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ABSTRACT
We present a new language, called DASH, for describing formal be-

havioural models. DASH combines common modelling constructs

to describe abstractly both data and control in an integrated man-

ner. DASH uses the Alloy language for describing data and its

operations declaratively, and adds syntax for labelled control state

hierarchy common in Statecharts descriptions of transition systems.

In addition, DASH accommodates multiple factoring paradigms for

modelling (control states, events, and conditions) and includes syn-

tactic sugar (e.g., transition comprehension, transition templates)

to write models that are concise and easy to understand. We de-

scribe the formal semantics of DASH, which carefully mix the

usual semantic understanding of control state hierarchy with the

declarative perspective, for creating abstract models early in system

development. We implement these semantics in a translator from

DASH to Alloy taking advantage of Alloy language features. We

demonstrate DASH, our tool, and model checking analysis in the

Alloy Analyzer using several case studies. The key novel insight

of our work is in combining seamlessly common data and control

modelling paradigms in a way that will be intuitive for those used to

either paradigm, and enabling automatic analysis of the integrated

model.

1 INTRODUCTION
The goal of model-driven engineering (MDE) [33] is to reduce the

complexity of the system development process through the use

of models. The models used early in system development must

be more abstract than descriptions in design and code, and must

be analyzable to provide the modeller with feedback on a model’s

correctness. Several formal languages for behavioural models have

been developed that are both abstract and formal in order to be

analyzable using techniques from formal methods. These languages

can be divided into two categories: 1) those paradigms that specify

abstractly the data of a system and its operations (e.g., Alloy [23,

24], Z [36], TLA+ [42]); and 2) those that decompose the system

via the control-oriented modelling paradigms of concurrent and

hierarchical control states and events (e.g., the Statecharts family

of languages [21] including UML statemachines [2]). In the data-

oriented paradigm, the focus is on describing the data operations

abstractly and declaratively. In the control-oriented paradigm, the

focus is on prescribing the order and priority of the sequence of

operations, with limited capabilities for describing rich and abstract

data operations. For many systems, describing both the data and

control aspects of the system in an integrated, abstract behavioural

model would be beneficial, however, current languages lack the

ability to do both easily. A example use case for this combination

is having tables of relationships between uninterpreted data that

evolve over time, e.g., amapping from bank customers to the amount

of money in their bank account that changes in one step of an

automated teller machine (ATM) model.

We present a new language called DASH
1
, which unites common

modelling constructs to describe abstractly both data and control

in an integrated behavioural model. DASH uses the Alloy language

as the underlying language for describing data and its operations

declaratively, and adds syntax for the control state hierarchy com-

mon in Statecharts. In addition, DASH introduces syntactic sugar

to improve the conciseness of models and accommodates multiple

factoring paradigms for modelling (states, events, and conditions).

A behavioural model describes a transition system. The seman-

tics of a language with control state hierarchy can quickly become

complicated because of the potential for multiple transitions in a

step and the need to determine which of these steps are observable

to the environment of the system. From the semantic framework for

these languages given in Esmaeilsabzali et al. [16], we have chosen
a formal semantics of DASH that carefully mixes the usual seman-

tic understanding of control state hierarchy with the declarative

perspective, consistent with the goal of creating abstract models

early in system development. As a choice for analysis of DASH, we

chose to map all of DASH to Alloy so that no extensions would

be required for analysis. It is easier to map control states into a

first-order language than it is to map first-order constructs into a

mostly propositional language (see [17] for a comparison of mod-

elling in Alloy vs SMV). We describe howwe exploit Alloy language

features to model the control state hierarchy of DASH. We show

the conciseness of DASH models by comparing their size to the

equivalent Alloy models resulting from our translation.

The time is right for a modelling language that combines lan-

guage features for describing data and control abstractly in part

because of the improvements to tool support for model check-

ing abstract models. Bounded model checking (BMC) [7] (and its

implementation in nuXmv [9] using satisfiable modulo theories

(SMT) solvers [5]) and transitive-closure-based model checking

(TCMC) [39, 40] are both symbolic model checking methods that

support reasoning over abstract datatypes and have been imple-

mented in the Alloy Analyzer. We use TCMC for analysis of our

1
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case studies. Since Alloy cannot check the entire reachable state

space of most models, we take advantage of the notion of signifi-

cance axioms [17], which force models to cover an interesting part

of the state space for model checking analysis.

Our work can be viewed as either an extension to Alloy or an

extension to Statecharts. There has been related work regarding

how to model and verify transition systems abstractly in Alloy

using either 1) syntactic extensions, such as Electrum [28] and Dy-

nAlloy [19, 20, 32]; or 2) style guidelines such as those found in

Jackson [24] and Farheen [17]. Like DASH, these efforts all describe

means of packaging transitions. DASH is the only one to provide

the common control-oriented modelling paradigm of hierarchical

and concurrent labelled control states as a means of organizing

(sequencing, priority, concurrency) how the transitions are taken in

a model. As an extension to Statecharts (or UML-based languages

such as UMPLE [18]) DASH permits declarative and abstract rep-

resentations of data. Other languages (e.g., SAL [6, 13], ASMs [8],

TLA+ [42], B [4], Chang and Jackson [10] NuXmv [9]) provide the

means to model transition systems abstractly however, none of this

work includes language support for modelling hierarchical control

states.

We described an initial draft of DASH in [35]. We now present

the language in full along with its semantics, tool support, and

examples to demonstrate its use for both modelling and analysis.

The contributions of our paper are:

(1) The development of a language, DASH, that combines hi-

erarchical control states seamlessly with first-order logic

data abstractions to create an integrated, formal model of a

system’s behaviour.

(2) A choice of semantics for DASH, that matches common

meanings of both control-oriented and declarative modelling

paradigms.

(3) A translation from DASH to Alloy so no tool extensions are

needed for model checking analysis.

(4) Examples that demonstrate the features and analysis of DASH

models.

The key novel insight of our work is in combining these two com-

monmodelling paradigms in a way that is intuitive for those used to

either paradigm, and enabling automatic analysis of the integrated

model. DASH examples and our tool as a web service are available

at http://129.97.7.33:8080/dash/.

2 BACKGROUND
In this section, we briefly present background on the Alloy language

and analyzer, hierarchical control state models, and model checking

in Alloy.

Alloy is a popular language for describing models based on first-

order logic, sets, and relations. Finite sizes (scopes) for each set are

chosen at the time of analysis to permit finite model finding by

mapping the satisfiability problem to propositional logic using a

solver called kodkod [38]. In an Alloy model, a set is described using

a signature. Relations between this set and others are specified in

the signature of the set as in:

1

2 sig A { // a set called A

3 R1: B, // a relation from A to B

4 R2: B -> C // a relation from A to B to C

5 }

The type (sort) of the relations can include constraints such as lone

and one to limit the multiplicity of the relations.

Alloy’s type system has simple yet versatile subtyping capabili-

ties. The elements of a signature are called atoms. Signatures that

extend other signatures are called subsignatures and they declare

subtypes, as in:

1 sig D,E extends A {}

All the immediate subtypes of a signature are disjoint. A signature

can be declared as abstract meaning that the set is constrained to

only contain atoms defined by subsignatures. There cannot exist

an atom of the type defined by the abstract signature that is not

included in the sets defined by the subsignatures.

Constraints in Alloy over the sets and relations are described in

facts as in:

1 fact {

2 // at least one b for every k in dom(R1)

3 all k: A | some b in k.R1

4 }

The expression k.R1 conveniently looks like the R1 field of an A’s’

record/class, but is actually using the join operator (.) to take the

range of the pairs in R1 that have k as their first element
2
. The

association of relations directly with signatures gives Alloy mod-

elling an object-oriented flavour, although there is no association

of behavioural changes with the signature. Alloy provides abstract

operations on relations and functions (such as join, union, etc.,). Al-
loy goes beyond first-order logic by including the transitive closure

operator on relations (which can be computed for a finite set). The

facts can be decomposed into predicates and functions that take

arguments. The Alloy Analyzer produces a visual representation of

a satisfying instance (values for the sets and relations) when one

can be found.

A transition system describes a behavioural model as a set of

snapshots
3
and a transition relation that prescribes the possible

movements between snapshots, which are called steps. A snap-
shot is an encapsulation of a mapping from variables to values.

The Statecharts [21] family of languages (which includes UML

statemachines [2]) was developed for modelling transition systems

of control-oriented, reactive systems, where the system runs con-

tinuously and responds to environment events. Figure 3 shows

an example of a statecharts model. A system is control-oriented

if there are moments in the system’s behaviour that can be natu-

rally named (the control states), such as a traffic light showing red,

green, or yellow lights, and the transitions are relevant based on

these control states. Control states provide a means of sequencing

transitions in a behavioural model. Hierarchical states (OR-states)

are a further means of decomposing the system’s behaviour and

express priority of transitions (usually outer state over inner state).

Concurrent states (AND-states) permit separation of concerns in a

model for components whose behaviours are mostly independent of

each other. There are many variations in the semantics of how a set

of transitions is chosen to be taken in a step [16, 41], but almost all

2
Technically, Alloy has no scalars so k is a subset of A.

3
These are typically called states, but we use snapshots to avoid the confusion with

labelled control states.
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Figure 1: Big step (sp is a snapshot; ss is a small step)

variations agree on the notion of a big step (called macro-steps by

Harel) consisting of a number of small steps (called micro-steps by

Harel) as a way to represent the system’s response to environmen-

tal stimuli as illustrated in Figure 1. Small steps are taken until the

system cannot take any more, which is when it is considered stable

and therefore observable. Multiple small steps exist because there

are multiple concurrent states that take transitions in response to

the environment (or possibly a cascading effect from other concur-

rent states). Additionally, Statecharts languages explicitly support

named events as observable user actions (such as “key_swiped” or

“button_pushed”) that cause a response in the system. Hierarchi-

cal and concurrent control states provide two major advantages

to modellers. First, the reaction of a model to an environmental

input can be conveniently modelled as multiple small steps, without

worrying about a new environmental input being missed during

the reaction of the model to the current environmental input. And

second, since the reaction of a model to an environmental input can

consist of more than one transition, a model can be decomposed

into orthogonal parts, each of which can take part separately in the

reaction. As such, a modeller can decompose a model into parts,

each of which either corresponds to a physical component of a sys-

tem under study or is used to facilitate the separation of concerns

in modelling.

Modelling transition systems in Alloy can be accomplished by

creating a set of snapshots and constraining a binary relation over

these snapshots to be the transition relation. There is a relation

mapping snapshots to the values of the variables in that snapshot.

A comparison of a few approaches for structuring snapshots for

building a transition relation in Alloy can be found in [37] (such as

wrapping in a snapshot signature or passing variables directly as

arguments). Typically, parts of this relation are described separately

in predicates
4
and composed using disjunction to form the transi-

tion relation [24]. However, there is no explicit language support

for describing behavioural models.

A transition relation in Alloy can be iterated to do bounded

model checking. Commonly, the set of snapshots is ordered (using

a built-in Alloy ordering module) to provide a nice representation

for traces of the behavioural model. In an alternative method for

model checking in Alloy, called scoped transitive-closure-based

model checking (TCMC), the meaning of all temporal operators

in Computation Tree Logic with fairness constraints (CTLFC) [11]

are described in terms of the transitive closure operator. While it is

usually not possible to check the properties over the entire reachable

snapshot space in Alloy (event for finite sets), bugs can be found and

4
These are called “events” in [24], but we avoid that terminology because of the

different meaning of events in control-oriented models.

1 sig Chair , Player {}

2 conc state Game {

3 players: set Player // Snapshot variables

4 chairs: set Chair

5 occupied: Chair set -> set Player

6 env event MusicStarts {} // Events

7 env event MusicStops {}

8 init { // initial constraints

9 #players > 1

10 #players = (# chairs ).plus [1]

11 // all Chairs and Players in game

12 players = Player

13 chairs = Chair

14 occupied = none -> none // empty relation

15 }

16 default state Start { ... } // default state

17 state Walking {

18 trans Sit { // transition

19 on MusicStops // event trigger

20 goto Sitting // dest state

21 do { // action

22 occupied ' in chairs -> players

23 chairs ' = chairs

24 players ' = players

25 // occupied is a total fcn

26 all c : chairs ' | one c .(occupied ')

27 // occupied is injective

28 all p : Chair.(occupied ') | one occupied '.p

29 }

30 }

31 }

32 state Sitting { ... }

33 state End {}

34 }

Figure 2: DASH model for musical chairs

some conclusions regarding the entire reachable snapshot spaces

can be concluded (such as liveness). In an effort to provide some

confidence that a large enough fraction of the reachable snapshot

space has been checked, we introduced significance axioms [17],

which force the analysis to check parts of the snapshot space with

some interesting behaviours.

3 DASH
A DASH model describes a set of possible changes to snapshots

that combine to be the behaviour of the model. Users can describe

snapshot variables using Alloy constructs and the set of transitions

using new syntactic features introduced by DASH. Figure 2 shows

part of a DASH model for the game musical chairs. The musical

chairs example comes from [31] where it was modelled in Z.

DASH extends Alloy with keywords for creating hierarchical

and concurrent control states and transitions. In Figure 2, on line 2 a

concurrent state called Game is created, which means the text within

these brackets describes a transition relation. Nested within Game,

there are control states Start (the default state on line 16), Walking

(line 17), Sitting (line 32), and End (line 33), which are the phases of

the game where players walk around the chairs while the music

is one and then when the music stops have to find a chair to sit in.

This loop repeats (the transition from Sitting to Start is not shown)

until there is only one player and the game goes to the state End.

States (AND and OR) can be arbitrarily nested to represent the state

3



hierarchy in the model. An example of a DASH model with more

concurrent states is in Figure 4 represented graphically in Figure 3

(from [15]).

A variable of a snapshot can consist of any type of value rep-

resentable in Alloy. Notably, this includes uninterpreted sorts (to

represent abstract data at the time of modelling) and relations and

functions to represent collections of data abstractly. In Figure 2, on

line 1, Chair and Player are uninterpreted sorts. Declarations within

a state are variables that are part of the snapshot (i.e., they change

value). In musical chairs, the set of players, chairs, and the rela-

tionship between chairs and players (i.e., who is sitting where) are

the snapshot variables (line 3–5). The events of the music start-

ing and stopped are declared on lines 6 and 7; these are declared

to be environmental using the keyword env. Variables can also be

declared environmental, which means the model does not control

their values and their values can change non-deterministically at

big step boundaries.

Initial constraints on the variables are shown on lines 8–15 of

the musical chairs model. These ensure that when the game starts

there is one more chair than players and no one is sitting down.

Transitions are described within a trans block as in:

1 trans tlabel {

2 from <src_state >

3 on <trigger_event >

4 when <guard_condition in Alloy >

5 goto <dest_state >

6 do <action in Alloy >

7 send <generated_event >

8 }

These keywords were chosen to match the way a transition is

described in English. An example transition is on lines 18-30 in

Figure 2. Each component of the transition is optional and under-

stood within its context; transition Sit omits the from part of the

transition and its source state is understood to be Walking. The ac-

tion of the transition (do) is any formula in Alloy. Following the

common Z style [36], unprimed variables are the current values of

snapshot elements and primed variables are the variable values in

the next snapshot. For example, on line 26, in the Alloy formula

all c : chairs' | one c .(occupied'), we enforce the constraint that

every chair has someone sitting on it in the next snapshot. Notably,

there is no need to state all the possible combinations of which

player could sit on which chair. This is an example of the concise-

ness and abstraction of declarative modelling in contrast to typical

control-oriented languages where the action is limited to being

a sequence of assignments. The guard condition is any formula

in Alloy but may only refer to unprimed snapshot variables. The

source state, guard condition, and the event trigger together form a

pre-condition for a transition and the action, generated event, and

destination state are the post-condition.

The state regions define namespaces in DASH. A reference to a

variable from another state must be prefixed by its home state as on

line 28 in Fig 4. While the semantics uses global communication (as

in most Statecharts languages), enforcing the namespaces means

that duplicate names are not an issue and the modeller is very aware

of locality.

The keywords for states, transitions, and events are Core DASH

and are the only necessary extensions to Alloy. DASH includes

Figure 3: Two-bit counter

1 conc state Counter {

2 env event Tk0 {}

3

4 def trans Count[src , des: State , e: Event] {

5 from src on e goto des

6 }

7

8 conc state Bit1 {

9 event Tk1 {}

10

11 default state Bit11 { }

12 state Bit12 {}

13

14 trans T1 { Count[Bit11 , Bit12 , Tk0] }

15 trans T2 {

16 from Bit12 on Tk0 goto Bit11 send Tk1

17 }

18 }

19

20 conc state Bit2 {

21 event Done {}

22

23 default state Bit21 { }

24 trans T3 { count[Bit21 , Bit22 , Bit1/Tk1] }

25

26 state Bit22 {

27 trans T4 {

28 on Bit1/Tk1 goto Bit21 send Done

29 }

30 }

31 }

32 }

Figure 4: Two-bit counter model in DASH

some additional syntactic sugar for convenience that can be easily

transformed into Core DASH. A set of transitions can be described

in a single statement using transition comprehension. For ex-
ample,

1 trans to_error {

2 from * on error goto ErrorState

3 }

describes a set of transitions, one from every state that goes to the

ErrorState on an error event. Additionally, part of the definition of a

transition can be described in a different part of a model, similar to

4



aspect-oriented modelling [14], by using addons that are layered
together to get the full description of a transition. For example,

1 add (do incErrorCounter) to (from * to ErrorState)

adds the action incErrorCounter to every transitionwhose destination

is the ErrorState. A new feature that was not previously described

in [35] is transition templates, which capture similarities in tran-

sitions to avoid duplication in the model. A template is a parame-

terized definition of a transition that can be instantiated. Line 4–6

of Figure 4 show a transition template. Uses of this template are on

lines 14 and 24. Also, after recognizing the role that control states

play in factoring snapshots into sets that have the same possible

future behaviours, we realized that transitions can also be factored
by events and conditions. There are models where control state

are not useful and for these control states can be omitted (except

for the one outermost state) and events and conditions can be used

to structure the set of transitions. In these cases, the transitions

are described within an event or condition block. In this way, DASH

accommodates multiple factoring paradigms for modelling (control

states, events, and conditions).

4 SEMANTICS OF DASH
Stating the semantics of a language such as DASH is difficult be-

cause its semantics are not compositional in the structure of the

model (i.e., we cannot describe the meaning of each transition indi-

vidually and combine these meanings to describe the meaning of

the model). It is reasonable for transitions in multiple concurrent

states to respond to an environmental input, thus the semantics of

DASH must address the question of which transitions can be taken

together in a big step as depicted in Figure 1. A big step consists of

one or more small steps, each of which can be one or more transi-

tions. The big step continues until the system of the model is stable,

i.e., no more transitions are enabled. More environmental input

(events and changes to variables) is needed to enable transitions. A

transition is enabled if the system is in its source state, its trigger

event is in the set of current events and its guard is true. Currently,

we do not permit a stuttering big step where no transitions are

taken.

We rely on the semantic framework of Esmaeilsabzali et al. [16],
which describes a space of semantic aspects and options for these

languages, to state our semantics for DASH. Our choices for each of

the semantic options are described in Table 1, and are based on two

reasons: 1) as a declarative model, a transition action can describe

a “large” change (i.e., a sequence of operations is rarely needed);

and 2) ease of understanding of the model.

The semantic aspect Concurrency determines how many tran-

sitions can be taken in a small step. The option Single for this aspect
means that only one transition can be taken in a small step to ensure

transition atomicity. This choice is because of reason (2) above since

race conditions, which could occur if multiple concurrent states

place constraints on the same variable
5
are confusing to debug

since they make the model inconsistent.

The big-step maximality aspect specifies the termination crite-

ria for a sequence of small steps, i.e., when the system is stable. We

chose the option Take One, meaning that at most one transition

5
While namespaces force a user to recognize when a state is referring to a variable

outside of itself, it can place constraints on variables outside of itself in an action.

Semantic Option Value in DASH

Concurrency Single
Big step maximality Take one
Event lifeline Present in remainder of big step
Variable lifeline Immediate change in small step
Priority Source state outer hierarchical

Table 1: Semantics of DASH

per concurrent state can be taken in a big step. For reason (2) above,

we want this choice because it guarantees termination of big steps.

One concurrent region can generate events that cause transitions

to be enabled in another concurrent state and taken later in the

big step. In an abstract model, it seems reasonable that at most one

transition in each concurrent state should be allowed in a big step

because of reason (1) above.

For the event lifeline aspect, we chose the option Present in
Remainder of big step where a generated event can trigger transi-

tions in the small steps after its generation until the end of a big

step. For reason (2) above, we want the small steps to be causal.

For the variable lifeline
6
, we chose to make the effects of actions

of a transition immediately available in the next small step to en-

able transitions, permitting a cascading flow of variable changes.

Because of take one for big step maximality, our variable lifeline

choice cannot cause a non-terminating big step where two transi-

tions keep enabling each other. This choice was made for reason

(2) above: semantic choices that refer to the value of variables at

the beginning of the big step throughout the big step are hard to

follow. Because of reason (1) above, we expect the number of small

steps in a big step to be reasonably small, thus there should not be

many event and variable changes within a big step.

For priority, we give higher priority to transitions whose source

state is a parent state over those from a child state. This choice

is the most common one in Statechart languages and is easier to

understand than priority based on scope (source and destination

state).

Finally, we have to address the frame problem where there is

a mismatch between the usual choices of declarative and control-

oriented languages. In declarative languages, if a variable is not con-

strained in an action, it is allowed to change non-deterministically.

In control-oriented languages (where actions are typically a se-

quence of assignments), an unchanged variable retains its value

from the previous snapshot. In DASH, by declaring a variable env,

it is allowed to change when the system is stable, but otherwise

retains its value. For non-environmental variables, if their primed

version is mentioned in the action of the transitions, we assume the

action will constrain them; if their primed version is not mentioned

in the action then we enforce its value to retain its value from the

previous snapshot. If the user does not like this default semantic

choice, it can be overridden, by adding a constraint that a variable

has a value within its range of values, thus allowing it to change

non-deterministically in an action.

5
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s5 ¬stable
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дen_ev({k1})

intvar (s4)

intvar (s4)
+actions({k1})

{k1}

t1
. . .

tn−1 tn k1

Figure 5: Snapshots in a big step (envev and envvar are environmental events and variables respectively; дen_ev is events gen-
erated by transitions; actions is the effects of the actions of transitions where + is used informally; intvar is internal variables
and their values; “new” means a non-deterministic choice of values)

5 TRANSLATION TO ALLOY
We use the semantics we have chosen to define a translation of a

DASH model to an Alloy model for formal analysis. Because we use

the Alloy language within DASH for describing transition guards

and actions, a DASH modeller is expected to have knowledge of

the Alloy language and tools. Our goal is 1) to create a mapping

that will make it as easy as possible for the user to understand

counterexamples from Alloy in terms of the original DASH model;

and 2) utilize features of the Alloy language as much as possible to

produce a concise representation of a DASH model’s behaviour.

In Alloy, the snapshots are a set of atoms with relations that link

each snapshot to its variable values. The snapshot for the musical

chairs model is:

1 sig Snapshot {

2 Game_occupied : Chair set -> set Player ,

3 Game_chairs : set Chair ,

4 Game_players : set Player ,

5 conf: set StateLabel , // Control states

6 events: set EventLabel , // Events

7 taken: set TransitionLabel , // trans taken

8 stable: one Bool

9 }

In addition to relations for the model’s variables, it also includes

values for the set of control states of the snapshot called its con-

figuration (conf), the set of events (events), a history variable of

the transitions that have been taken in the big step (taken), and a

boolean flag to indicate if the snapshot is stable or not (stable).

We utilize Alloy’s subtyping ability to define the control state

hierarchy. The Alloy representation of the control state hierarchy

of the bit counter model is:

1 abstract sig Counter extends StateLabel {}

2 abstract sig Bit1 , Bit2 extends Counter {}

3 one sig Bit11 , Bit12 extends Bit1 {}

4 one sig Bit21 , Bit22 extends Bit2 {}

An abstract signature StateLabel is the base type for all control

states. On line 1, the AND control state Counter is declared to

extend StateLabel. AND and OR control states are also declared

as abstract, since they are containers for other control states. The

concurrent regions Bit1 and Bit2 are declared as abstract subsigna-

tures of Counter. Concrete (i.e., non-abstract) signatures are used
for basic control states. The keyword onemeans that a signature is a

singleton; only one atom is created and used by the Alloy Analyzer

and these atoms are distinct from each other.

6
In [16], this aspect is decomposed into multiple aspects.

Subtyping directly matches the meaning of control state hierar-

chy. The relation conf contains elements of type StateLabel to

determine the control states of the snapshot. For example, if the

system is in state Bit11, it is also in state Bit1 because of the subtype
hierarchy. Thus, we can check if a state is in the current snapshot

without searching through its ancestors or descendants.

Events that are declared environmental (i.e., using the env DASH

keyword) are made subsets of an EnvironmentEvent set. All other

events are declared as part of an InternalEvent set. The event decla-

rations for the bit counter model are:

1 one sig Tk0 extends EnvironmentEvent {}

2 one sig Tk1 , Done extends InternalEvent {}

The identifiers of transitions are modelled as signatures. They all

extend the base signature TransitionLabel, as in the following

fragment of the bit counter model:

1 one sig T1, T2, T3, T4 extends TransitionLabel {}

The initial generic constraint on snapshots is that the system is in

its default states (defined through helper functions), no transitions

have been taken, and there are no internal events (which is checked

by taking the intersection (&) of the events of the snapshot and the

set of internal events. Environmental events can be present in the

initial snapshot in order to enable transitions. Additional constraints

defined bymodellers are added to the model. For example, the initial

constraint for the musical chairs model is:

1 pred init[s: Snapshot] {

2 s.conf = default_State

3 no s.taken

4 no s.events & InternalEvent

5 // Model specific constraints

6 #s.Game_players > 1

7 #s.Game_players = (#s.Game_chairs).plus [1]

8 s.Game_players = Player

9 s.Game_chairs = Chair

10 s.Game_occupied = none -> none
11 }

The purpose of a DASH model is to define a next snapshot re-

lation containing pairs that are the possible small steps of the
system. Snapshots that are stable are the snapshots at the end/be-

ginning of big steps. Figure 5 shows a sequence of snapshots where
each small step contains one transition (due to the choice of single
for concurrency). In Figure 5, we can see that when a snapshot is

stable, it contains:

• an unconstrained set of environmental events that can trig-

ger transitions in the next big step;

6



• internal events that were generated in the last big step;

• unconstrained environmental variables values that can trig-

ger transitions in the next big step;

• internal variable values that have the accumulated effects of

all transitions taken so far;

• the set of transitions taken in the last big step.

Properties can examine the snapshot at big step boundaries by

checking the property onlywhen the system is stable.We are careful

to avoid creating another snapshot to reset the history variables

and incorporate environmental input as is done in [27] for SMV.

In SMV, there is no penalty to this reset function, but in Alloy it

increases the snapshot space with the extra reset snapshots.

A small step is defined as the disjunction of predicates for each

transition of the model. For example, the small step relation for the

bit counter is:

1 pred small_step [s, s': Snapshot] {

2 Counter_Bit1_T1[s, s'] or
3 Counter_Bit1_T2[s, s'] or
4 Counter_Bit2_T3[s, s'] or
5 Counter_Bit2_T4[s, s']

6 }

Later, we describe how only one of these predicates can be true

in a small step. For each transition, we define five predicates that

work together to define the semantics of a DASH model. For ease

of explanation, we show an abstract version of these five predicates

in Figures 6 and 7
7
.

A predicate for the pre-condition of the transition t1 (pre_t1) is
evaluated relative to the current snapshot. It is true if the source

state of t1 is in the snapshot’s configuration and the guard of t1
is true in the snapshot’s variable values. The evaluation of the

presence of t1’s trigger event depends on if the snapshot is at the

beginning of a big step or not (i.e., stable or not). When the snapshot

is stable, t1’s trigger event must be one of the new events from the

environment (line 6); otherwise its event must be in the snapshot’s

set of events (line 8), which includes the environmental events

generated at the beginning of the big step and the internal events

generated so far in this big step. Note that in the first step of a

big step, the guard is evaluated with respect to potentially new

environmental variable values because these are already in the

snapshot.

The predicate for the post-condition of the transition t1 (post_t1)
is evaluated relative to the current snapshot, s , and the next snap-

shot s ′. It is true if the configuration changes between s and s ′ to
exit the source states of t1 and enter the destination states of t1
(line 13). Our translation produces helper functions to calculate

these state changes. On line 15, the variable values for the inter-

nal values are updated according to the actions of the transition

enforcing our semantic choices for Variable lifeline of Immedi-
ate change in small step. Within this constraint, internal variables

whose primed versions are not mentioned in the action are required

to retain their values from the previous snapshot. Next, we have

four cases depending on whether s is stable and whether s ′ will
be stable. We have documented these in comments on lines 16- 45

for how the internal and environmental variables are allowed to

7
In Alloy, boolean is not a built-in type and so it must be stated as stable = True,
rather than just stable.

1 // for transition t1

2 pred pre_t1[s:Snapshot] {

3 src_state_t1 in s.conf

4 guard_cond_t1[s]

5 s.stable = True => {

6 trig_events_t1 in (s.events & EnvironmentEvent)

7 } else {

8 trig_events_t1 in s.events

9 }

10 }

11

12 pred pos_t1[s:Snapshot , s': Snapshot] {

13 s'.conf = s.conf - exit_src_state_t1 +

14 enter_dest_state_t1

15 act_t1[s,s']

16 testIfNextStable[s, s', gen_events_t1 , t1] =>

17 s'. stable = True

18 s.stable = True => {

19 // big step = one small step

20 // only internal event is one gen by t1

21 // allow env events to change

22 no ((s'. events & InternalEvent) -

23 gen_events_t1)

24 } else {

25 // last small step of the big step

26 // add t1's gen event the internal events

27 // allow env events to change

28 no ((s'. events & InternalEvent) -

29 (gen_events_t1 + InternalEvent & s.events))

30 }

31 } else {

32 s'. stable = False

33 s.stable = True => {

34 // first small step of the big step

35 // only internal event is one gen by t1

36 s'. events & InternalEvent = gen_events_t1

37 // env events stay the same

38 s'. events & EnvironmentalEvent =

39 s.events & EnvironmentalEvent

40 } else {

41 // intermediate small step

42 // add t1's gen event to the events

43 s'. events = s.events + gen_events_t1

44 }

45 env_vars_unchanged_t1[s,s']

46 }

47 }

Figure 6: Transition model in Alloy Part 1

change. On line 45, environmental variables are constrained to keep

their previous values when the next snapshot is not stable.

The musical chairs example illustrates that complex actions can

refer to the previous and next values of snapshot variables. The

constraints for the variables in the post-condition are:

1 s'. Game_occupied in
2 (s.Game_chairs -> s.Game_players)

3 s'. Game_chairs) = s.Game_chairs

4 s'. Game_players) = s.Game_players

5 all c : s'. Game_chairs | one c.(s'. Game_occupied)

6 all p : Chair.(s'. Game_occupied) |

7 one (s'. Game_occupied).p

The remaining predicates we discuss are in Figure 7. The tes-

tIfNextStable predicate (testIfNextStable) looks at the current snap-

shot, s , the next snapshot s ′, the transition to be taken t , and its set of

7



1 pred testIfNextStable[s,s',t,gev] {

2 not enabledAfterStep_t1[s,s',t,gev] and
3 not enabledAfterStep_t2[s,s',t,gev] and ...

4 }

5

6 pred enabledAfterStep_t1[s, s',t, gev] {

7 src_state_t1 in s'.conf

8 trig_events_t1 in (s.events + gev)

9 guard_cond_t1[s']

10 (s.stable = True) => {

11 // only trans taken in big step is t

12 // as long as t1 is orthogonal to t

13 // then t1 is enabled in next snapshot

14 orth_t1[t]

15 } else {

16 // as long as t1 is orthogonal to t + s.taken

17 // then t1 is enabled in next snapshot

18 orth_t1[t + s.taken]

19 }

20 }

21

22 pred semantics_t1[s,s': Snapshot] {

23 (s.stable = True) => {

24 s'.taken = t1

25 } else {

26 s'.taken = s.taken + t1

27 orth_t1[s.taken]

28 }

29 !pre_t2[s]

30 !pre_t3[s]

31 ...

32 }

33

34 pred t1 [s:Snapshot , s': Snapshot] {

35 pre_t1 [s]

36 post_t1 [s,s']

37 semantics_t1[s, s']

38 }

Figure 7: Transition model in Alloy Part 2

generated events дev . The purpose of this predicate is to determine

whether any transitions will be enabled in s ′ if t is taken so it relies

on enabledAfterStep predicates for each transition. The constraints

on lines 7 to 9 are similar to the constraints of the pre-conditions

for t1, however, here they depend on the variable values of s ′ and
the generated events of t1 to simulate the effects of executing t1.
The constraints on lines 10 to 19 test whether taking t will make

it impossible to take t1 in the next step because of orthogonality

restrictions (only one transition per orthogonal region).

The semantics predicate for t1 (semantics_t1) is true if t1 is or-

thogonal to all transitions in the set of transitions already taken in

this big step, enforcing the choice of take one for big-step maxi-
mality. This predicate may also include priority-related predicates

when necessary. If two transitions have source states related in the

hierarchy (e.g., one transition’s source is a ancestor or descendant
of the other’s), then we include the negation of the pre-condition

of the higher priority transition in this semantics predicate to en-

forced the choice of source state outer hierarchical for the priority
semantic aspect. Additionally if the snapshot s is stable, then this

is the first step of a big step and only t1 should be included in the

set of transitions; otherwise, t1 is added to the set of transitions.

Model DASH LOC Alloy LOC

Musical Chairs 76 471

Bit Counter 53 468

Traffic Light 60 640

Table 2: LOC comparison of DASH and Alloy

This last constraint ensures that only one transition is taken in a

step (enforcing single semantic choice for concurrency) because

if multiple transitions try to enforce this change then the model

would be inconsistent in Alloy.

Predicate t1, on lines 34-38 of Figure 7, combines the pre, post

and semantics predicates for transition t1, meaning for t1 to be

taken, its pre-condition must be true; its post-condition must be

true and its semantics constraint must hold.

Finally, anything in the DASH model that is outside of a state

is copied directly to Alloy. We use some helper modules to avoid

duplicating common parts of translated models.

Our translator is implemented in Xtext [3], which automatically

provides editing tools. We have created a number of Alloy helper

files for common definitions to avoid cluttering each model.

6 CASE STUDIES
We developed three case studies

8
to demonstrate DASH, its trans-

lation to Alloy and analysis of DASH models using TCMC. We

show the sizes of the DASH models and their translation to Alloy

(without the helper files) in Table 2 with respect to lines of code

(LOC). The Alloy language is remarkable in its ability to capture

complexity in a concise model. With DASH, we have enhanced this

ability.

Since the Alloy Analyzer is designed for small scope analysis,

it is rare that it can explore the entire reachable snapshot space

of a model, thus we need to chose a scope of the snapshot space.

In BMC, the model is viewed as a set of traces and the snapshot

scope is the maximum length of a trace. TCMC, however, views the

model as a transition system (potentially with loops). It explores

all sub-transition systems (from the initial state) of the size of the

snapshot size. All CTLFC properties can be expressed in TCMC,

but their results must be interpreted relative to the snapshot scope.

Thus, verification of a safety property cannot be definitive, however,

a liveness property can be definitively verified. Notably, because it

is checking transition systems, a liveness property that requires a

loop in the model can be definitively verified. To ensure that the

scope is sufficiently large to check interesting behaviours of the

snapshot space (and avoid spurious instances in Alloy), we use

significance axioms [17]. These axioms state that the transition

system checked must have an initial snapshot; every snapshot must

be reachable; and every transition in the model must be represented

by at least one pair in the next snapshot relation. These axioms

require that Alloy check the property for snapshot spaces that have

at least one representative of every behaviour in the model. In all

of our examples, Alloy was able to check models that satisfied the

significance axioms.

8
The case studies are available as sample models on our online tool

http://129.97.7.33:8080/dash/.
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Model Property Type Snapshot

Scope

Time(sec)

Musical

Chairs

Always more

players than

Chairs

S

8 0.428

10 6.408

12 40.111

Alice wins the

game

E

8 0.042

10 0.415

12 0.325

Players sit

during the

game

FL

8 0.023

10 0.040

12 0.099

Game

eventually

finishes

IL

8 0.457

10 6.957

12 87.863

Bit

Counter

Model is

responsive

S

7 0.220

9 1.084

11 3.459

13 9.277

Final Bit Status S

7 0.242

9 1.160

11 3.586

13 13.886

Traffic

Light

Both lights not

green

S

7 0.089

9 0.780

11 4.770

13 16.114

Table 3: Model checking performance of case studies

For all models described below, we began with some automat-

ically generated, application-independent properties such as the

reachability of basic states (EF properties). Then, we proceeded to

check more interesting properties, specific to each model. For now,

the properties are written directly in Alloy and refer to parts of

the snapshot, however, we plan to soon provide a way to write

these properties directly in DASH. Most properties are checked

only when the snapshot is stable (observable).

Following [17], we categorize the properties we checked as safety

(S), existential (E), finite liveness (FL), meaning it can be satisfied by

a finite path, and infinite liveness (IL), meaning it is only satisfied

by an infinite path. All performance results in Table 3 are from

execution on a an Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz x 8

machine running Linux version 4.4.0-92-generic with up to 64GB of

user-space memory. All properties are valid for the scopes that we

checked. The conclusion from our case studies is that interesting

properties of models that combine data and control abstractions in

DASH are possible in the Alloy Analyzer using our translation.

The musical chairs example (originally in [31] and modelled

directly in Alloy in [17]) has interesting data abstractions plus con-

trol state hierarchy (but not concurrency). The relation from people

to the chairs that they sit on is concisely modelled as a relation

between the abstract sets of people and chairs. The progression

through the stages of the game (music playing or not) is modelled

using control states. We checked some safety and liveness proper-

ties and that it is possible for a particular player (Alice) to win via

an existential property in CTLFC.

We chose the bit counter example (adopted from [29] and [15])

to exercise the semantics of concurrent states and cascading ef-

fects between them. Our properties check that the model always

responds to an environmental event, and that individual transitions

complete their actions.

The traffic light controller (originally from [22] and previously

modelled in Alloy in [39]) is a typical Statecharts example with an

easy-to-understand safety property that the light cannot be green

in both directions at the same time.

We acknowledge that our analysis performance is likely poor

compared to hand-crafted models in NuSMV or even hand-crafted

models in Alloy due to the overhead of expressing the semantics

of big steps. However, we believe there is significant advantage

to the ease and conciseness of expression of the models in DASH

compared to these alternatives. Expressing relations in SMV is

cumbersome (see [10, 17]) and the size of the sets must be known

when writing the model. Hand-crafted models in Alloy cannot

support concurrent and hierarchical control states without some

representation of the semantics we describe.

7 RELATEDWORK
The Statecharts family of languages usually have a fixed condi-

tion and action language that does not allow for declarative spec-

ification of user-declared datatypes and operations. For example,

UMPLE [18] includes programs as actions. OCL [1] is a formal lan-

guage for expressing invariants, pre- and post- conditions, which

can be added onto parts of a UML model (described in a context),

somewhat similar to DASH’s add-on construct. In contrast, DASH

permits the use of FOL formulae directly in transition conditions

and actions, and has a fully formal semantics. In addition, DASH

offers modelling flexibility through factoring, layering, transition

comprehension, and transition templates to describe a model. Al-

though several extensions to UML (e.g.,[43] [26]) have been pro-

posed to express temporal constraints, the official specification does

not support this type of constraint.

Model checking tools usually have fairly primitive input lan-

guages with no support for abstract datatypes and operations. In

SMV [30], transitions can be described using case/switch state-

ments, and labelled control state hierarchy and its semantics can

be encoded, but it is not supported natively. Abstract datatypes and

operations can be translated to these languages as in Chang and

Jackson [10]. The nuXmv [9] tool supports multiple model check-

ing algorithms for infinite state systems, but its input language

supports limited types of data and operations (e.g., integers, reals).
Declarative behavioural modelling languages (such as Z [36],

VDM [25], B [4], ASMs [8], TLA+ [42], SAL [6], [13]) often use un-

primed and primed snapshot variables and some support packaging

mechanisms (e.g., schemas in Z) to describe transitions. Control

state and hierarchy can be encoded in variables (e.g., [34]). How-
ever, none of these languages explicitly support the representation

of control state hierarchy or other methods of factoring, which

are included in DASH. Previously we created a way to represent

9



labelled control state hierarchy as a datatype in SMT-LIB [12], but

no user-level language was presented or semantics.

DynAlloy [19, 20, 32] is an extension to Alloy to describe be-

havioural models. DynAlloy’s approach is based on transitions as

programs, and the Floyd-Hoare approach to program correctness.

Atomic actions are described by pre- and post- conditions and these

can be composed sequentially, non-deterministically, or iteratively

using DynAlloy operators. The elements of the snapshot are deter-

mined implicitly in that they are passed to actions as parameters.

Snapshot elements that are not modified retain their values. Anal-

ysis is done via (sometimes optimized) translation to the Alloy

Analyzer and extensions.

Electrum [28] extends Alloy with actions that have pre- and

post-conditions; declares variables of the snapshot (i.e., variables
that can change) with the keyword “var”; and uses primed variables

to refer to next snapshot values. Users can combine the actions

into a transition relation using Alloy operators. Additionally, Elec-

trum includes keywords to indicate which variables are modified

in an action addressing the frame problem, and extends Alloy with

keywords for LTL temporal operators and links directly to kod-

kod (rather than Alloy) to do BMC and translates to NuXMV to do

complete model checking.

Compared to these extensions to Alloy, DASH explicitly supports

the common modelling paradigm of hierarchical and concurrent

control states and events to compose snapshot changes described as

transitions. In particular, DASH’s support for model decomposition

accomplished by concurrency is not easily captured in DynAlloy

or Electrum. We use a designation of a variable as environmen-

tal to guide the default behaviour for whether a variable retains

its previous value or not in a step (rather than explicitly labelling

variables as modified as in Electrum), which matches the idea of

reactive systems as describing the system interaction with its envi-

ronment. For analysis, through scoped TCMC, we provide support

for scoped CTLFC temporal logic model checking, without relying

on extensions to the Alloy Analyzer.

8 CONCLUSION
We have presented DASH, a novel behavioural modelling language

that allows a user to create models using the common control-

oriented modelling paradigm of hierarchical and concurrent con-

trol states together with declarative descriptions of data and its

operations. DASH permits declarative specification of rich data

operations, such as relations that evolve over time. DASH allows

control states to serve their purpose in sequencing transitions. The

hierarchy and concurrency of control states can express priority and

independence of transitions. The ability to decompose the model

into concurrent components, somewhat like object-oriented mod-

elling is a key distinguishing feature of DASH. Through a small

syntactic extension to Alloy, and careful decisions regarding its

semantics, a DASH model is a fully formal, integrated model of

abstract behaviour. Through a set of examples, we have shown how

DASH provides a modeller with the ability to capture and analyze

a complex concept in a concise model. Through more case studies,

we plan to explore more analysis options (such as simulation) and

optimizations. We are exploring consistency and completeness of

DASH models.
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