj+1—t5)

which is nonpositive by Lemma 3.3 in reference [8] when
q,m,0 >0and o > 1.

- Final step: Note that at the end of the recursive step,
we added only w(tnew) workload to t..., so there is still
a workload of w(tnew) — W(tnew) to be added to ¢, to
replicate the addition of t,.,. Note however that this
can only decrease the potential function because increas-
ing the weight of ¢/,_,., has no effect on the final sp,, and
wp(tj,tj+1) values and will only increase the wy (¢;,¢;41)
value for the final critical interval CI; (after the recursive
steps) that t,,c,s now falls into.

Case 2: t,ew has the earliest deadline: In this case PO-
LARIS changes its queue by adding tnew, teyr, and removing
teur. YDS changes its queue by only adding ¢,,..,. Note that
tnew and t.,,. can be seen as one transaction because they
have the same deadline and their total weight is less than
w(thew). That is because:

max tnew
W(tnew) W (tewr) < W(tnew)+ Wmaz < w(tnew)"‘w

Wmin

< (1 + %)w(tnew) = Cw(tnew) = w(t;mew)

Therefore by the same analysis we gave above we can argue
that the addition of tyey and t,,, to POLARIS’ queue and
thew's to YDS’ queue does not increase ¢(t). We next need
to argue that the removal of t.y, from POLARIS’ queue also
does not increase ¢(t). The argument is similar to the argu-
ment we made when breaking the addition of t,ew and t),..,
in recursive steps. We can view the removal of a transaction
in recursive steps in which we decrease the workload of tcqr
by some amount of x that decreases the density of some crit-
ical interval CI; by x. Optionally, after this decrease, CI;
can split into two critical intervals with the same decreased
density of CI; or merge with one or more critical intervals
with this same density. Note that the merging or splitting
has no effect on the value of ¢(t) because it just increases or
decreases the number of indices in the summation but does
not change the value of ¢(t). These operations only change
the indices in the summation of ¢(¢). Note also that de-
creasing the density of C'I; cannot increase ¢(t) because it
can only decrease spna(t;), decrease wp(t;,t+1) and does
not change the other wp(t;,¢i4+1)’s. Similarly it does not
change any of wy (t;, t;+1) because we are not altering YDS’
queue, completing the proof. []

follows:
(wp(ty, tj+1) +2) \a-1
o (tj+1 jtj)) ((wp (ty, ta) @) —a(wy (1, tj+1)+2)) -
(wp(tj, ti+1)) ya—1
S (s) — adwy (b, t40))

Let ¢ = wp(tj,tj+1), 6 = x and r = wy (¢;,t;41) and rear-
ranging the terms we get:
a((g+0)* (g —ar— (a=1)5) —¢* (g — ar))
(tjpr —t;)*"
'Note that YDS’ critical intervals are irrelevant for our anal-

ysis because ¢(t) is defined in terms of POLARIS’ critical
intervals.

16

	Introduction
	Background
	Related Work
	Cluster Level Energy Efficiency
	Server-Level Energy Efficiency
	Server-Level Energy Efficiency in DBMSs

	POLARIS
	POLARIS Analysis
	Standard Model
	Yao-Demers-Schenker (YDS)
	Optimal Available (OA)
	OA vs. POLARIS
	Competitive Ratio of POLARIS
	Discussion

	POLARIS Implementation
	Shore-MT
	Controlling CPU Frequency
	Execution Time Estimation

	Evaluation
	Methodology
	Experimental Results
	Effect of Deadline Slack
	Effect of Load
	Energy Efficiency
	CPU Utilization

	Conclusion
	References

