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Abstract

We look at an alternate basis for R(4, 4), and see how this alternate basis affects the scalar coefficients
both in geometric formulas and in affine transformations in this space. In particular, the original basis
used in R(4, 4) introduced powers of 2 into these formulas; with the new basis, most of these formulas
are simpler, and do not have these powers of 2.

1 Introduction

Goldman and Mann [2] studied representations of points, lines, planes, and quadratic surfaces as well as
affine transformations and perspective transformations in the Clifford algebra R(4, 4) for use in computer
graphics. In a later paper [3], Du et al. derived closed formulas for the intersections of these objects as well
as the lengths, areas, and volumes of these objects. Two bases were used in their work on R(4, 4), an ei, ēi
basis, which is primarily used for transformations, and a wi, w

∗
i basis, which is primarily used to represent

geometric objects. Goldman and Mann followed Doran et al.’s [1] choice for the wi,w
∗
i basis, the Witt basis.

While the Witt basis leads to reasonable representations for the transformations, powers of 1
2 appear in the

geometric constructions of Du et al. [3].
In this paper, we use an alternate relationship between the ei, ēi basis and the wi, w

∗
i basis. Using

this alternate basis for wi, w
∗
i , the powers of 1

2 that appear in the geometric construction of Du et al. [3]
disappear. However, as expected, this alternate basis changes the coefficients in some of the transformations
in the earlier paper of Goldman and Mann [2]. In this paper, we compare the formulas that result from both
bases; overall, the new basis leads to simpler formulas.

In Section 2, we review the algebra R(4, 4), giving the original and new bases used for the wi, w
∗
i s. In

Section 3, we show how the geometric formulas of Du et al. [3] simplify when using the new basis. In
Section 4, we show how the transformation formulas of Goldman and Mann [2] change when using the new
basis. In both sections, we give tables comparing all the formulas of Goldman-Mann [2] and Du et al. [3]
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using both basis. The derivations of the equations using the modified Witt basis are essentially the same as
the derivations using the Witt basis, so we give only a few representive derivations. The goals of this paper
are to show the differences in the formulas resulting from the different bases, and to present all the formulas
for the alternative basis in one place.

2 The Clifford algebra R(4, 4)

The Clifford algebra R(4, 4) represents 3D affine geometry using an 8-dimensional vector space. One basis
for R(4, 4) has four basis vectors e0, e1, e2, e3 that square to +1, and four basis vectors ē0, ē1, ē2, ē3 that
square to −1:

e2
i = 1, ē2

i = −1, (i = 0, 1, 2, 3).

These basis elements satisfy the following identities:

ei · ej = ēi · ēj = 0, i 6= j

ei · ēj = 0, for all i, j,

and

eiej = −ejei, ēiēj = −ēj ēi, i 6= j

eiēj = −ējei, for all i, j.

To represent points and vectors in 3-dimensions and derive affine and projective transformations on R3,
Goldman-Mann used for a second basis the choice of Doran et al. [1], the Witt basis:

wi =
ei + ēi

2
, w∗i =

ei − ēi
2

, (i = 0, 1, 2, 3). (1)

In this paper, we will explore using an alternative second basis, which we refer to as the modified Witt basis,

wi =
ei + ēi√

2
, w∗i =

ei − ēi√
2

, (i = 0, 1, 2, 3). (2)

To distinguish between these two bases, we use wi,w
∗
i for the Witt basis used by Goldman-Mann, and wi, w

∗
i

for the modified Witt basis; at times, when both basis yield the same formula, we will state that either basis
can be used and use wi, w

∗
i to represent both bases in one equation.

In the Witt basis, vectors in the 3-space are represented in the basis {w1,w2,w3} and points have the
homogeneous representation

w0 + xw1 + yw2 + zw3,

while in the modified Witt basis vectors are represented in the basis {w1, w2, w3} and points have the
homogeneous representation

w0 + xw1 + yw2 + zw3.

The two bases are distinguished by the following inner products:

Witt Basis Modified Witt Basis
wi · wj = 0 wi · wj = 0
w∗i · w∗j = 0 w∗i · w∗j = 0

w∗i · wj = 1
2δi,j w∗i · wj = δi,j

For i 6= j, the outer product of the both forms of the wi, w
∗
i bases share the following relationships:

wi ∧ wj = wiwj = −wjwi, w∗i ∧ w∗j = w∗iw
∗
j = −w∗jw∗i

w2
i = wi ∧ wi = 0, (w∗i )2 = w∗i ∧ w∗i = 0

We can then derive the following formulas for swapping wi and w∗i in both bases:
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Table 1: Standard algebraic identities in Clifford algebra with Witt basis and modified Witt basis

Witt basis Modified Witt basis
||u1 ∧ · · · ∧ uk||2 =

2k(u1 ∧ · · · ∧ uk) · (u∗k ∧ · · · ∧ u∗1)
||u1 ∧ · · · ∧ uk||2 =

(u1 ∧ · · · ∧ uk) · (u∗k ∧ · · · ∧ u∗1)

||u∗1 ∧ · · · ∧ u∗k||2 =
2k(u∗1 ∧ · · · ∧ u∗k) · (uk ∧ · · · ∧ u1)

||u∗1 ∧ · · · ∧ u∗k||2 =
(u∗1 ∧ · · · ∧ u∗k) · (uk ∧ · · · ∧ u1)

||v||2 = 2(v · v∗) ||v||2 = (v · v∗)

2(v · u∗) = ||v||||u|| cos(θ) (v · u∗) = ||v||||u|| cos(θ)

||n∗s||2 = 2ns · n∗s ||n∗s||2 = ns · n∗s

2(n1 · n∗2) = ||n∗1||||n∗2||cos(θ) (n1 · n∗2) = ||n∗1||||n∗2|| cos(θ)

u× v = −4(u∗ ∧ v∗) · (w1 ∧ w2 ∧ w3) u× v = −(u∗ ∧ v∗) · (w1 ∧ w2 ∧ w3)

||u ∧ v||2 = −4(u ∧ v) · (v ∧ u)∗ =
(u ∧ v) · (v∗ ∧ u∗) = ||u× v||2

||u ∧ v||2 = −(u ∧ v) · (v ∧ u)∗ =
(u ∧ v) · (v∗ ∧ u∗) = ||u× v||2

||n∗1 ∧ n∗2||2 = 4(n1 ∧ n2) · (n∗2 ∧ n∗1) =
||n∗1 × n∗2||2

||n∗1 ∧ n∗2||2 = (n1 ∧ n2) · (n∗2 ∧ n∗1) =
||n∗1 × n∗2||2

||w1 ∧ w2 ∧ w3|| = 1 ||w1 ∧ w2 ∧ w3|| = 1

||u ∧ v ∧ w||2 = det(u, v,w)2 ||u ∧ v ∧ w||2 = det(u, v, w)2

Witt Basis Modified Witt Basis
wiw

∗
i = 1− w∗iwi wiw

∗
i = 2− w∗iwi

This swapping formula is the key formula in many derivations; we give an example of the use of these
formulas for swapping wi and w∗i in Section 4.3, and show how the different variations result in different
scalar factors in the resulting derivations.

2.1 Algebraic identities

Du et al. [3] note that in their formulation of R(4, 4), some standard algebraic identities in Clifford algebras
“differ somewhat from those metric formulas in other Clifford algebras”, and give a table of these identities.
Constructing R(4, 4) with the modified Witt basis, these standard algebraic identities resume the more
familiar form found in other Clifford algebras; a comparison of these formulas between the two variations of
R(4, 4) appears in Table 1.

3 Geometric Constructions in R(4, 4)

Our primary motivation for using the wi, w
∗
i basis instead of the wi,w

∗
i basis is to simplify the coefficients in

the geometric constructions of Du et al. [3]. In this section, we highlight the new formulas for a few important
constructions, and then give tables comparing all the constructions in the Du et al. paper using the Witt
basis to the formulas using the modified Witt basis. To begin, we look at vectors in R3. A comparison of
the two shows that the squared length formula of a vector v is simpler in modified Witt basis as compared
to the Witt basis:

Witt Basis Modified Witt Basis
|v|2 = 2v · v∗ |v|2 = v · v∗.
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Table 2: Formulas for squared length, area, and volume of the line segment, triangle, and tetrahedron
associated to the corresponding blades

Object Witt basis Modified Witt basis

Line segment l = p1 ∧ p2 ||l||2 = 8(w∗0 · l) · (l∗ · w0) ||l||2 = (w∗0 · l) · (l∗ · w0)

Triangle π = p1 ∧ p2 ∧ p3 ||Π||2 = −4(w∗0 ·Π) · (Π∗ · w0) ||π||2 = −(w∗0 · π) · (π∗ · w0)

Tetrahedron ∆ = p1 ∧ p2 ∧ p3 ∧ p4 ||∆||2 = 16
3 (w∗0 ·∆) · (∆∗ · w0) ||∆||2 = 1

3 (w∗0 ·∆) · (∆∗ · w0)

Dual plane ||Π∗|| = 1
2 ||n
∗|| ||π∗|| = ||n∗||

Dual tetrahedron ||l∗|| = ||n∗1 ∧ n∗2|| ||l∗|| = ||n∗1 ∧ n∗2||

3.1 Duality of ∧W and ∧W ∗ Subspaces

Du et al. note that ∧W and ∧W∗ are dual spaces, and show how to map between these two spaces. In this
section, we show how this mapping changes when mapping between ∧W and ∧W ∗.

I and I∗ map between elements in W and elements in W∗. Let I and I∗ be the pseudo-scalars in ∧W and
∧W∗:

I = w0 ∧ w1 ∧ w2 ∧ w3

I∗ = w∗0 ∧ w∗1 ∧ w∗2 ∧ w∗3

Similarly, let I and I∗ be the pseudo-scalars in ∧W and ∧W ∗:

I = w0 ∧ w1 ∧ w2 ∧ w3

I∗ = w∗0 ∧ w∗1 ∧ w∗2 ∧ w∗3

Because w∗i · wi = 1 while w∗i · wi = 1
2 , the mapping between the ∧W and ∧W ∗ spaces is simpler in the

modified Witt basis than in the Witt basis:

Dual Witt Basis Modified Basis

dual(f) 2dim(f)+1f · I∗ f · I∗
dual(f∗) 23−dim(f∗)f∗ · I f∗ · I

where f, f∗ and f, f∗ are geometric objects in the ∧W and ∧W∗ spaces and ∧W and ∧W ∗ spaces.

3.2 Points, lines, planes, and quadrics

Du et al. used a standard homogeneous representation for points, lines and planes. For example, a homoge-
neous point is represented as

p = p0w0 + p1w1 + p2w2 + p3w3

For a plane in 3-dimensions with the homogeneous implicit equation

S(x0, x1, x2, x3) = s0x0 + s1x1 + s2x2 + s3x3

where s1, s2, s3, s0 are constants, the normal to this plane is

n∗s = s1w∗1 + s2w∗2 + s3w∗3,

and Du et al. represent planes in the dual space as

Π∗ = s0w∗0 + s1w∗1 + s2w∗2 + s3w∗3
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Table 3: Equations for points, vectors in planes, and points on quadric surfaces.

Witt basis Modified Witt basis
p ·Π∗s = 1

2S(x0, x1, x2, x3) p · π∗s = S(x0, x1, x2, x3)
n∗s · (q− p) = 1

2S(1, q1, q2, q3) n∗s · (q − p) = S(1, q1, q2, q3)

p(p0, p1, p2, p3) · bF · p∗(p0, p1, p2, p3)
= 1

4F (p0, p1, p2, p3)
p(p0, p1, p2, p3) · bF · p∗(p0, p1, p2, p3)

= F (p0, p1, p2, p3)

For a quadric surface

F (x0, x1, x2, x3) =

3∑
i,j=0

λi,jxixj

where λi,j = λj,i, Du et al. used the bivector representation of Parkin [4]:

bF =

3∑
i,j=0

λi,jw
∗
iwj .

For all these objects (points, vectors, lines, planes, normals, and quadric surface), their representation
relative to the modified Witt basis is the same as their representation relative to the Witt basis, using wi, w

∗
i

in place of wi,w
∗
i . However, there are scalar differences in the equations for testing if a point lies on one of

these objects.
Table 3 gives the equations for testing whether a point p, p or a vector v, v lies in a plane Π, π. Note

that the Witt basis introduces factors of 1
2 when evaluating the implicit function S, while the modified Witt

basis does not. While these formulas are simpler relative to the modified Witt basis, the importance of the
powers of 1

2 will depend on whether or not one wants the exact expression of the implicit surfaces; i.e., we
are often interested in whether a point (or vector) is in the plane (the equations in Table 3 are zero) or not
in the plane (the equations in Table 3 are non-zero), in which case the factor of 1

2 in the equations relative
to the Witt basis could be omitted.

In both representations of R(4, 4), the outer product null space representation of lines and planes is
formed as the outer product of two distinct points (for the representation of a line) and the outer product of
three non-colinear points (for the representation of a plane). These objects can be intersected in the standard
way with either representation of R(4, 4). See the paper of Du et al. [3] for details on the outer product
representation of lines and planes, and in particular for details on forming these objects with weighted points
and points at infinity.

3.3 Intersections of lines, planes, and quadrics

There are two ways to represent lines: as the join of two points and as the intersection of two planes [5].
The intersection of two objects in R(4, 4), one represented in primal form and the other in dual form, can
be computed using the inner product. For a line l (l) and a plane Π (π∗), and for two planes, Π (π) and Π∗

(π∗) in the Witt basis (the modified Witt basis), their intersections are given by

Witt basis Modified Witt basis

l ·Π∗ l · π∗
Π ·Π∗ π · π∗

In both models of R(4, 4), we can also intersect lines and planes with quadric surfaces. Table 4 gives the
intersection formulas in both the Witt basis and in the modified Witt basis for intersecting the z-axis with an
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Table 4: Intersection of the z-axis (l∗ = w∗2 ∧w∗1) and a quadric surface bF with the Witt basis and with the
modified Witt basis. Γ = w0 ∧ w1 ∧ w2 ∧ w3 ∧ w∗0 ∧ w∗1 ∧ w∗2 ∧ w∗3 is the pseudo-scalar of R(4, 4)

Witt basis Modified Witt basis

Pp = (l∗ ∧ bF ∧ l) · Γ
= (w∗2 ∧ w∗1 ∧ bF ∧ w1 ∧ w2) · Γ
= − 1

64 (λ00w3 ∧ w∗3 − λ30w0 ∧ w∗3
−λ03w3 ∧ w∗0 + λ33w0 ∧ w∗0)

Pp = (l∗ ∧ bF ∧ l) · Γ
= (w∗2 ∧ w∗1 ∧ bF ∧ w1 ∧ w2) · Γ
= −(λ00w3 ∧ w∗3 − λ30w0 ∧ w∗3
−λ03w3 ∧ w∗0 + λ33w0 ∧ w∗0)

Table 5: Comparison of the distance between two points p1, p2; a point p and a line l; and a point p and a
plane Π with the Witt basis and the modified Witt basis

Measure Witt basis Modified Witt basis
Distance between points p1 and p2

dist(p1, p2)2 2(p2 − p1) · (p∗2 − p∗1) (p2 − p1) · (p∗2 − p∗1)

Distance between point p and line l dist(p, l) = 2||p∧l||
||l|| dist(p, l) = ||p∧l||

||l||
Signed distance between point p

and plane π∗
sdist(p,Π∗) = p·Π∗

||Π∗|| sdist(p, π∗) = p·π∗

||π∗||

arbitrary quadric surface; Du et al. extend this special case intersection to arbitrary lines by applying affine
transformations, noting that affine transformations are inner and outer morphisms [3]. Note the coefficient
of 1/64 when using the Witt basis compared to the coefficient of 1 in the modified Witt basis.

In both models, the intersection of a quadric surface bF in W ∗ ∧W with a plane π∗ in W ∗ is the conic
curve

C = πS ∧BF ∧ π∗S .

A point p lies on a conic C if and only if p · C · p∗ = 0.

3.4 Distances and Angles

Formulas for the distance between two points, or a point and a line, or a point and a plane in R(4, 4) with
both bases are shown in Table 5. Comparisons of distances and angles between two lines and two planes in
R(4, 4) with both bases are shown in Table 6. While some of these formulas are identical, others have a
factor of 2 when using the Witt basis that is not present when using the modified Witt basis.

3.5 Barycentric coordinates

Barycentric coordinates represent a point as an affine combination of the vertices of a simplex. The formulas
for barycentric coordinates using the modified Witt basis are the same as those represented with the Witt
basis; although powers of 2 appear in the computations, these powers of two cancel in the ratios of the
formula. Table 7 gives these barycentric coordinate formulas.

4 Transformations in R(4, 4)

Goldman-Mann [2] used the rotors constructed from the generators Eij , Fij , Ki of Doran et al. [1]:

Eij = eiej ± ēiēj
Fij = eiēj − ēiej
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Table 6: Comparisons of distance and angles between two lines and two planes in R(4, 4) with Witt basis
and with the new basis

Measure Witt basis Modified Witt basis

Distance between two skew lines l1, l2 dist(l1, l2) = p(l2)·∗Π
||∗Π|| dist(l1, l2) = p(l2)·∗π

||∗π||
Distance between two parallel lines l1, l2 dist(l1, l2) = dist(p(l2), l1) dist(l1, l2) = dist(p(l2), l1)

Angle θ between oriented lines l1 and l2 cos(θ) =
2(w∗

0 ·l1)·(w0·l∗2)
||w∗

0 ·l1||||w0·l∗2 ||
cos(θ) =

(w∗
0 ·l1)·(w0·l∗2)

||w∗
0 ·l1||||w0·l∗2 ||

Signed distance between
parallel planes π1, π2

sdist(Π1,Π2)
= sdist(p(Π2),Π1)

sdist(π1, π2)
= sdist(p(π2), π1)

Angle θ between planes π∗1 and π∗2 cos(θ) =
2(w∗

0 ·(w0∧Π1))·(w0·(w∗
0∧Π∗

2))
||w∗

0 ·(w0∧Π1)||||w0·(w∗
0∧Π∗

2)|| cos(θ) =
(w∗

0 ·(w0∧π1))·(w0·(w∗
0∧π

∗
2 ))

||w∗
0 ·(w0∧π1)||||w0·(w∗

0∧π
∗
2 )||

Table 7: Table of barycentric coordinate formulas; these formulas for the same for both the Witt basis and
the modified Witt basis.

Barycentric coordinates Formula

p = b1p1 + b2p2, b1 + b2 = 1 bi =
(−1)i+1(p∧pj)·(p1∧p2)∗

(p1∧p2)·(p1∧p2)∗

p = b1p1 + b2p2 + b3p3, b1 + b2 + b3 = 1 bi =
(p∧pj∧pk)·(p1∧p2∧p3)∗

(p1∧p2∧p3)·(p1∧p2∧p3)∗

p = b1p1 + b2p2 + b3p3 + b4p4, bi =
(p∧pj∧pk∧pl)·(p1∧p2∧p3∧p4)∗

(p1∧p2∧p3∧p4)·(p1∧p2∧p3∧p4)∗

b1 + b2 + b3 + b4 = 1

Ki = 1
2Fii = eiēi.

When applied to points (which are represented in the wi,w
∗
i basis of Equation 1), Goldman-Mann showed

that rotor generated by Ki is non-uniform scaling in the wi-direction, the rotor generated by Eij is rotation
in the wiwj-plane, and the rotor generated by Fij is a scissors shear in the wi,wj-plane.

When applying these rotors to points represented in the wi, w
∗
i basis of Equation 2, we obtain the same

equations as when applying these rotors to points represented in the wi,w
∗
i basis; i.e., there were no powers

of two distinctions between these formulas. We illustrate this result for Ki; proofs for Eij and Fij are similar.

4.1 Ki = eiēi: non-uniform scaling in the wi-direction

Following the derivation of Goldman-Mann, we have eθeiēi = cosh(θ) + sinh(θ)eiēi, since (eiēi)
2 = 1. Ap-

plying the rotor eθeiēi to ei and ēi,

(cosh(θ)− sinh(θ)eiēi)ei(cosh(θ) + sinh(θ)eiēi)

= (cosh2(θ) + sinh2(θ))ei + 2 sinh(θ) cosh(θ)ēi
(3)

and
(cosh(θ)− sinh(θ)eiēi)ēi(cosh(θ) + sinh(θ)eiēi)

= (cosh2(θ) + sinh2(θ))ēi + 2 sinh(θ) cosh(θ)ei
(4)

Adding equations 3 and 4 and dividing by 2 yields

(cosh(θ)− sinh(θ)eiēi)wi(cosh(θ) + sinh(θ)eiēi)

= (cosh2(θ) + sinh2(θ) + 2 sinh(θ) cosh(θ))wi

= (cosh(2θ) + sinh(2θ))wi = e2θwi
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Table 8: Other nonsingular linear transformations on R(4, 4) with old basis and new basis

Witt Modified Witt

Reflection 2w∗i ∧ wi w∗i ∧ wi
Classical shear w∗iwj , i 6= j 1

2w
∗
iwj , i 6= j

while adding equations 3 and 4 and dividing by
√

2 yields

(cosh(θ)− sinh(θ)eiēi)wi(cosh(θ) + sinh(θ)eiēi)

= (cosh2(θ) + sinh2(θ) + 2 sinh(θ) cosh(θ))wi

= (cosh(2θ) + sinh(2θ))wi = e2θwi

For i 6= j, ej , ēj commutes with eiēi, so in either basis

(cosh(θ)− sinh(θ)eiēi)wj(cosh(θ) + sinh(θ)eiēi) = wj

Subtracting equations 3 and 4 and dividing by
√

2 gives the applications of the rotor eθeiēi to elements
in the space W ∗:

(cosh(θ)− sinh(θ)eiēi)w
∗
i (cosh(θ) + sinh(θ)eiēi)

= (cosh(2θ)− sinh(2θ))w∗i

= (cosh(−2θ)− sinh(−2θ))w∗i = e−2θw∗i .

For i 6= j, ej , ēj commute with eiēi, so in either basis

(cosh(θ)− sinh(θ)eiēi)w
∗
j (cosh(θ) + sinh(θ)eiēi) = w∗j

Similar derivations show that the rotors generated by Eij and Fij operate in the same manner on both
the wi,w

∗
i basis and the wi, w

∗
i basis, since in all three cases, the rotors have the same effect on the ei, ēi

basis, and our choice of w or w just results in combining the results on ei and ēi with a factor of 1
2 or 1√

2
.

4.2 Other Nonsingular Linear Transformations in R(4, 4): Reflection and Clas-
sical Shear

Goldman-Mann [2] derived two nonsingular linear transformations for reflection and classical shear using
the Witt basis; we rederive these formulas for the modified Witt basis. A comparison of these two sets of
formulas is shown in Table 8. As examples of how the powers of 2 differ for the transformation formulas
using the Witt basis and the modified Witt basis, we give a detailed derivation of reflection with the Witt
basis and with the modified Witt basis.

4.3 Reflection: 2w∗
i ∧ wi vs w∗

i ∧ wi

We reproduce here a variation of the proof that the rotor Ri = eiēi is a reflection [3] to show an example of
the use of the formula for reversing w∗iwi. In the Witt basis we have

eiēi = (wi + w∗i )(wi − w∗i )

= w∗iwi − wiw
∗
i = 2w∗i ∧ wi

To see that Ri is a reflection, we first show that

eiwiei = w∗i , eiw
∗
i ei = wi

ēiwiēi = w∗i , ēiw
∗
i ēi = wi.
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Expanding the first of these equations,

eiwiei = (wi + w∗i )wi(wi + w∗i ) = w∗iwi(wi + w∗i )

= w∗iwiw
∗
i = (1− wiw

∗
i )w∗i = w∗i . (5)

The proofs for the other three equations are similar.
We now see that Ri = eiēi is a reflection:

R−1
i wiRi = (−ēiei)wi(eiēi) = −wi

R−1
i w∗iRi = (−ēiei)w∗i (eiēi) = −w∗i

Writing the rotor eiēi in the modified Witt basis, we have

eiēi =

√
2(wi + w∗i )

2

√
2(wi − w∗i )

2

=
1

2
(w∗iwi − wiw∗i ) = w∗i ∧ wi

Thus, expanding ei, ēi in the two variants of the Witt basis introduces different powers of 2.
The proof showing that eiēi is a reflection in the modified Witt basis is essentially the same as the proof

in the Witt basis. But the expansion of eiwiei is

eiwiei =

√
2(wi + w∗i )

2
wi

√
2(wi + w∗i )

2
=

1

2
w∗iwi(wi + w∗i )

=
1

2
w∗iwiw

∗
i =

1

2
(2− wiw∗i )w∗i = w∗i . (6)

Comparing Equation 5 to Equation 6 gives an example of the two variations of the formula for swapping
wi, w

∗
i ; in the example in these two equations, the powers of two cancel in the modified Witt basis, yielding

the same formula for reflection when the rotor Ri is written as the geometric product of ei, ēi, although when
expressing Ri as the outer product of w∗i , wi, a factor of 2 appears when using the Witt basis.

4.4 Transformations relative to w,w∗

Goldman-Mann [2] rewrite rotors to get an expression in terms of the basis wi,wj ,w
∗
i ,w

∗
j . The derivations

using the modified Witt basis are essentially the same the derivations using the Witt basis in Goldman and
Mann’s paper; Tables 9 and 10 give a comparison of transformations using the Witt basis wi,wj ,w

∗
i ,w

∗
j and

the modified Witt basis wi, wj , w
∗
i , w

∗
j . With the exception of shear, the formulas in the modified Witt basis

are simpler (do not have factors of 2) than those in the Witt basis.

5 Conclusions

In this paper, gave a variation on an earlier R(4, 4) model [2, 3]. The only difference between our variation
and the earlier model of R(4, 4) is in a scaling factor for one of the bases. With this new basis, the coefficients
in the geometric formulas are mostly unity (as compared to powers of 2 when using the original basis). In
addition, the coefficients in the transformation formulas are also simpler.
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Table 9: Blades and the corresponding rotors and transformations on R3 based on classical shear in R4 with
old and new bases

Blade w-Rotor w-Rotor Transformation

w∗i ∧ wj
i 6= j
i, j 6= 0

1 + tw∗i ∧ wj 1 + 1
2 tw

∗
i ∧ wj

Classical shear in the wiwj-plane
(Only wi-direction changes)

w∗0 ∧ wj
j 6= 0

1 + tw∗0 ∧ wj 1 + 1
2 tw

∗
0 ∧ wj

Classical shear in the wiwj-plane
(Only wi-direction changes)

w∗j ∧ w0

j 6= 0
1− w∗j ∧ w0 1− 1

2w
∗
j ∧ w0 Pseudo-perspective normal to wj-direction

w∗i ∧ wi
i 6= 0

c+ 2sw∗i ∧ wi c+ sw∗i ∧ wi Nonuniform scaling by e2θ in the wi-direction

w∗0 ∧ w0 c+ 2sw∗0 ∧ w0 c+ sw∗0 ∧ w0 Uniform scaling of points by e−2θ

Table 10: Rotors for rotation and scissors shear (s = sin(θ), c = cos(θ)); Scissor Shear Generator: eiēj− ēiej .
Rotation Generator: eiej − ēiēj .

Transformation w-Rotor w-Rotor

Rotation by 2θ in wiwj-plane
c2 + 2sc(w∗i ∧ wj − w∗j ∧ wi)

+4s2(w∗i ∧ wi)(w∗j ∧ wi)
c2 + sc(w∗i ∧ wj − w∗j ∧ wi)

+s2(w∗i ∧ wi)(w∗j ∧ wi)

Scissors shear in wiwj-plane
c2 + 2sc(w∗i ∧ wj + w∗j ∧ wi)
−4s2(w∗i ∧ wi)(w∗j ∧ wi)

c2 + sc(w∗i ∧ wj + w∗j ∧ wi)
−s2(w∗i ∧ wi)(w∗j ∧ wi)

10



References

[1] Chris Doran, David Hestenes, Frank Sommen, and Nadine Van Acker. Lie groups as spin groups. Journal
of Mathematical Physics (1993) 34(8):3642–3669.

[2] Goldman, R, Mann, S. R(4, 4) as a computational framework for 3-dimensional computer graphics Adv.
Appl. Clifford Algebras (2015) 25(1): 113-149

[3] Du, J, Goldman, R, Mann, S. Modeling 3D Geometry in the Clifford Algebra R (4, 4) Adv. Appl.
Clifford Algebras (2017) 27(4): 3039-3062

[4] Parkin, S.T. A model for quadric surfaces using geometric algebra Unpublished, October (2012)

[5] Klein, F. Vorlesungen ueber hoehere Geometrie Springer (1926)

11


