A simpler representation for R(4, 4)
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Abstract

We look at an alternate basis for R(4,4), and see how this alternate basis affects the scalar coeflicients
both in geometric formulas and in affine transformations in this space. In particular, the original basis
used in R(4,4) introduced powers of 2 into these formulas; with the new basis, most of these formulas
are simpler, and do not have these powers of 2.

1 Introduction

Goldman and Mann [2] studied representations of points, lines, planes, and quadratic surfaces as well as
affine transformations and perspective transformations in the Clifford algebra R(4,4) for use in computer
graphics. In a later paper [3], Du et al. derived closed formulas for the intersections of these objects as well
as the lengths, areas, and volumes of these objects. Two bases were used in their work on R(4,4), an ¢;, &;
basis, which is primarily used for transformations, and a w;,w; basis, which is primarily used to represent
geometric objects. Goldman and Mann followed Doran et al.’s [1] choice for the w;,w; basis, the Witt basis.
While the Witt basis leads to reasonable representations for the transformations, powers of % appear in the
geometric constructions of Du et al. [3].

In this paper, we use an alternate relationship between the e;,e; basis and the w;,w} basis. Using
this alternate basis for w;, w;, the powers of % that appear in the geometric construction of Du et al. [3]
disappear. However, as expected, this alternate basis changes the coefficients in some of the transformations
in the earlier paper of Goldman and Mann [2]. In this paper, we compare the formulas that result from both
bases; overall, the new basis leads to simpler formulas.

In Section 2, we review the algebra R(4,4), giving the original and new bases used for the w;, w}s. In
Section 3, we show how the geometric formulas of Du et al. [3] simplify when using the new basis. In
Section 4, we show how the transformation formulas of Goldman and Mann [2] change when using the new
basis. In both sections, we give tables comparing all the formulas of Goldman-Mann [2] and Du et al. [3]



using both basis. The derivations of the equations using the modified Witt basis are essentially the same as
the derivations using the Witt basis, so we give only a few representive derivations. The goals of this paper
are to show the differences in the formulas resulting from the different bases, and to present all the formulas
for the alternative basis in one place.

2 The Clifford algebra R(4,4)

The Clifford algebra R(4,4) represents 3D affine geometry using an 8-dimensional vector space. One basis
for R(4,4) has four basis vectors eg, e1, €2, e3 that square to +1, and four basis vectors €y, €1, €2, €3 that
square to —1:

ei-ej:éi-éj = O,Z#]
e;-e; = 0, forallsi,j,
and
€i€; = —€;5€4, éiéj = —éjéi7 Z;éj
ee; = —eje;, foralli,j.

To represent points and vectors in 3-dimensions and derive affine and projective transformations on R3,
Goldman-Mann used for a second basis the choice of Doran et al. [1], the Witt basis:

In this paper, we will explore using an alternative second basis, which we refer to as the modified Witt basis,

€ +e . e&—& .
W, — Wk = i=0,1,2,3). 2
1 \@ i ﬁ 9 ( 9 Ly 4y ) ( )
To distinguish between these two bases, we use w;, w; for the Witt basis used by Goldman-Mann, and w;, w;
for the modified Witt basis; at times, when both basis yield the same formula, we will state that either basis
can be used and use w;, w; to represent both bases in one equation.
In the Witt basis, vectors in the 3-space are represented in the basis {wq,wy, w3} and points have the

homogeneous representation

Wo + xwy + ywa + 2ws,

while in the modified Witt basis vectors are represented in the basis {wj,ws, w3} and points have the
homogeneous representation
wo + rWi + Yyws + Zw3.

The two bases are distinguished by the following inner products:

Witt Basis Modified Witt Basis

WZWJIO wlw]:O
* * ok
Wi-wj—IO w; wj—O
* L= =) - *. R — ..
Wy W = 505 wi - wj = 05,

For i # j, the outer product of the both forms of the w;, w; bases share the following relationships:

wi Awj = wiw; = —wiw;, w; Aw; =wjw; = —wjw;
w? =w; Aw; =0, (w})? =wf Aw) =0

P =

We can then derive the following formulas for swapping w; and w; in both bases:



Table 1: Standard algebraic identities in Clifford algebra with Witt basis and modified Witt basis

Witt basis Modified Witt basis
[lup A Augl? = [lua A= Al P =
28(ug Ao Aug) - (UE A Aug) (ur A Aug) - (g A Aui)
[Jui A= Aug]]? = [lug A - A ]| =
2P(ui Ao Aug) - (ug A Aug) (WA Aug) - (ug A Aug)
VI =2(v-v) I0]]? = (v~ v*)
2(v-u*) = [|v[[[|uf[ cos(6) (v - u*) = [[v][]|ul| cos(6)
[In31[* = 2n, - ng [In3]1? = ns g
2(ny - n3) = [[nf][[[n3[[cos(6) (n1 - n3) = [[nf|ll|n3|] cos(6)
uxv=—4Uu*Av*) - (wi Awa Aws) uxv=—(u*Av*)-(w; AwyAws)
luAv|]?=—4(uAv)-(vAu)* = llu Av|]2 = —(uAv) - (vAu)* =
(UAV) - (v Au*) = |ux v]|? (uAv) - (v Au*) = |Ju x v||?
Ing A ngl12 = A(ns Ana) - (03 Anf) = [l A n|® = (m Ana) - (5 A ) =
[InT > n]| [Ing < n3|
||W1/\W2/\W3H=1 |\w1/\w2/\w3||=1
[luAvAw|? = det(u,v,w)? [lu AvAwl? = det(u,v,w)?

Witt Basis Modified Witt Basis

w;w; =1 —wiw; ww; = 2 —wiw;

This swapping formula is the key formula in many derivations; we give an example of the use of these
formulas for swapping w; and w; in Section 4.3, and show how the different variations result in different
scalar factors in the resulting derivations.

2.1 Algebraic identities

Du et al. [3] note that in their formulation of R(4,4), some standard algebraic identities in Clifford algebras
“differ somewhat from those metric formulas in other Clifford algebras”, and give a table of these identities.
Constructing R(4,4) with the modified Witt basis, these standard algebraic identities resume the more
familiar form found in other Clifford algebras; a comparison of these formulas between the two variations of
R(4,4) appears in Table 1.

3 Geometric Constructions in R(4,4)

Our primary motivation for using the w;, w; basis instead of the w;, w; basis is to simplify the coefficients in
the geometric constructions of Du et al. [3]. In this section, we highlight the new formulas for a few important
constructions, and then give tables comparing all the constructions in the Du et al. paper using the Witt
basis to the formulas using the modified Witt basis. To begin, we look at vectors in R?. A comparison of
the two shows that the squared length formula of a vector v is simpler in modified Witt basis as compared
to the Witt basis:

Witt Basis  Modified Witt Basis

V[Z =2v - v* [v]2 =v-v*.




Table 2: Formulas for squared length, area, and volume of the line segment, triangle, and tetrahedron
associated to the corresponding blades

Object Witt basis Modified Witt basis
Line segment | = py A p3 TP =8(wg ) (" wo) [P = (g - D) - (" - wo)
Triangle ™ = p; A p2 A ps I[T1]]? = —4(wg - T0) - (IT* - wo)  ||7]|? = —(wg - 71) - (7% - wp)
Tetrahedron A =p1 Apa Aps Aps  ||A|2 = L(wh - A) - (A% -wp)  [JA|]2 = 2 (wf - A) - (A% - wp)
Dual plane IT*]| = 3 In*|] [l = [In*]|
Dual tetrahedron [II*]] = [InT A n3]| [1I¥]] = ||n% A n3|

3.1 Duality of AW and AW?* Subspaces

Du et al. note that AW and AW* are dual spaces, and show how to map between these two spaces. In this
section, we show how this mapping changes when mapping between AW and AW™.

| and I* map between elements in W and elements in W*. Let | and I* be the pseudo-scalars in AW and
AW*:

|:W0/\W1 AN TOWARE

* ok * * *
I" = wy Awy Aws Aws

Similarly, let I and I'* be the pseudo-scalars in AW and AW™*:

I = wg ANwi N wg Aws
I" = wy Awi Aws A ws

Because w; - w; = 1 while w] - w; = %, the mapping between the AW and AW™ spaces is simpler in the
modified Witt basis than in the Witt basis:

Dual Witt Basis Modified Basis
dual(f) — 2%mO+f |* f-I
dual(f*) 23—dim(f*)f* A f* T

where f,f* and f, f* are geometric objects in the AW and AW* spaces and AW and AW™* spaces.

3.2 Points, lines, planes, and quadrics

Du et al. used a standard homogeneous representation for points, lines and planes. For example, a homoge-
neous point is represented as

P = DpoWo + p1wi + pawa + p3ws
For a plane in 3-dimensions with the homogeneous implicit equation
S(zo,z1,T2,23) = SoTo + S1T1 + SaT2 + S3x3
where s1, So, S3, So are constants, the normal to this plane is
n: = 51wy + Sawj + S3wj,
and Du et al. represent planes in the dual space as

M* = sowy + s1wj + sawj + s3wj



Table 3: Equations for points, vectors in planes, and points on quadric surfaces.

Witt basis Modified Witt basis
PH: = %S(x()ax17x27x3) p'W;:S(m()vxlaanxB)
ni-(a—p) =351, 41,42 4s) ny - (¢ —p)=S,q,q,qs3)
P(po, 1, P2,P3) - br - p*(po. P1. D2, p3)  P(Po, P1,P2,P3) - bF - P* (P, D1, D2, P3)
= %F(p07p17p27p3) = F(p05p15p27p3)

For a quadric surface

3
F(xo, 21,22, 23) = E AijTiT
4,j=0

where \; j = Aj;, Du et al. used the bivector representation of Parkin [4]:

3
*
bF = E )\iJ’Win.

2,7=0

For all these objects (points, vectors, lines, planes, normals, and quadric surface), their representation
relative to the modified Witt basis is the same as their representation relative to the Witt basis, using w;, w;
in place of w;, w;. However, there are scalar differences in the equations for testing if a point lies on one of
these objects.

Table 3 gives the equations for testing whether a point p,p or a vector v,v lies in a plane I, 7. Note
that the Witt basis introduces factors of % when evaluating the implicit function S, while the modified Witt
basis does not. While these formulas are simpler relative to the modified Witt basis, the importance of the
powers of % will depend on whether or not one wants the exact expression of the implicit surfaces; i.e., we
are often interested in whether a point (or vector) is in the plane (the equations in Table 3 are zero) or not
in the plane (the equations in Table 3 are non-zero), in which case the factor of % in the equations relative
to the Witt basis could be omitted.

In both representations of R(4,4), the outer product null space representation of lines and planes is
formed as the outer product of two distinct points (for the representation of a line) and the outer product of
three non-colinear points (for the representation of a plane). These objects can be intersected in the standard
way with either representation of R(4,4). See the paper of Du et al. [3] for details on the outer product
representation of lines and planes, and in particular for details on forming these objects with weighted points
and points at infinity.

3.3 Intersections of lines, planes, and quadrics

There are two ways to represent lines: as the join of two points and as the intersection of two planes [5].
The intersection of two objects in R(4,4), one represented in primal form and the other in dual form, can
be computed using the inner product. For a line | (1) and a plane II (7*), and for two planes, I (7) and IT*
(7*) in the Witt basis (the modified Witt basis), their intersections are given by

Witt basis Modified Witt basis

|- IT* l-7*
II - IT* mT-T*

In both models of R(4,4), we can also intersect lines and planes with quadric surfaces. Table 4 gives the
intersection formulas in both the Witt basis and in the modified Witt basis for intersecting the z-axis with an



Table 4: Intersection of the z-axis (I* = wj Awj) and a quadric surface bp with the Witt basis and with the
modified Witt basis. I' = wg A w1 A wa A ws A w§ Awj A ws Awj is the pseudo-scalar of R(4,4)

Witt basis Modified Witt basis
P,=(I"Abp Al)-T P,=(*Abp Al)-T
:(W;/\WT/\bF/\Wl/\WQ)r :(wék/\wf/\bp/\wl/\wg)F
= 76%4()\00\/\/3 N W; - )\30W0 A W; = —(>\00’w3 A U.)%< - )\3011.)0 N w§
—A03w3 A WG + Azzwp A WS) —Aosws A w§ + Azzwo A U}S)

Table 5: Comparison of the distance between two points py, p2; a point p and a line [; and a point p and a
plane IT with the Witt basis and the modified Witt basis

Measure Witt basis Modified Witt basis
Distance between points p; and po
dist(py, p2)?

Distance between point p and line I dist(p,|) = 2HH”N|I dist(p,l) = %

2(p2 —p1) - (p3 —pP7) (P2 —p1) - (p5 — i)

\
Signed distance between point p sdist(p, TT*) = |F\)ﬁr£*\| sdist(p, %) =

and plane 7*

p*
[[7]|

arbitrary quadric surface; Du et al. extend this special case intersection to arbitrary lines by applying affine
transformations, noting that affine transformations are inner and outer morphisms [3]. Note the coefficient
of 1/64 when using the Witt basis compared to the coefficient of 1 in the modified Witt basis.
In both models, the intersection of a quadric surface bp in W* A W with a plane 7* in W* is the conic
curve
C=mng NBp A 7T§.

A point p lies on a conic C' if and only if p- C - p* = 0.

3.4 Distances and Angles

Formulas for the distance between two points, or a point and a line, or a point and a plane in R(4,4) with
both bases are shown in Table 5. Comparisons of distances and angles between two lines and two planes in
R(4, 4) with both bases are shown in Table 6. While some of these formulas are identical, others have a
factor of 2 when using the Witt basis that is not present when using the modified Witt basis.

3.5 Barycentric coordinates

Barycentric coordinates represent a point as an affine combination of the vertices of a simplex. The formulas
for barycentric coordinates using the modified Witt basis are the same as those represented with the Witt
basis; although powers of 2 appear in the computations, these powers of two cancel in the ratios of the
formula. Table 7 gives these barycentric coordinate formulas.

4 Transformations in R(4,4)

Goldman-Mann [2] used the rotors constructed from the generators E;;, F;;, K; of Doran et al. [1]:

Eij = €i€j:|:éiéj

Fij = €;€; — €;€;



Table 6: Comparisons of distance and angles between two lines and two planes in R(4, 4) with Witt basis

and with the new basis

Measure Witt basis Modified Witt basis
Distance between two skew lines 1, l» dist(ly,lz) = pﬂi)ﬁun dist(ly,1l3) = p(lfzr' ul

Distance between two parallel lines [, lo
Angle 6 between oriented lines I; and [y

Signed distance between
parallel planes 71, 7o

dist(ly,12) = dist(p(l2), 1)
2w ) (wo 13)
c08(0) = T T Two 21

SdZSt(Hl y H2)

2(wg - (woAITy))- (wo- (wiy ATTS))

dist(ly,lo) = dist(p(l2), 1)

 (wgy) (wo-ls)
c08(0) = Tt nMwo ]

sdist(rm1, 7o)
= sdist(p(ma), m1)

= sdist(p(Ilz),11;)

Angle 6 between planes 7} and 75 cos(0) w2 ~(wo ATI: ) [TTwo - (w2 AT

Table 7: Table of barycentric coordinate formulas; these formulas for the same for both the Witt basis and
the modified Witt basis.

Barycentric coordinates Formula

_ _ (=D (pAp))-(p1Ap2)*
p="bip1 +bapa, b1 + b2 =1 b = (plApz)'(;l/\Z;)*z

_ _ - (pApiAPR)-(P1AP2AP3)"
P ="bip1 +bapa +bsps, by +ba+b3 =1 by = (7 Ce T oIS )
b, — (PAPAPLAPY) (P1/AP2AP3AP4)
3 (P1AP2AP3AP4)-(PLAP2AD3AD4)*

D = bip1 + bapa + b3ps + bapa,
by + b+ by + by = 1

— 1 — .5
Ki = EFM = €;€;.

When applied to points (which are represented in the w;, w; basis of Equation 1), Goldman-Mann showed
that rotor generated by K; is non-uniform scaling in the w;-direction, the rotor generated by E;; is rotation
in the w;w;-plane, and the rotor generated by Fj; is a scissors shear in the w;, w;-plane.

When applying these rotors to points represented in the w;, w; basis of Equation 2, we obtain the same
equations as when applying these rotors to points represented in the w;, w; basis; i.e., there were no powers
of two distinctions between these formulas. We illustrate this result for K;; proofs for F;; and F;; are similar.

4.1 K; = ¢;6;: non-uniform scaling in the w;-direction
Following the derivation of Goldman-Mann, we have e?¢:® = cosh(f) + sinh(f)e;e;, since (e;&;)? = 1. Ap-
plying the rotor e’¢:¢ to e; and é&;,
(cosh(6) — sinh(8)e;é€;)e; (cosh(8) + sinh(f)e;é&;) 3)
= (cosh?(#) + sinh?(#))e; + 2sinh(#) cosh(h)é;

and
(cosh(f) — sinh(0)e;ée;)e;(cosh(f) + sinh(f)e;ée;) @)
= (cosh?(#) + sinh?(6))é; + 2sinh(#) cosh(h)e;

Adding equations 3 and 4 and dividing by 2 yields
(cosh(8) — sinh(0)e;e; )w;(cosh(6) + sinh(0)e;é;)
= (cosh?(6) + sinh?(#) + 2sinh(8) cosh(6))w;
= (cosh(26) + sinh(26))w; = e*’w;

oy (wg (woAT)-(wo: (wi ATS))
c08(0) = 1t Amn) Mwo-(ws A



Table 8: Other nonsingular linear transformations on R(4,4) with old basis and new basis

Witt Modified Witt

Reflection 2w A w; wi A w;
Classical shear wjw;, i # j %wfwj, i1#£ ]

while adding equations 3 and 4 and dividing by /2 yields

(cosh(6) — sinh(f)e;&;)w;(cosh(#) + sinh(0)e;é&;)
= (cosh?(#) + sinh?(#) 4 2sinh(#) cosh(8))w;
= (cosh(26) + sinh(20))w; = e*%w;

For i # j, e;, €; commutes with e;e;, so in either basis
(cosh(@) — sinh(6)e;€;)w;(cosh(f) + sinh(f)e;é;) = w;

Subtracting equations 3 and 4 and dividing by v/2 gives the applications of the rotor e?¢:® to elements
in the space W*:

(cosh(f) — sinh(f)e;e;)w] (cosh(f) + sinh(h)e;ée;)
= (cosh(26) — sinh(26))w;
= (cosh(—26) — sinh(—20))w; = e ?%w?.

1
For i # j, e;, €; commute with e;€;, so in either basis

(cosh(0) — sinh(0)e;e;)w] (cosh(#) + sinh(F)e;e;) = w;]

Similar derivations show that the rotors generated by FE;; and Fj; operate in the same manner on both
the w;, w) basis and the w;,w} basis, since in all three cases, the rotors have the same effect on the e;,é€;

basis, and our choice of w or w just results in combining the results on e; and é; with a factor of % or %

4.2 Other Nonsingular Linear Transformations in R(4,4): Reflection and Clas-
sical Shear

Goldman-Mann [2] derived two nonsingular linear transformations for reflection and classical shear using
the Witt basis; we rederive these formulas for the modified Witt basis. A comparison of these two sets of
formulas is shown in Table 8. As examples of how the powers of 2 differ for the transformation formulas
using the Witt basis and the modified Witt basis, we give a detailed derivation of reflection with the Witt
basis and with the modified Witt basis.

4.3 Reflection: 2w Aw; vs w; A w;

We reproduce here a variation of the proof that the rotor R; = e;€; is a reflection [3] to show an example of
the use of the formula for reversing wjw;. In the Witt basis we have

ei€i = (w; +wj)(w; —w;)

* * *
= wiw; —ww; = 2w; Aw;

To see that R; is a reflection, we first show that

— w* Ly
e;,w;e; = Wi 5 €iWZ— €, = W;
= S gk San¥s. —
EiW;€; = W,y  €;W; € = Wy,



Expanding the first of these equations,

ewe; = (W1+W) s(wi +w)) = wiwg (wy + w))

wiw;w! = (1 —w;w))w) = w;. (5)

The proofs for the other three equations are similar.
We now see that R; = e;e; is a reflection:

RZIWZRZ = (—éiei)wi(eiéi) = —W;

Rl_lwfRz = (7éi€i)W;k(€iéi) 7W;k

Writing the rotor e;€; in the modified Witt basis, we have

V2(wi +wy) V2(wi — wy)
2 2

€6 =
1 * *\ %
i(wzwz —w;w)) = wi Aw;

Thus, expanding e;, €; in the two variants of the Witt basis introduces different powers of 2.
The proof showing that e;€; is a reflection in the modified Witt basis is essentially the same as the proof
in the Witt basis. But the expansion of e;w;e; is

2(w; * 2(w; x 1, .
ejwie; = \f(w —i—wl)wi\[(w +w1):*w¢wi(wi+wi)
2 2 2

1

= Juiwiw; =g w;w; )w

= wl. (6)

Comparing Equation 5 to Equation 6 gives an example of the two variations of the formula for swapping
w;, w); in the example in these two equations, the powers of two cancel in the modified Witt basis, yielding
the same formula for reflection when the rotor R; is written as the geometric product of e;, €;, although when
expressing R; as the outer product of w;, w;, a factor of 2 appears when using the Witt basis.

4.4 Transformations relative to w, w*

Goldman-Mann [2] rewrite rotors to get an expression in terms of the basis w;, w;, w}, wj. The derivations
using the modified Witt basis are essentially the same the derivations using the Witt basis in Goldman and
Mann’s paper; Tables 9 and 10 give a comparison of transformations using the Witt basis w;, w;, w;, w} and
the modified Witt basis w;, w;, w;, wj. With the exception of shear, the formulas in the modified Witt basis

are simpler (do not have factors of 2) than those in the Witt basis.

5 Conclusions

In this paper, gave a variation on an earlier R(4,4) model [2, 3]. The only difference between our variation
and the earlier model of R(4,4) is in a scaling factor for one of the bases. With this new basis, the coefficients
in the geometric formulas are mostly unity (as compared to powers of 2 when using the original basis). In
addition, the coefficients in the transformation formulas are also simpler.
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Table 9: Blades and the corresponding rotors and transformations on R? based on classical shear in R* with
old and new bases

Blade w-Rotor w-Rotor Transformation
w; A w; Classi .
v N . 1, 4 assical shear in the w;w;-plane
iz;é 7&] 0 L twi Awg o L gtwi Aw; (Only w;-direction changes)
wg A wj . _ 1, _ Classical shear in the w;w;-plane
j#0 Ltwo Awg 1+ gtwg Aw, (Only w;-direction changes)
*
w]? 7/;15)0 1—wji Awg 1-— %w; A wo Pseudo-perspective normal to w;-direction
wi A w
z'l £0 ' c+2swiAw; c+swiAw; Nonuniform scaling by €% in the w;-direction
wi Awy ¢+ 2swi Awg ¢+ swg A wp Uniform scaling of points by =2

Table 10: Rotors for rotation and scissors shear (s = sin(6), ¢ = cos(#)); Scissor Shear Generator: e;€; —é€;e;.
Rotation Generator: €i€; — €;€;.

Transformation w-Rotor w-Rotor

&+ 2sc(wf Awy —wi Aw;) 4 se(wf Awy —wi Aw)

Rotation by 20 in w;w;-plane +4s2(w} A w; ) (W) A w;) +82(wi A w;) (W} A w;)
2 * * 2 * *
. . ¢+ 2sc(wf Awj +wiAw;) ¢+ se(wf Aw; +wi Aw;)
h w.:-pl i J J v g J J v
Scissors shear in w;w;-plane —4s® (Wi A wg)(wh A w;) —s*(wf A w;i)(w) Aw;)

10
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