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Abstract

The first-principles model known as SPLITS (SPectral LIght Transport model for Sand) was developed
by the Natural Phenomenon Simulation Group (NPSG) at the University of Waterloo. This model has been
employed in a wide range of investigations involving particulate materials. In this report, we present the
refinements made to the model’s implementation and introduce its enhanced version.

1 Introduction

Since the development of the SPLITS model [13, 14], it has been used in a number of investigations in computer
graphics and remote sensing (e.g., [1, 3,4, 5, 6, 7, 8,9, 13, 15, 16]). This model employs an innovative approach for
the stochastic simulation of light transport in particulate materials. This approach allows the direct simulation
of light (ray) interactions with specific material constituents (e.g., sand grain, cells and organelles) without
having to explicitly store them. Accordingly, it has been incorporated into other first-principles models, like
CLBlood (Cell-based model of Light interaction with whole Blood) [17, 28] and HyLIoS (Hyperspectral Light
Impingement on Skin) [10], developed by our group.

It is a well-known fact that any computer simulation code, regardless of its complexity and the programming
skills of the people responsible for its implementation, is subject to the occurrence of “bugs”. These apparently
tiny errors (e.g., a flipped minus sign) may not necessarily cause a simulation to break down, but they can have
a significant impact on its results [20].

Within this context, our group has found out that it pays off to obtain a “fresh” version of a model’s code.
That is, have it rewritten by researchers not involved in its original formulation and implementation. However,
we also noted that, if such an undertaking can be carried out with the support of those that have been involved
in the development of the model, the chances of amplifying problems instead of fixing them are mitigated.

This code rewriting strategy has been systematically employed by our group [2]. It has enabled us not
only to filter out possible bugs in the implementations of our models, but also to increase their fidelity to cost
ratio through the use of more efficient software resources. Moreover, it has also facilitated the maintenance
and the incorporation of new features to our models since the revised code tends to be structured in a more
straightforward manner.

These aspects have also motivated this research project which had two main goals. The first was to revisit
the model’s formulation and rewrite its code from a “fresh” standpoint. The second was to release an enhanced
version of its implementation, henceforth referred to as SPLITS-2, for online deployment through our model
distribution framework NPSGD (Natural Phenomena Simulation Group Distributed) [2].

We began this project as a reconstruction of the model from its fundamental components using its original
descriptions [13, 14] and input data (e.g., spectral refractive indices and extinction coefficients [22]). This
black-box approach proved to be less cost-effective than we originally expected. Accordingly, we switch to a
white-box approach, which we describe in this document. This approach allowed us to identify mistakes in the



original implementation when there were irreconcilable differences in the output of the testing simulations. The
corrections to these mistakes were then incorporated into SPLITS-2.

The remainder of this document is organized as follows. In Section 2, we describe the enhancements to the
model’s implementation. In Section 3, we compare modeled results with measured data to demonstrate that the
model’s predictive capabilities have been preserved. In Section 4, we briefly address the online deployment of
SPLITS-2. Finally, in Section 5, we summarize the main outcomes of this project.

2 Implementation Enhancements

In this section, we described specific modifications performed in the model’s implementation in order to com-
pletely align it with the model’s original formulation while preserving its predictive capabilities. More precisely,
we identify the implementation problems, briefly explain their underlying causes and state how we fixed them.
Low level code details about these problems are provided in the Appendices A to C.

2.1 Non-Fixed Soil Texture Issue

Soil samples are normally composed of particles (grains) of weathered rock immersed in a medium of air and
water (its pore space). The porosity of a soil sample corresponds to the fraction of its volume not occupied by
its constituent particles [13].

The classification of a soil sample is performed by assigning its individual particles to classes according to
their size. For example, the United States Department of Agriculture (USDA) defines three soil classes, namely
sand, silt, and clay, from the largest to the smallest particles [13]. The relative masses of each component are then
compared to determine the texture of a soil sample (e.g., 85% sand-sized particles and 15% silt-sized particles).
Within the SPLITS formulation, the dimensions of the particles within each texture class are determined using
a particle size distribution provided by Shirazi et al. [26].

When running a simulation using the original implementation of the model available for online use [21],
henceforth referred simply as SPLITS, one can choose from a fixed set of six soil textures that will guide the size
distribution of the particles within each class. These distributions are precomputed using MATLAB [12] scripts,
and saved in files that do not change between model runs.

The enhanced model implementation, termed SPLITS-2, incorporates this precomputation as part of the
model run framework. This means that the user can input any desired soil texture. The performance overhead
is minimal. In fact, the computation of the particle size distribution can be performed fast enough to allow an
interactive visualization of the process. We have implemented an utility (Appendix D) that demonstrates this
aspect.

2.2 Particle Size Issue

While examining the SPLITS implementation, we noticed an error associated with the generation of the particles.
In Listing 1, we provide a code fragment showing how the size of the particles were generated by SPLITS. In this
code fragment, the result of the sampling size distribution, (m_size_warp)(Random::seed1()), is passed directly to the
semi-major axis of the spheroid, denoted by c. However, the result of the sampling size distribution corresponds
to the entire major axis, denoted by s in Section 6.2.5 of the original publication describing SPLITS [14], i.e.,
s = 2c. In order to correct this mistake, we simply divided ¢ by 2.

70 Scalar c¢ = (xm_size_warp)(Random::seedl());
71 Scalar a = sphericity * sphericity x c;
72 return new SpheroidParticle(a, c, Point3::0rigin, axis);

Listing 1: Code fragment inside generate() in RandomSpheroidParticleGenerator.cpp.

2.3 Coated Particles Issue

Three types of particles, namely, pure, mixed, and coated, are considered in the model’s formulation. A pure
particle is made of a single material. A mixed particle is made of two materials combined together using the



Maxwell Garnet equation [13, 14]. Lastly, a coated particle is simulated as a pure particle with a layer (whose
thickness is proportional to the particle size [13, 14]) formed by a distinct mineral matrix (possibly embedding
impurities like iron oxides) around it.

Here the issue was a variable being passed by reference to different parameters employed by a function used
in the simulation of light scattering by a particle coating. One of the parameters was the output direction
and the other the input direction. Thus, when the coating light scattering function set the output direction, it
unintentionally also set the input direction to this value.

This was a problem because the function checked for an edge case where the light ray should have been
reflected, when in fact it was not. However, since the input direction was modified, this edge case was detected
more often than it should. We note that the edge case handling procedure set the output ray to a uniform
random hemispherical direction. For details, please refer to Appendix A.

While finding this bug was difficult, fixing it was not. All that was required was to make sure that the input
and output direction were different variables when calling the function.

We remark that in the deployed version of SPLITS-2 (Section 4), the percentages of mixed, pure and coated
particles are to be selected by the user, instead of being limited to a fixed number of choices like in the version
of SPLITS available for online use [21].

2.4 Water Saturation Randomization Enhancement

In the model’s formulation [13, 14], every time a ray enters the pore space (e.g., after interacting with a particle),
the traversing medium (water or air) is stochastically decided based on the water saturation parameter (S between
0 and 1).

This means that for a non-coated particle the pore space is randomized when the ray tries to leave its core.
In the case of coated particles, this means that the pore space is randomized when a ray exits the uppermost
layer of coating. A concrete example: a ray is about to leave a particle and the soil has 10% water saturation
(S = 0.1). This means, that each time the ray enters the pore space, there is a 10% chance of it being water
and a 90% chance of being air (or vacuum).

In SPLITS-2, we have slightly modified this algorithm. More precisely, the medium changes only when the
location of the ray does. The location is relevant because the distances in the coating are assumed to be small,
i.e., the ray does not deviate from its entry point to its exit point. This means that, when the ray is inside
the coating, the pore medium is fixed as all the points within the coating are considered to be one point on the
particle.

Incorporation of Water Film around Particles

The particles of dry sand layers (S = 0), albeit immersed in a pore space filled with air, may be encapsulated
by water films [18]. In this case, the pore space may have been previously occupied and/or traversed by water,
which has either percolated to underneath layers or partially evaporated, leaving only water films around the
particles [18]. Related investigations in this area [11, 18] indicate that the thickness of a water film encapsulating
a particle is likely to be independent of the particle size.

In the SPLITS-2 implementation, we have incorporated the possibility of having water films around the
particles. The value assigned to the film thickness is selected by the user from physically-valid ranges reported
in the related literature. This procedure matches the procedures employed in other simulations and analyses
involving particulate materials [19, 29]. Moreover, it allows the users to directly control the water film thickness
and assess its effects on sand samples subject to varying environmental conditions.

2.5 Clay-Sized Particles Issue

The computation of the mean distance between particles in the online version of SPLITS [21] had an error
associated with the presence of clay-sized particles in a given sand sample. This error was prompted by changes
in the MATLAB script used to precompute the soil texture option including these particles (Section 2.1). It
could result in particles never been hit by traversing rays even though they should be. Examples are provided
in Appendix B. This issue has been addressed in SPLITS-2 with the incorporation of the precomputation
procedure for the selection of soil texture (Section 2.1), in its correct form for clay-sized particles, to the model run
framework. We note that in all of our previous investigations using SPLITS (e.g., [1, 3, 6,4, 5,7, 8,9, 13, 15, 16]),



the presence of clay-sized particles was assumed to be negligible, i.e., these particles were not included in the
simulations performed during those investigations.

3 Predictability Assessment

In our assessment of the predictive capabilities of SPLITS-2 in comparison with those of SPLITS, we considered
samples from four natural sand deposits with distinct morphological and mineralogical characteristics, namely
a hematite-rich Australian sand dune, a Saudi Arabian sand dune, a Californian outcrop, and a magnetite-rich
Peruvian beach. The actual reflectance curves measured for these samples were made available in the U.S. Army
Topographic Engineering Center (TEC) database [25] under the identifications TEC #10019201, TEC #13j9823,
TEC #19au9815, and TEC #10039240, respectively.

In the characterization of the selected samples, we considered quartz as their core material and kaolinite as
their coating matrix. In addition, we employed mean values for their porosity (0.425), grain roundness (0.482),
and grain sphericity (0.798) [8]. The remaining parameter values used in their characterization are given in
Tables 1 and 3. In the absence of complete characterization data, the parameter values depicted in these
tables were chosen from physically valid ranges provided in the literature [13] so that we could obtain the best
possible matches between the model’s predictions (obtained using the SPLITS-2 and SPLITS implementations,
respectively) and the measured reflectance data.

Note that the percentages of the sand-sized and silt-sized particles depicted in Tables 1 and 3 are employed
to compute the dimensions of the samples’ grains (whose respective average values are presented in Tables 2 and
4) using a particle size distribution provided by Shirazi et al. [26]. Also, based on the samples’ descriptions [25],
we assumed that the presences of moisture and clay-sized particles were negligible.

Samples 7-9hg Thg ﬂm Sa S; M;D Hm He

Australian dune 0.012 0.8 0.0 | 90.0 | 10.0 | 0.0 | 50.0 | 50.0
Saudi Arabian dune | 0.012 0.5 0.0 | 90.0 | 10.0 | 0.0 | 75.0 | 25.0
Californian outcrop | 0.042 | 0.25 | 0.0 | 92.5 | 7.5 | 50.0 | 25.0 | 25.0
Peruvian beach 0.05 | 0.375 | 0.17 | 95.0 | 5.0 | 50.0 | 0.0 | 50.0

Table 1: Parameter values used to characterize the four sand samples employed in the comparisons of SPLITS-2
predictions with measured data. The parameter rp, corresponds to the ratio between the mass fraction of
hematite to Upg (the total mass fraction of hematite and goethite). The parameter ¥,, represents the mass
fraction of magnetite, which is assumed to appear as pure particles [1]. The texture of the samples is described
by the percentages (%) of sand (s,) and silt (s;). The particle type distributions considered in the simulations
are given in terms of the percentages (%) of pure (i), mixed (i) and coated (i) grains.

Samples o m;

Australian dune 0.126 | 0.022
Saudi Arabian dune | 0.126 | 0.023
Californian outcrop | 0.132 | 0.022
Peruvian beach 0.141 | 0.021

Table 2: Average dimensions (given in mm) of the major axes m, and m; that respectively define the ellipsoids
used to represent the sand-sized and the silt-sized particles forming the samples during the simulations performed
using SPLITS-2.



Samples ﬁhg Thg 19771 Sa Sq Hp Hm He
Australian dune 0.01 | 0.75 | 0.0 | 8.0 | 15.0 | 0.0 100 0.0
Saudi Arabian dune | 0.01 0.5 0.0 | 8.0 | 15.0 | 10.0 | 90.0 | 0.0
Californian outcrop | 0.04 0.0 0.0 | 85.0 | 15.0 | 50.0 | 0.0 | 50.0
Peruvian Beach 0.045 | 0.35 | 0.17 | 92.8 | 7.2 | 50.0 | 0.0 | 50.0

Table 3: Parameter values used to characterize the four sand samples employed in the comparisons of SPLITS
predictions with measured data. The parameter rp, corresponds to the ratio between the mass fraction of
hematite to Upy (the total mass fraction of hematite and goethite). The parameter ¥, represents the mass
fraction of magnetite, which is assumed to appear as pure particles [1]. The texture of the samples is described
by the percentages (%) of sand (s,) and silt (s;). The particle type distributions considered in the simulations
are given in terms of the percentages (%) of pure (), mixed (i,,) and coated (i) grains.

Samples Mg m;

Australian dune 0.236 | 0.045
Saudi Arabian dune | 0.236 | 0.045
Californian outcrop | 0.236 | 0.045
Peruvian beach 0.265 | 0.044

Table 4: Average dimensions (given in mm) of the major axes m, and m; that respectively define the ellipsoids

used to represent the sand-sized and the silt-sized particles forming the samples during the simulations performed
using SPLITS.
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Figure 1: Comparisons of SPLITS-2 and SPLITS predictions with measured data. Top left: Australian dune.
Top right: Saudi Arabian dune. Bottom left: Californian outcrop. Bottom right: Peruvian beach. Please refer
to Table 1 for the parameter values used by SPLITS-2, and Table 3 for the parameter values used by SPLITS.

For completeness, we also provide root mean square error (RMSE) values computed for the modeled re-
flectance curves with respect to their measured counterparts. These RMSE values were computed using the



following expression:

N
RMSE = | = 2 (a(A) = m(0)* O

where p, and p; respectively correspond to measured and modeled directional-hemispherical reflectance values,
and N is the total number of wavelengths sampled with a 5 nm resolution.

The resulting RMSE values are presented in Table 5. Note that the RMSE values computed for the curves
obtained SPLITS-2 were lower than those computer for the curves obtained using SPLITS, indicating closer
matches between the former and the measured curves.

Sample Model Implementation | RMSE

. SPLITS 0.0074
Australian dune SPLITS-2 0.0068

. . SPLITS 0.0175
Saudi Arabian dune SPLITS-2 0.0132
Californi ter SPLITS oo
alifornia outcrop SPLITS-2 0.0076
Pervian beacl SPLITS 0.0095
eruvian beac SPLITS-2 0.0051

Table 5: RMSE values computed for the modeled curves, which were obtained using the SPLITS-2 and SPLITS
model implementations, with respect to their measured counterparts [25].

4 SPLITS-2 Online Deployment

The online version of SPLITS-2 [23] is similar to the online version of SPLITS [21], with two main exceptions.
Since the soil texture precomputation has been directly integrated into the simulations, it is not restricted to
pre-determined distributions.

The other change is that particle type distribution is no longer fixed. Particle type distribution is the choice
of how many particles are in each class: pure, mixed, and coated. There is no technical reason in the simulation
for this restriction since these values are not used in any precomputation. The reason for this restriction was
that the pre-determined distribution values were used by the script that starts the simulation. This restriction
was removed in the SPLITS-2 online version.

5 Summary

In this report, we concisely described our work involving the careful examination of the original implementation
of the SPLITS model, and introduced SPLITS-2, an enhanced version of that implementation. We have also
compared modeled curves, obtained using the SPLITS and SPLITS-2 implementations, with measured ones to
demonstrate that the model’s predictive capabilities have been preserved by the latter implementation version.
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A Supplemental Information to the Coated Particle Issue

In this appendix, we provide details about the issue affecting light scattering by coated particles (Section 2.3).
The issue was associated with the passing of the same value to two different parameters by reference. The
Listing 2 shows some of the code associated with this.

340 if (Random::bernoulli(R)) // ray is reflected

341

342 0 = Optics::reflect (I, Np);

343 assert (equal (0.normSquared (), 1.0));

344

345 if (dot(0, N) * dot(I, N) > 0.0) // invalid direction
346

347 0 = sphericalToCartesian(Random::diffuse (), Basis3::FromW(N));
348 assert (equal (0.normSquared (), 1.0));

349 }

350 }

Listing 2: Code fragment inside InterfaceScatter(...) in TestiMaterial.cpp. Note that O, N and I represent the
outgoing, normal and incident vectors, respectively.

The bug occurs in the second if statement. The statement is supposed to check whether the outgoing
(reflected) ray is propagated to the correct side of the plane as as indicated by the geometric normal N.

In more detail, the symbols that we are interested are the outgoing vector O, the normal vector N, and the
incident vector I. Note that if the angle of incidence between O and N is greater than 90°, then the dot product
O- N is less than zero. Otherwise, it is greater than zero. Accordingly, the condition (O-N)x*(I-N) > 0 indicates
that the outgoing vector has not changed direction from the incoming vector with respect to the normal. This
is an error because the direction relative to the normal must change if we are in the reflected case. The error
handling in this case simply sends the ray out on the proper side of the interface with a random hemispherical
distribution.

To assess the issue, we must take a closer look at the functions InterfaceScatter and LayerScatter whose
signature is depicted in Listing 3, and how LayerScatter is called, which is depicted in Listing 4. In this



examination, the arguments of interest are the incident and outgoing ray represented by I and O respectively.
When ParticleScatter(..) in TestlMaterial.cpp calls LayerScatter, it passes the same vector to the
incident and outgoing rays. This is so that a second vector to pass by reference does not have to be created.
Thus, when LayerScatter returns, the new direction is already set, and ParticleScatter(..) is ready for the
next interaction. However, there is a problem, namely the same vector is passed by reference all the way down
to InterfaceScatter. This means that in InterfaceScatter when 0 = Optics::reflect(I, Np); happens,
I is also set to this value. Accordingly, the error checking case that was testing whether (O - N)* (I - N) >0 is
now checking if (O - N)* (O - N) > 0, which is always true (since: a % a > 0,Va # 0). This is why the error case
occurs quite often when the simulation includes light interaction with coated particles.

1 static bool InterfaceScatter (

2 const Vector3& I,

3 const Vector3& N,

4 const std::complex<Scalar>& ml,

5 const std::complex<Scalar>& m2,

6 Scalar roundness ,
7 Vector3d& 0)

8

9 static int LayerScatter (

10 const Vector3& I,

11 const Vector3& N,

12 const std::complex<Scalar>& mil,

13 const std::complex<Scalar>& m2,

14 Scalar alpha,

15 Scalar thickness,
16 Scalar roundness ,
17 Vector3& 0

Listing 3: The signatures of InterfaceScatter and LayerScatter functions in TestiMaterial.cpp.

850 int dlayer = LayerScatter (0.direction(), N, ml, m2, alpha, pd.coatings[layer]|.thickness x<¢
particle.diameter (), roundness[layer], O.direction());

Listing 4: Code fragment showing LayerScatter being called by ParticleScatter in TestiMaterial.cpp. Note that
0.direction() is passed to LayerScatter (Listing 3) as both I and O parameters.

We note that this issue does not affect non-coated particles as CoreScatter does not use Interface scatter.
CoreScatter passes the arguments differently so the two are not references of the same vector.

B A Worked Example of the Issued Involving Clay-Sized Particles

In this appendix, using a worked example, we examine why the precomputed soil textures that included clay-
sized particles led to problems (Section 2.5), and the effects of these problems on the simulations. This example
considers a sand sample characterized by the default parameters values employed in the online version of SPLITS
[21] as well as a soil texture comprising 90% sand-sized and 10% clay-sized particles. Pure and coated particles
are not considered, only mixed ones (Section 2.3). This results in four particle type generators (Appendix C)
depicted in Table 6.

The (custom-defined) mean_distance (Appendix C.2) represents the average distance between particles of
a given type. To derive the mean_distance values shown in Table 6, we present additional information. In the
selected sample, rp, (the ratio between the mass fraction of hematite to the total mass fraction of hematite and
goethite) is equal to 0.75. In addition, the sample is characterized by a porosity equal to 0.425. Thus, when
we derive the mean_distance value for particle obtained using the particle type 1 (Table 6), we know that this
particle is sand-sized, has hematite, and it is within the portion of the sample occupied by particles (because it is
a particle!). This means that, for the particle type 1, the (custom-defined) concentration quantity is computed



particle type | soil class | iron oxide | mean_distance (m) | specific_extinction (m~1) | concentration
1 sand hematite 0.3988 6.4756 0.3881
2 sand goethite 1.1926 6.4756 0.1295
3 clay hematite 0.0038353 6047.76 0.0431
4 clay goethite 0.011493 6047.76 0.0144

Table 6: Values used by four particle type generators within the SPLITS implementation considering a sample
with 10% clay-sized and 90% sand-sized particles. Soil class describes the USDA soil classification (sand, silt, or
clay) according to the grain size. Iron oxide describes indicates which iron oxide in considered in a given particle
type. The distribution of iron oxides is affected by the rp, parameter (the ratio between the mass fraction
of hematite to the total mass fraction of hematite and goethite). The quantity mean_distance corresponds to
the average distance in meters between particles generated by a given particle type generator. The quantity
speci fic_extinction has units %2, that is square meters of particle cross section per cubic meter of particle
volume. The quantity concentration corresponds to the fraction of the selected soil sample occupied by particles
(containing a specific iron oxide) associated with a given particle type generator, and it is dimensionless.

as:
concentration = 0.90 % 0.75 % (1 — 0.425) = 0.3881. (2)

We note that this quantity also takes into account the particle type, which is omitted in Equation 2 because
we are considering 100% mixed particles in this example. Moreover, it also worth mentioning that the sum of
concentrations of all particle types composing a given sample is equal to 1 — porosity.

The (custom-defined) specific_extinction quantity corresponds to the cross-sectional area to volume ratio
of a given particle type. It depends only on the shape and size of the particle. Finally, the mean_distance is

computed as:
1
mean_distance = — - - —. (3)
speci fic_extinction x concentration

Listing 5 shows how this is computed in the SPLITS implementation.

190 Scalar extinction = m_particles.back().generator—>extinction();
191 m_particles.back().meanDistance = 1.0 / (extinction * m_particles.back().concentration);

Listing 5: How mean distance is computed in TestiMaterial.cpp.
The mean_distance computed using Equation 3 is then used to sample the distance to the next particle
generated by a specific generator by sampling an exponential distribution:
distance = mean_distance x —In(rand()), (4)

where rand() is a function that returns a uniform random number in [0, 1]. Listing 6 shows how and where this
is called in the code.

570 Scalar next_d = Random::exponential (m_particles[i].meanDistance);

Listing 6: How distance to next particle is computed in TestiMaterial.cpp.

In closing, as indicated by the values presented in Table 6, due to the error in the precomputation employed
by SPLITS, the distance between two sand-sized particles are 0.39 m and 1.19 m respectively. Thus, in practice,
a ray would not interact with these particles. We remark that in all of our previous investigations using SPLITS,
the presence of clay-sized particles was assumed to be negligible, i.e., these particles were not included in the
simulations employed in those investigations.
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particle type | soil class | iron oxide | mean_distance (m) | specific_extinction (m~1Y) | concentration
1 sand hematite 1.507E-4 17105 0.3881
2 sand goethite 4.515E-4 17105 0.1295
3 clay hematite 8.31E-6 2790805 0.0431
4 clay goethite 2.50E-5 2790805 0.0144

Table 7: Values used by four particle type generators within the SPLITS-2 implementation considering a sample
with 10% clay-sized and 90% sand-sized particles. Soil class describes the USDA soil classification (sand, silt, or
clay) according to the grain size. Iron oxide describes indicates which iron oxide in considered in a given particle
type. The distribution of iron oxides is affected by the rp, parameter (the ratio between the mass fraction
of hematite to the total mass fraction of hematite and goethite). The quantity mean_distance corresponds to
the average distance in meters between particles generated by a given particle type generator. The quantity
speci fic_extinction has units %2, that is square meters of particle cross section per cubic meter of particle
volume. The quantity concentration corresponds to the fraction of the selected soil sample occupied by particles
(containing a specific iron oxide) associated with a given particle type generator, and it is dimensionless.

Table 7 shows the distance values obtained using SPLITS-2. Note how, even for the largest particles, the
mean distance between particles is under 1 mm.

C Selected Details of Inner Workings of SPLITS

Within the stochastic formulation [13, 14] employed by SPLITS and SPLITS-2, particles are generated on the
fly a light ray traverses a sand sample. This requires two things: a set of particle generators and a set of mean
distances. For each desired particle type in a simulated sample, there is one particle generator and one mean
distance. The specifics of a particle generator depend on the composition and geometry of the particle type
to be generated. For example, as shown in Appendix B, there can be one generator that makes sand-sized
hematite-containing particles. The details regarding how the mean distances are computed are presented in the
next sub-section.

In the original SPLITS implementation, the two most important files are runspectro and Test1Material. cpp.
The file runspectro is a bash script that setups up the simulation and calculates material (such as hematite)
concentrations from the input parameters. This procedure is described in Sections 6.2.4 and 6.2.5 of the original
publication [14] describing the model. In the SPLITS-2 implementation, this is done by SplitsSoil. java.

The class representing the sample to be interacted with is TestiMaterial.cpp. It has all of the particle
generators and simulates how light interacts with the sample. It does this by choosing the next particle type
to generate, calling one of the generators, and propagating a light ray through the particle. In the SPLITS-2
implementation, this work is done by ParticleSurfaceScatterer. java.

C.1 Warping functions

A warping function is a function that takes a uniform random number in [0, 1], and returns a number with some
defined distribution. This is usually called the quantile function, and it is the inverse of the cumulative distri-
bution function (CDF) [27]. Some authors call it the Percent Point Function [24]. Let’s consider a probability
density function (PDF) f(z), with a range from @, t0 Zimar. We know that:

/:W flz)de = 1. (5)

min

We also know that the CDF, denoted by F, is given by:

re) = [ " ) du, (6)

min

with F'(x) only being defined for & € [Zmin, Tmaz]. This means that the CDF is also the probability that another
number taken from the distribution will be lower than z. This can also be thought of as the percentage of all
the members of [Zyin, Tmaz] below .
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This is where the quantile function, Q(p), inverts the CDF so that the input is now a percentage, or proba-
bility, and the output is a member of [Zin, Tmaz]:

Q(p) = {{E € [Tmin,Tmaz] © p= F((E)}, (7)

or more simply:
Q=F1 (8)

Now we can sample the distribution given by f by simply passing a random number in [0,1] to . For
example, let us choose p = 0.9. This means that the 90th percentile value is returned. We know that there is
a 10% chance of getting a value higher, and from our uniform distribution on [0, 1], we can clearly see that p
has a 10% chance of being higher than 0.9. This is the basis of how the warping functions generate probability
distributions within the model’s formulation, i.e., they 'warp’ the 0 to 1 range of the input to the desired
distribution in the output.

C.2 Computation of Mean Distance

In the SPLITS implementation, the computation of the mean_distance between two particles of the same type
is spread over 5 files:

e TestiMaterial.cpp: mean_distance = 1/(extinction * concentration)
e RandomSpheroidParticleGenerator.cpp: extinction = specific_extinction

e random_spheroid.tcl: specific_extinction = extinction x extinction_factor. (These values for these two
parameters come from particle size distribution (psd) and sphericity (shirazi) files).

e tim.tcl: concentration = particle_.concentration = concentration x fraction, where fraction is calcu-
lated as fraction = particle_fraction;/total_particle_fraction. The variable particle_fraction; passed
by runspectro and it represents the fraction of the particle volume occupied by the particle type j.

e runspectro: concentration = (1 — porosity). This concentration value gets stored in a variable internally
termed f0. Note that the calculation of particle_fraction; from input parameters is performed within this
file as well (Section B).

The precomputed warping functions that random_spheroid.tcl uses are stored under particles/warp/
in the SPLITS implementation. An example of a soil texture warping file is: shirazi_0_10_90_sand.tcl.
This refers to the soil portion of a soil texture comprising 90% sand-sized particles and 10% silt-sized particles.
The sphericity warping functions are stored under particles/warp/tmp, and are generated for each run. This
allows custom values for sphericity to be set. To generate warping function files see mkpsdtcl.m (MaKe Particle
Size Distribution TCL file) and mksphtcl.m (MaKe SPHericity TCL file). These two files (mkpsdtcl.m and
mksphtcl.m) are the ones associated with the issue discussed in Section 2.5.

In the SPLITS-2 implementation, the quantity mean_distance is calculated by function, namely
RandomlyOrientedParticleParameter. java, that takes soil texture and particle sphericity distribution as ar-
guments.

C.3 Particle Shape and Size

In this section, we provide details on how the size of the particles are chosen. This section can be seen as an
extension of the presentation provided in Section 2.2. Please refer to Listing 7 for how the items discussed here
are actually used, and Appendix C.1 for the basics of how warping functions work. This section is also meant
as a companion to the material presented in Section 6.3.3 of the original publication [14] describing the model.

We start at the particle generator where these distributions are used. Note that in the SPLITS implementation
these files were located under mist/particles/warp/. The RandomSpheroidParticleGenerator takes two of
these warping functions: one for size and one for sphericity. Here sphericity means the Riley sphericity [13],

denoted by ¥, which is given by:
a
U=,/ 9
\/Za ( )
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in the SPLITS implementation. We also have:
a=9?xc, (10)

where a and ¢ represent the major and minor axes of a prolate spheroid (where a > ¢) representing a particle
[13, 14].

Listing 7 shows how a particle generator calculates the size and shape of a particle. Note how first the size
distribution is sampled first, then the sphericity.

63 IParticle* RandomSpheroidParticleGenerator ::generate() const

64
{
65 Vector3 axis = sphericalToCartesian(Random::uniformOnSphere());
66 Scalar sphericity = (*m_sphericity_warp)(Random::seedl());
67
68 assert (inRangeOC (sphericity, 0.0, 1.0));
69
70 Scalar ¢ = (xm_size_warp)(Random::seedl());
71 Scalar a = sphericity x sphericity x* c;
72 return new SpheroidParticle(a, c, Point3::0rigin, axis);
73
}

Listing 7: The function used to generate the particles. The function Random::seed1() generates a random number
between 0 and 1.

The warping function m_size_warp is a discretization of the following continuous probability distribution
function (PDF):

fs(@) = = fo(x)a™. (11)

Equation 11 corresponds to Equation 6.23 provided in the original publication [14] describing the model. The
parameter fg is the probability that a particle with size x is hit by a ray. Here f,(z) is the log-normal probability
density function associated with the Shirazi soil texture [13, 14], i.e., the fraction of volume of the sample that
is size x. (] is a constant of integration such that the probability distribution fg integrates to 1. Initially, it
looks as if the probability of hitting a particle should go up as the square of the size, not down. However, the
probability does go down because the smaller particles have a greater surface area to volume ratio. Thus, when
occupying the same volume, a set of smaller particles has greater cross sectional area, and it is more likely to be
hit by a traversing ray.

The warping function m_sphericity_warp is slightly different because the distribution of ¥ is defined over
the entire sample. We know that the mean and standard deviation of the sphericity are: ¥ and oy. Hence,
the PDF that m_sphericity_warp is following is fg(y), i.e., the probability that a ray hits a particle with
a sphericity y. The complication arises because changing the sphericity changes the surface area to volume
ratio. In Equation 6.12 provided in the original publication [14] describing the model, the parameter Ay (¥)
corresponds to the surface area to volume ratio of a unit sized prolate spheroid.

Finally, let us examine Equation 6.24 provided in the original publication [14] describing the model. The
function fg(y) corresponds to the PDF of a particle with sphericity y being hit by a ray as it travels through a

sample:
1
fo(y) = 62

where ®(U, 02)(y) is the PDF of a normal distribution with mean ¥, variance 2, and it is evaluated at y. The
function fy(y) corresponds to a normal distribution scaled so that sphericities with higher surface to volume
ratios are more common. Once again, Cs is a constant chosen so that the probability density integrates to 1.

To actually invert the PDF’s into warping functions, numerical methods are used in precomputation steps,
which are implemented using MATLAB.

Ay (y) (¥, 03)(y), (12)

D Visualization of Distinct Particle Size Distributions

We have developed an utility (for internal use) to enable the visualization of intermediate simulation steps in
SPLITS-2. A screenshot of the interactive user interface is shown in Figure 2. To use it, one simply adjusts
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the sliders at the bottom labeled: “Clay”, “Silt”, and “Sand”. The graphs display the probability density as a
function of grain size for each soil separate. Each light blue bar from left to right is a grain size of: 0.05, 2, 50
and 2000 pum. These are chosen because they define the limits between sand, silt, and clay in the soil texture
computation.

Since the graphs correspond probability distributions, they integrate to 1. However, since the x-axis is not
evenly spaced (it is logarithmically scaled), the area under this graph is not a constant. The use of an exponential
scaling on the x-axis was chosen because each soil separate has a log-normal distribution. Hence, when plotted
considering a logarithmically scaled axis, the probability distribution of size looks like a normal distribution.
The y-axis is (linearly) scaled so that most of the graph is visible for most choice of inputs.

The median and mean size in each separate correspond to the soil distribution in that size class. The median
size means that half of all particles in that soil separate will be larger and half smaller (the 50th percentile).
The mean size is the expected value of the distribution.

To run the utility, one needs to call SoilTexture.SoilDemo () ; in the main() function of testing/Main. java,
and then set the main class of the model to testing/Main. java so that the main() function gets called. The
main class is a configuration in pom.xml called <mainClass>. This field tells the build system in which file the
execution beings.

Soil Texture Demo o

Clay: 0.0 % Silt: 10,0 % Sand: 90.0 %
median size: 204,80 um median size: 985,57 um
mean size: 224,79 um mean size: 1308,26 um

clay C} 1 Silt IZC} 1 Sand T QZ

Median size is the 50th percentile size, This is the diameter where 1/2 of grains are bigger or smaller,

Mean size is the expected value in the statistical sense.

Figure 2: Interactive interface showing the probability density function of various particle sizes. The x-axis
corresponds to particle size. It increases from left to right, and it is logarithmically scaled.
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