Technical Report CS-2022-01, School of Computer Science, University of Waterloo

Synthesizing Guide Programs for Sound, Effective
Deep Amortized Inference

JIANLIN LI, University of Waterloo, Canada

LENI VEN, University of Waterloo, Canada
PENGYUAN SHI, University of Waterloo, Canada
YIZHOU ZHANG, University of Waterloo, Canada

In probabilistic programming languages (PPLs), a critical step in optimization-based inference methods is
constructing, for a given model program, a trainable guide program. Soundness and effectiveness of inference
rely on constructing good guides, but the expressive power of a universal PPL poses challenges. This paper
introduces an approach to automatically generating guides for deep amortized inference in a universal PPL.
Guides are generated using a type-directed translation per a novel behavioral type system. Guide generation
extracts and exploits independence structures using a syntactic approach to conditional independence, with a
semantic account left to further work. Despite the control-flow expressiveness allowed by the universal PPL,
generated guides are guaranteed to satisfy a critical soundness condition and, moreover, consistently improve
training and inference over state-of-the-art baselines for a suite of benchmarks.

This technical report accompanies Li et al. [2023].

1 INTRODUCTION

A Bayesian probabilistic model denotes a distribution p(Z, X), where random variables Z are
called latent and X observed. Bayesian inference is aimed at calculating p(Z|X = x), the posterior
distribution of latents Z given observed data x.

Probabilistic programming languages (PPLs) are powerful tools for modeling Bayesian-inference
problems. Universal PPLs, in particular, offer linguistic features including stochastic branching
and general recursion, making it possible to express mixture models, probabilistic context-free
grammars, kernel induction models [Le et al. 2019; Saad et al. 2019], and so forth.

PPLs also provide inference methods for solving inference problems. Optimization-based methods,
such as variational inference [Jordan et al. 1999], are taking hold in some PPLs empowered by deep
neural networks [Bingham et al. 2019; Tran et al. 2018]. They consist in approximating the true
posterior p(Z|X = x) of a model program using a neural guide program g4 (Z) where ¢ stands for
neural-network parameters: they optimize an objective function via gradient descent, searching
for ¢ that makes g4(Z) close to p(Z|X = x). Notice that guide programs must be free of observed
random variables.

Deep amortized inference [Paige and Wood 2016; Ritchie et al. 2016; Le et al. 2017; van de Meent
et al. 2021, §8] is based on optimization and profits from learning amortized guides. Amortization
is an ingrained idea in machine learning literature [Hinton et al. 1995; Kingma and Welling 2014].
Rather than training neural networks every time a new observation is given, amortized inference
trains ahead of time a guide program q4(Z;x) that takes an observation x as input. Then, at run
time, inferring p(Z|X = x,) for actual observations x, is cheap using q4(Z; %), amortizing the
upfront cost of training ¢. Optimization and amortization help inference scale for probabilistic
programs that need to be applied repeatedly to different observations.

Constructing good guides is critical. Ahead-of-time training and run-time inference are (1) sound
only when model-guide pairs satisfy absolute continuity and (2) are most effective when guides are
faithful yet parsimonious in terms of the conditional dependences they encode:

(1) Absolute continuity, informally speaking, is a soundness condition requiring two distributions
to have compatible supports. A guide with an incompatible support causes inference to crash
or produce incorrect results [Lee et al. 2019].

HTTPS://ORCID.ORG/0000-0001-7371-3034
HTTPS://ORCID.ORG/0000-0002-6033-9140
HTTPS://ORCID.ORG/0000-0002-7949-0406
HTTPS://ORCID.ORG/0000-0002-8206-4694

2 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

(2) Faithful guides do not contain conditional independences not found in models—missing correla-
tions make guides unable to express true posteriors even if they had unbounded neural-network
capacities (i.e., number of trainable parameters). Parsimonious guides do not encode more con-
ditional dependences than necessary—excessive correlations introduce computational burdens
as ahead-of-time training has to unlearn them to uncover true posteriors [Webb et al. 2018].

Mainstream PPLs currently have limited support for emitting guide programs. In Pyro, for
example, the autoguide [2022] library works only for non-universal probabilistic programs, does not
guarantee absolute continuity, and ignores faithfulness altogether. Creating good guide programs
remains a demanding, error-prone task.

This paper introduces an approach to automatically generating guide programs for a universal
PPL. Generated guides enjoy strong soundness guarantees and consistently improve training and
inference over state-of-the-art approaches, despite the expressiveness allowed by the universal PPL.
We first review relevant background in Section 2. We then identify technical challenges and our
core contributions in Section 3.

2 BACKGROUND

Bayesian Networks (BN). Absent of branching and recursion, straight-line probabilistic programs
are essentially BNs [Pearl 1988]. An example is model in Figure 1. In the BN next to it, nodes [a],
[b], and are variables in the model. Shaded node stands for the observe statement.
Edges signal dataflow: data in a, b, and obs flow to the observe statement.

a and b are conditionally dependent on each other, because the observe statement conditions the
model on a+b being close to obs. This correlation is visualized by the ground-truth plot labeled
p(a, blobs), which is obtained by the asymptotically exact inference method MCMC.

BN Active trails. Conditional independence can sometimes be read off from BNs. This reasoning
is via a notion of active trails [Pearl 1988]. Let Xj, Xy, ..., X;, be a trail (i.e., an undirected, acyclic
path) in a BN. The trail is active given a (possibly empty) set Z of nodes in the BN when

(i) for any chain X;_; —X; < Xj,1 (called a collider), X; or one of its descendants is either in Z

or a conditioning node (namely); and

(ii) no other nodes in the trail is in Z or is a conditioning node.

Whenever there is no active trail between any X € X and Y € Y given Z, we have that X and Y are
independent given Z (notated X LY | Z).

Consider the BN to the right. We can assert x3 1Lx4 | x2: knowing x2 falsifies condi-
tion (ii), deactivating the trail [x3)¢—[x2]—[x4] Similarly, we have x11x4|x2. But we ,
cannot assert x11x4 | x3 or x11.x4 | x5 due to condition (i): knowing x3 or its descen-
dant x5 activates the collider —><—. In Figure 1, we cannot assert allb: the

collider [a]—][observe(...) J«—[b]is active because of the conditioning.

Traces and universal probabilistic programming. A universal PPL equips a Turing-complete
language with constructs for sampling and conditioning [Goodman et al. 2008]. It supports linguistic
features including stochastic branching and general recursion, so it allows a stochastic set of random
variables (RVs) to be sampled every time a program is run. BNs assume a fixed set of RVs, so in
general, BNs cannot express programs in universal PPLs.

Traces are a common semantic notion underlying many universal PPLs [Wood et al. 2014;
Siddharth et al. 2017; Bingham et al. 2019; Mansinghka et al. 2018; Cusumano-Towner et al. 2019;
Tran et al. 2018]. Running a probabilistic program generates a trace: the trace records RVs and their
values sampled in that run. The semantics of a program is characterized by a distribution over the
measure space of all possible traces.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 3

Addresses are unique names identifying RVs in a trace. Consider the recursive function pcfg
(written in Pyro) in Figure 2a, which models a probabilistic context-free grammar. A possible trace
of this program is

["_A":.7,"_D1_A":.3,"_D1_C":2,"_D2_A":.1,"_D2_C": 9], (2.1)
which will result in the expression Add(Const(2), Const(9)) in the context-free language.
Deep amortized inference. The ahead-of-time training stage of amortized inference searches for ¢

that makes g4 (Z;x) similar to p(Z|X = x) on average for most x. More precisely, it solves the
following optimization problem:

argming Eyp(x) [KL(p(ZIx) || g4 (Z;%))] (2.2)

where p(Z|x) abbreviates p(Z|X=x), and the Kullback-Leibler divergence quantifies how similar
two distributions are. Objective (2.2) can be simplified to

argmin,, E,x 5z x) [— log q4(z; x)] , (2.3)

which is convenient: training data z, x ~ p(Z, X) can be generated simply by running the model
program p(Z, X) repeatedly. We note that a variant of amortized inference [Ritchie et al. 2016]
optimizes a different objective, known as the evidence lower bound (ELBo):

argmax Z gy zxi) [log p(z,x;) — log q4(z;x;)] . (2.9)

Objective (2.4) requires a training dataset {x;, ..., X, } be provided, as indicated by the summation
over X; in (2.4). In this paper, we focus on the first type of amortized inference that uses objective (2.3),
but our technical contributions can in principle be applied to the ELBo objective (2.4).

The run-time inference stage performs importance sampling (IS), per the equation

P(Z» XO)
qp(z:%0) |

Given observation x,, IS approximates p(Z|x,) by sampling z from the trained proposal distribution
q¢(Z;x,) and weighting samples z by their importance ratio p(z, Xo)/q4(z;%o).

p(ZIx0) = p(Z %) / By Zo) [(2.5)

3 PROBLEMS AND CONTRIBUTIONS
3.1 Absolute Continuity (AC)

Crucially, soundness of both training and inference relies on AC. First, per formula (2.5), IS is
unbiased only when p(Z, x,) is absolutely continuous with respect to g4 (Z; x,), written as p(Z, x) <
q¢(Z;x,). That is, in a trace-based PPL, for samples from g4 (Z; X,) to asymptotically approximate the
posterior, g4 (Z; Xo) is required to have non-null probability on any measurable set of traces on which
p(Z,%,) has non-null probability. Second, objective (2.3) is defined only when p(Z,x) < q4(Z;x),
lest logarithm-of-zero errors.' Furthermore, the ELBo objective (2.4) is defined only when AC holds
in the other direction: q4(Z;x;) < p(Z,x;). Indeed, AC is a pervasive soundness condition required
by many inference methods (e.g., MCMC).

It is simple to verify AC when probabilistic programs can be described as BNss: it suffices to
check that two programs contain the same set of RVs. For example, in Figure 1, model is absolutely
continuous with respect to both guides, even though the guides reverse the order a and b are
sampled. All three programs have the same support made up of two RVs: a over R and b over R,.

Control-flow expressiveness of universal PPLs pose challenges to a formal argument, however:
branching and recursion allow a stochastic set of RVs to be sampled every time a program is run.

!Gradient descent further requires differentiability, which is studied in other work (e.g., Mak et al. [2021]).

4 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

def model (obs) = - p(a,blobs) p(a,blobs):
a = sample(NORMAL(0; 2)) : - O
b = sample(GaMMA(3; 2)) : \ a rijmated via MCMC
observe(NORMAL(a+b, 005), ObS) :1—,—(—,——4—?5 PP
def guide1 (obs) = O LD
x1, x2 = NNb(obs)] [qi(ab) " pr(ablobs) samples from trained
b = sample(GAMMA(x; x2)) ' N g}ndel ind guide2 for a
y1, y2 = NNa(obs) s : . given obs
a =sample(NormaL(yl;y2)) — o p1(a,blobs) and
. p2(a, b|obs):
def guide2 (obs) = , pa(a
<1 gX2 _ N(N b()obs) El<—|£| g2(a,b) " - py(a,blobs) posteriors inferred via
b = sample(GamMMA(x1; x2 : : N eI SRl
yl,y2 =pNIEIa(obs, b() ! e N T
e 7+ guide2 as proposals

a = sample(NoRMAL(y1; y2))

Figure 1. Soundness: model is (trivially) absolutely continuous with both guidel and guide2, despite that
the guides reorder a and b. Faithfulness: guide2 faithfully captures conditional dependence between a and
b given obs, whereas guidel considers a and b independent given obs. The payoff of being faithful is that
guide2 leads to higher-quality posterior samples than guidel.

Consider the guide in Figure 2b, manually created for the PCFG model in Figure 2a. It might appear
that the guide is compatible with the model: half the time it samples a leaf node of the syntax tree,
and the other half the time it recursively generates subtrees. But it has two sources of unsoundness:

e Its branching condition a > .5, different from the model’s, causes the guide to execute different
branches—and thus sample different RVs—than the model. The support mismatch causes accesses
to unavailable addresses, crashing a typical inference engine. Notice, however, that reordering of
the subtrees by the guide does not change the distribution’s support and is thus not unsoundness.

e Second, RVs at addresses L +"_C" have a smaller support (R;) than they do in the model (R). The
mismatch can lead to logarithm-of-zero errors, NaNs, or biased estimates.

The run-time errors are frustrating when they happen deep into the gradient-descent loop. Even
worse is when programs return normally but with incorrect results.

State-of-the-art approaches. The challenge has led to recent work on type systems for ensuring
AC statically [Lew et al. 2019; Wang et al. 2021]: a model and a guide are guaranteed to satisfy
AC if they have compatible types. Unfortunately, these systems are not geared to automatic guide
generation, and more critically, they restrict expressible models or guides. Lew et al.’s type system
supports only limited forms of branching and loops, and it disallows general recursion. Wang
et al. address specifically these limitations, but their coroutine-based semantics requires a guide
to perform computations in exactly the same order as its model does (thus failing to type-check
trivially sound guides such as guidel and guide2 in Figure 1).

These restrictions have implications to modeling power and to performance. Without general
recursion, it is difficult to express useful models including probabilistic context-free grammars
[Manning and Schiitze 1999]. Without the possibility to reorder RVs, faithful guides may require
denser dependence structures than otherwise avoidable (see Figure 16, for example), which can
reduce training performance as we show later.

3.2 Faithfulness and Parsimony

Faithfulness matters. Effectiveness of IS is highly dependent on having good proposals. In amortized
inference, IS yields low-variance estimates if ahead-of-time training makes the proposal distribution

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 5

a = pcfg("") # main program a = pcfg("", obs) # main program
X = tensorize(a)
sample("obs", Normal(x,1), obs=obs)

def pcfg (L, obs):

def pcfg(L): #L is address prefix a = sample(L+"_A", Uniform)

a = sample(L+"_A", Uniform) if a> .5:

if a < .5: C1,C2 = NNC(obs)
c =sample(L+"_C", Normal(@, 1)) c = sample(L+"_C", Gamma(C1, C2))
b = Const(c) b = Const(c)

else: else:
d1 =pcfg(L+"_D1") # left subtree d2 = pcfg(L+"_D2", obs) #right subtree
d2 = pcfg(L+"_D2") #right subtree d1 = pcfg(L+"_D1", obs) #left subtree
b = Add(d1, d2) b = Add(d1, d2)

return b return b
(a) PCFG model, written in Pyro (b) PCFG guide, written in Pyro

Figure 2. Implementation of a probabilistic context-free grammar (PCFG). The guide breaks AC as required
by formulas (2.2) and (2.5). It is unfaithful, as it introduces conditional independences not found in the model.

q¢(Z;x,) similar in shape to the true posterior p(Z|x,). But an unfaithful guide could not represent
the true posterior even if it had infinite neural-network capacities, because it cannot encode some
conditional dependences present in the model.

In Figure 1, guide? faithfully expresses that a and b are conditionally dependent given obs using
the highlighted code. By contrast, guidel considers a and b independent. Thus, after training neural
networks NNa and NNb, guide2 can approximate true posteriors much better than guide1, as shown
by plots ¢»(a,b) and g;(a,b). In turn, at run time, IS with guide2 leads to much higher-quality
samples than IS with guidel, as shown by plots p,(a, blobs) and p; (a, blobs).

Parsimony matters too. Parsimonious guides do not encode more conditional dependences than
necessary. Given that training budgets and network capacities are finite, it would be wasteful to
expend resources on unlearning spurious correlations that could otherwise be ruled out from the
get-go. As we show later, parsimonious guides can indeed lead to better convergence.

Notice that parsimony of dependences is not in conflict with overparameterization of neural
networks. Overparameterized networks have many more trainable parameters than there are
training examples. It has been observed that they can make training easier while improving
generalizability [Zhang et al. 2017]. A parsimonious guide can choose to overparameterize its
neural networks.

State-of-the-art approaches. Methods for automating the design of faithful guides exist in the
machine learning literature. Webb et al. [2018] construct faithful, parsimonious guides for BN
models, but the approach is not applicable to universal PPLs with branching or recursion. For
instance, the approach cannot handle the PCFG model in Figure 2a.

In fact, it is not entirely clear how to even manually create a faithful, parsimonious guide for the
PCFG model, because of general recursion. Unsoundness aside, the guide in Figure 2b is unfaithful.
It is based on the simplifying mean-field assumption that RVs are conditionally independent (given
obs). Mean-field guides are a standard default in practice for variational inference [Zhang et al.
2019], but as our experiments confirm, they may lead to unsatisfying results for PCFG-like models
that exhibit strong correlations between RVs.

To handle branching and recursion, Le et al. [2017] construct guides using advanced recurrent
neural networks (RNNs) such as an LSTM, effectively treating any two random variables as cor-
related. Thus, RNN guides may be non-parsimonious, and so ahead-of-time training must work
extra hard to uncover independences. As we also show, RNNs’ tendency to forget long-range

6 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

typing derivations

trace-type system §4

model

guide generation §6

guide

dependence graphs

dependence analysis §5

Figure 3. Workflow of the Fidelio guide generator

dependences may weaken its correlation-preserving guarantee for RVs sampled far apart. What is
needed of a guide generator is the ability to take into account structures of probabilistic programs.

3.3 Contributions

Figure 3 shows how our guide generator (called Fidelio) works. In Section 4, we design a behavioral
trace-type system capturing probabilistic effects and control flow—compatible typing implies
absolute continuity. In Section 5, we construct dependence graphs for probabilistic programs
(PDGs) and adapt the notion of active trails from BNs to PDGs—active trails suggest possible
correlation. Guide generation is then a type-guided, dependence-aware translation (Section 6).

A unique combination of features in the Fidelio semantics enables it to offer soundness guarantees
while permitting expressiveness. First, traces are tree-structured rather than lists. So a guide can
reorder computations that are subtrees of a parent, while generating the same set of traces as its
model. Second, trace types are lightweight dependent types that can track control flow through
what we call checkpoint expressions. So a model is free to use stochastic branching and general
recursion, while being well-typed.

We prove that our type system is sound: compatibly typed model-guide pairs satisfy AC (The-
orem 4.5). We prove that generated guides preserve typing (Theorem 6.1). As a result, AC is
guaranteed by construction (Theorem 6.2). We also show that our type system allows more models
and guides to be typed using a collection of programs from literature (Section 8.1).

Incorporating program dependence information in guide generation is new in itself; existing
approaches assume either independence or correlation altogether. Our use of PDGs, augmented
with hidden states and empowered by the idea of active trails, enables modularly capturing control
dependences that cannot otherwise be expressed by BNs. We note that this treatment of conditional
independence is syntactic and not proven sound; we leave a semantic account to future work.

Our evaluation of the dependence analysis focuses on assessing whether it benefits training
and inference in practice (Section 8.2). Experiments show that being dependence-aware in guide
generation pays off: Fidelio-generated guides consistently improve on state-of-the-art baselines for
a diverse set of inference problems.

4 ABSOLUTE CONTINUITY BY TYPING

In Section 4, we establish a reasoning principle (Theorem 4.5) for proving absolute continuity of
models and guides, based on typing. Section 6 then uses the reasoning principle to derive the static
guarantee of absolute continuity for automatically generated guides.

As alluded to in Section 3, our system addresses AC while permitting expressiveness, by using
tree-structured traces and checkpoint-dependent trace types. We formalize this semantics using the
Fidelio Core Calculus (FCC), which captures core aspects of the language supported by Fidelio.

4.1 Syntax of FCC

Figure 4 defines the syntax for FCC programs. Identifiers (i.e., variables and global names) are
notated in blue. Capture-free substitution is notated - {-/-}: for example, m {v/a} substitutes a
value v for a term variable a in command m.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 7

expressions e = x|a|unit|true|false|r|n|Ax.e|ops(er,...en) | app(er;ez)

| let(er;x.e2) | if(e;er;ez) | D(ers...;en)

§4.1 distributions D = BERN | UNIF | BETA | GAMMA | NorMAL | CAT | GEO | Pors
’ terms t == sample(e) | m | ite(e; mq;mp) | call(f;er; e)
commands m = ret(e) | observe(ej;ex); m|x=e;m|a=t; m
function definitions F = def f(a)(x) =m
values o,d = unit|true|false |r|n|Ax.e| D(v1;...;0n)
§4.2 events s u= atomo |traceo |injo | foldo
traces o = {a:s}
datatypes 7 = 1|2|R[g1][R+|RI[Nn|[N]|7 — 75]dist(r)
= F
event types S atom | trace X | X1 +¢ 22 | F(e) expression variables %y, h
§4.3 trace types X = {a S } . term variables a,b,c
function signatures S = f:(r1)(12) ~ 3 #F function names f
trace-type definitions 7 = typedef F=Va: 7.3 trace-type names F

Figure 4. Syntax of the Fidelio core calculus (FCC)

FCC has a pure, deterministic fragment and a monadic, probabilistic fragment. The pure fragment
consists of expressions. It is a simply typed lambda calculus equipped with booleans, natural
numbers n, real numbers r, n-ary operations, and various primitive distributions. n-ary operators
op,, can be neural networks as well as arithmetic and logical operators. The monadic fragment
consists of terms and commands. They have mutually recursive syntax:

e A term can sample from a distribution sample(e); be a nested command m; perform branch-
ing ite(e; my; my), where the branches are commands; or invoke a function call(f; e;; e;). We
shall write ite(e; my; m,) using if-then-else in examples.

e A command sequences computations, ending in ret(e). Three forms can be sequenced
with a command m to form a larger command: (i) x = e binds an expression variable x to
expression e in m, (ii) a = ¢ binds a term variable a to term t in m, and (iii) observe(e;; e;)
conditions on observed data e, being drawn from distribution e;.

An FCC program is a global set of possibly mutually recursive function definitions 7, as well as
a “main” command. The syntax def f(a)(x) = m assumes for simplicity that { takes two arguments
as input (one for a and one for x), but we shall relax this restriction in examples.

Figure 5a defines the same PCFG model program as Figure 2a, using FCC syntax. The program is
composed of a main command (top) and a recursive function (bottom). Figure 5b is the automatically
generated guide program, also in FCC syntax. By the end of this section, we will be able to show
that these two programs have the same trace type.

Sections 4.2-4.4 give an operational semantics, a static semantics, and a measure semantics,
respectively, allowing a formal notion of AC for FCC programs.

4.2 Operational Semantics of FCC

This section defines a trace-based, big-step operational semantics, in a style similar to prior trace-
based semantics for universal PPLs (e.g., Borgstrom et al. [2016]). But unlike the prior semantics,
traces in FCC are tree-structured rather than lists, and they can record not just sampling but also
control-flow events while avoiding imposing a total ordering on these events.

Expressions evaluate to values. Judgments have form e || v. Rules in this pure fragment are
standard and omitted herein. A complete semantics can be found in Appendix A.

8 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

1|a = call(pcfg) 1h = obs // set hidden state
2| x = embed(a) 2|a = call(pcfg; h) // call
3| observe(NORMAL(x; 1); obs) 3| ret(unit)
4| ret(unit)
4|def pcfg (h) =
5 x1, x2 = NNa(h)
6| a=sample(BETA(x1; x2))
71 b=ifa<.5then
5| def pefg () = 8 y1, y2 = NNc(h)
6| a=sample(UNIF) 9 ¢ = sample(NorMAL(y1; y2))
71 b=ifa<.5then 10 ret(Const(c))
8 ¢ = sample(NormAL(0; 1)) 11 else
9 ret(Const(c)) 12 h2=h // set hidden state
10 else 13 d2 = call(pcfg; h2) // recursive call
11 d1 = call(pcfg) // recursive call 14 h1 = NNgj (h, embed(d2)) // set hidden state
12 d2 = call(pcfg) // recursive call 15 d1 = call(pcfg; h1) // recursive call
13 ret(Add(d1, d2)) 16 ret(Add(d1, d2))
14| ret(b) 17] ret(b)
(a) PCFG model, written in FCC (b) PCFG guide, generated

Figure 5. (a) PCFG model as in Figure 2a, in FCC syntax. (b) Generated guide, with the same trace type.

shtllwv‘ ‘ol—mmuwv
(E:SAMPLE)
eld v € d.support (E:Cmb) (E:BRANCH)
w = d.density(v) orpm|Yo el b ormmy Yo
atomo +; sample(e) | v traceok; m ¥ v injo k; ite(e; Mirye; Megse) U 0
(E:CALL) (E:OBSERVE)
deff(a)(x)=m e1Joa exlux erld exlo
o+ m{vg/a} {vx/x} ™ v v € d.support wy = d.density(vz) ortmm{™o
fold o +; call(f;er;e0) ™ o o+, observe(er;ep); m ™™ o
(E:BND:TERM)
sktWor (o ram{e/ay e, EBNDEX) (E:Ret)
el ve o b m{ve/x} [V o elo
{a:s’ @ ZS/} "maZt;mUWng 03 O'I-mXZeQmJlWU {} ko ret(e) Ulv

Figure 6. Operational semantics for the monadic fragment of FCC: terms and commands.

Terms are evaluated on events, and commands are evaluated on traces. As Figure 4 shows, events s
and traces o have mutually recursive syntax.

A trace {a:s} is an unordered map from term variables to events. Events have four forms,
corresponding to the four forms of terms: (1) atom v stands for sampling a value v; (2) trace o stands
for a nested trace o; (3) inj o stands for branching, where o traces the chosen branch; and (4) fold o
stands for a function call, where o traces the function body.

For example, consider trace omain in (4.1) and its tree structure: a:folde

a:atom.7 b:inje
Omain = {a:foldop}
o9 = {a:atom.7, b:inj{dl:fold oy, d2 : foldo2}} (1)
o1 = {a:atom.3, b:inj{c:atom2}} a:atom.3 b:inje a:fold.1 b:inje
o2 = {a:atom.l, b:inj{c:atom9}}

d1:folde d2:folde

c:atom 2 c:atom9

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 9

[ATrt:c#S] [ATrumirt3] ’I—L7‘77:<T1)(T2)'\/>T3#F

(S:SampLE) (S:BrRANCH)
A; T+, e : dist(r) A et e:2 A ThyympiT#3 N Tryme:T#23)
A; T +; sample(e) : 7 # atom ¢ A; T ryite(e;my;mg) c T# 21 +e 22
(S:Cmp) (S:Cary)
ANTrh,m:T#2 f:(r1)(r2) ~ 13 #F A er.e1: 1y AN;Troes:m
A; TH om:1#traceX A; Tk call(fseq;ez) = 3 # Flep)
(S:OBSERVE) (S:BND:TERM)
A; T ke e : dist(2) A Trit:m #S A,a:rl;l"l—mm:fz#{a’:S’}
e

A;Troep:t AN Try,m:7#2

A; T+, observe(er;ez); m:7#X ATrpa=tm:n# {a S, al: S/}e

(S:BND:EXPR) (S:DEF)

A;Tree:t (S:RETURN) f:{r1)(r2) ~ 3 #F typedef F=Va: 7.2
NT,x:Tpbpyym:m #3 A, er.e:T AT X T by miT3#2
AN Trpx=e;m:1#2 A; T kpret(e) : 74 {}e ko def f(a)(x) =m: (r1)(12) ~> w3 #F

Figure 7. Typing rules for the monadic fragment of FCC: terms, commands, and functions.

It is a trace of the PCFG model (Figure 5a). It is also a trace of the PCFG guide (Figure 5b), although the
guide reorders d1 and d2. Evaluating either program on this trace generates Add(Const(2), Const(9))
in the context-free language.

Contrast (4.1) with (2.1). Unlike the trace in (2.1), FCC traces do not stipulate a total ordering on
events. An added benefit is that unsafe manual name mangling of the kind found in Figure 2a is
avoided. That Pyro program would lead to name collisions and crash the runtime if not for manual
name mangling such as L+ "_C". By contrast, in FCC, RVs in trace oy, are uniquely identified even
if they may correspond to the same term variable in the program text.

Figure 6 defines how terms and commands evaluate. Rules have formss +, t | vando +,, m ¥ o,
meaning that on trace o (resp. event s), command m (resp. term t) evaluates to v and produces
weight w. A command denotes a distribution over traces; weight w is the (unnormalized) density
of the trace. In E:SAMPLE, event atom v specifies the value v sampled, and the weight is adjusted
by the distribution’s density at v. In E:BrRANCH, event inj o specifies the nested trace o on which
to evaluate the chosen branch. In E:CaLL, event fold o specifies the nested trace o on which to
evaluate the function body. E:BND:TERM evaluates a = t; m by splitting the trace into an event s
and a smaller trace {a’ : s’} under which t and m are respectively evaluated. E:BND:ExPR need not
split the trace, as expression variables are not captured in traces. E:OBSERVE performs conditioning,
multiplying the weight by the density of the observed data.

4.3 Static Semantics of FCC

Typing judgments of the pure fragment of FCC have form A; T +, e : 7. The rules are standard and
omitted herein. A are I' are environments of term variables and expression variables, respectively:

Az=e|Aa:r Fi=e |, x:7

A distribution has type dist(r); samples from the distribution have type 7. For example, a Gamma
distribution GAMMA (ey; e5) has type dist(R,); the support is positive reals.

Typing commands and terms. Trace types (resp. event types) describe control-flow behaviors and
probabilistic effects of commands (resp. terms). As Figure 4 shows, trace types X and event types S

10 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

tYPEdef chfg = { typedef chl‘g — {.}b
a:atomRg 1),
b : {c:atomR}const(c) ta<.5 a : atom Rpo.1]

{d1 : Fpefg, d2 ¢ Fpefg YAdd(d1d
} pefg pcfg (d1,d2) c:atomR dli:e d2:e
b

b: {.}Const(c) ta<s {.}Add(dl, d2)

Figure 8. Trace type of the pcfg functions in Figure 5.

have mutually recursive syntax. The trace type of a command has form {m}e, where a : S is an
unordered map from term variables to event types, and e is the command’s return. Event types have
four forms, corresponding to the four forms of events (or terms): atom z, trace 3, % +, X,, and F(e).

Figure 7 defines the typing rules for commands and terms, which have forms A; T+, m: 7 # %
and A; T+, t : 7#S. They make sure that sampling, branching, and invocation of (possibly)
recursive functions are recorded in trace types and event types. Figure 7 also gives the typing rule
for global function definitions (S:DEF). Metavariable F ranges over names of functions’ trace types.
For example, function pcfg in Figure 5a has trace type F,.;, defined recursively in Figure 8. The
main command in Figure 5a then has trace type { a: Fpef }unit.

Two compatibly typed programs need not agree on the orders computations take place. In
particular, it is possible for a compatibly typed guide to reorder computations under the same
parent in a tree-structured trace type. For instance, the guide pcfg function in Figure 5b reorders
subtrees d1 and d2, but it can still be typed as F.g,. The guide also does extra computations such as
running neural networks. These computations are pure; they are not part of the guide’s trace type.

Checkpoints are part of trace types. Two compatibly typed programs must agree on control-flow
decisions. F,.¢; captures the branching condition a <.5. So for the guide pcfg function to also
have type Fp,f, it should use a < .5 as the branching condition. More generally, two compatibly
typed programs must agree on checkpoint expressions, which include branching condition e in
ite(e; mqy; my), command return e in ret(e), and term argument e; in call(f; e;; e2). For example,
trace type Fpcf; captures not only the branching condition a < .5 but also command returns such as
{...}const(c) and {...}y. Consider the following command:

a = call(pcfg); b = ite(height(a) < 6;m;; my); ...

If a model pcfg and its guide were allowed to disagree on command returns, then even though two
programs use the same branching condition height(a) < 6, they could end up making different
branching choices because they would disagree on a. Hence, to use trace typing to justify AC, the
type system must keep track of checkpoints as part of trace types.

A consequence is that checkpoints can use only term variables—expression variables are not
bound in trace types. In S:BRANCH, S:RETURN, and S:CaLL, checkpoint expressions are type-checked
under an empty environment e of expression variables. The requirement does not restrict the class of
model programs that can be expressed, because the programmer can always use term variables and
monadic returns to fix a program that would otherwise not type-check with expression variables.
For example, the program below does not type-check because z, an expression variable, is used in
the checkpoint z > 0:

a = sample(NOoRMAL(x;y)); z=a+ 1; ¢ = ite(z > 0;my; my); ...

This program is easily fixed by replacing z with a term variable b and replacing a + 1 with ret(a + 1).

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 11

It may appear restrictive that a guide must have syntactically identical checkpoints as its model.
We found that in practice it is often trivial to modify manually created guides to meet this require-
ment. More importantly, it fits in a compiler pipeline where guides are automatically generated.
Another benefit is that it allows typing to be entirely syntax-directed, thus striking a good balance
between simplicity and expressivity.

There exist distributions whose supports depend on parameters. Like prior systems, the expressive
power of FCC is limited by the lack of such dependently supported distributions in general. However,
we believe that checkpoints offer a viable approach to incorporating them in the future. In particular,
sampling from a delta distribution whose support is concentrated on e can be encoded as a =ret(e):
because this checkpoint is part of the command’s trace type, two programs are required to agree
on e to be compatibly typed.

Term variables are more than binders. Term variables in FCC are unusual, in the sense that they
are not just binders, which have local scopes, but also labels, which can occur in trace types. Thus,
renaming the term variables in a command will cause it to have a different trace type. In a trace
type {a; : Si,..,an : Sn}e, @ term variable a; can occur in e and the event types of its siblings.

We note that it is possible to adapt the FCC design so that binders and labels are decoupled,
using a syntax like x = sample(£; NoRMAL(0; 1)), where x is a binder and ¢ a label. We choose to
represent the binder and the label as one single term variable, for less verbiage.

4.4 Measure Semantics of FCC

Definition 4.1. A closed command m of trace type T (o; ® +,, m : 7 # %) induces a measure [m]
over a measurable space [2] of traces:

3 if m ¢ def
Pm(a)ﬁ{w’ wornm 7o &

/ Pou(0) i3(do)
A

0, otherwise

Measure [m] is defined by integrating a density function P,,(-) over a measurable set A of traces.
As is usual, only terminating executions have a positive density. Measure [m] is in general un-
normalized as m may perform conditioning. When the normalization constant is in (0, o), the
normalized measure exists and is given by fA P,.(0)do f P,.(o)do.

The construction of the measurable space [3] of traces, as well as that of its stock measure ps, is
by a double induction, first on a “step index” for handling recursive trace types, and then on the
structure of trace types and event types. The definition can be found in Appendix A.2. We omit
showing the measurability of P, (-); we expect a proof to follow the technique found in Borgstrom
et al. [2016] and Szymczak and Katoen [2019].

With the measure semantics for commands defined, we can formalize the notion of absolute
continuity, which says the measure induced by one command is “supported” by that of the other:

Definition 4.2. A command m; is absolutely continuous with respect to another my, if [m.]] (A) # 0
on every measurable set A of traces for which [m;] (A) # 0.

4.5 Theoretical Results

Before we can establish the theorems, we introduce a notion of typing for traces and events, namely
st; S vand o+, 2 || v defined in Figure 9. The typing rules evaluate checkpoint expressions
in types to make sure that they agree with what happens in the trace. The evaluation happens in
the pure fragment of FCC. Using the rules, we can derive that trace oy, from (4.1) is well-typed:

Omain Fo {a : chfg }unit { unit.

12 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

‘SI-\SUU‘ ‘cﬂ—UZle

(W:EVENT:ATOM) (W:EVENT:TRACE) (W:EVENT:BRANCH)
v:T oty 2|0 elb orts2p o
atomo +; atomt | v trace o + traceY | v injo ks Strue +e Lfalse J ©
(W:EVENT:CALL) (W:TRACE:BND)
typedef F=Va:7.% (W:TRACE:RET) sk S| o {a’_s/} Fo {a’_S’} {o1/a} o
el va otrsX{vg/a} Jo elo e
fold o +; Fle) | v O e lo {a:s,a’:s’}l-(,{a:S,a’:S’}ellU

Figure 9. Well-formedness of events and traces with respect to event types and trace types.

Typing of traces is needed solely as a theoretical device to establish Theorem 4.5 through
Theorems 4.3 and 4.4: a command m of trace type X has positive density P,,(c) > 0 on a trace o if
and only if o has type 2. The guide generator need not type-check traces.

We first present type safety results for the operational semantics. The PRESERVATION theorem
states that if a closed, well-typed command (resp. term) evaluates to some value under some trace
(resp. event), then the value is well-typed and so is the trace (resp. event):

THEOREM 4.3 (PRESERVATION).
(1) Ife; o, m:t#3, ando+, m|* v, thene; o+, v:7andot+, X |} v.
(2) Ife; o, t:7#Sandst, t |V v, thene; o+, v:Tandst;S || v.

The NorRMALIZATION theorem states that if a command and a trace (resp. a term and an event) can
be typed using the same trace type (resp. event type), then evaluation of the command (resp. term)
under the trace (resp. event) terminates to some value:

THEOREM 4.4 (NORMALIZATION).

(1) Ife; o+, m:7# 3 and o +, 2 |} v, then there exist w such that o +,, m || v.
(2) Ife; o+, t:7#S ands +, S | v, then there exist w such thats +, t |* v.

Normalization of the pure fragment of FCC follows from the well-known result for the simply
typed lambda calculus, and normalization of the monadic fragment is a result of traces being finite.

Using PRESERVATION and NORMALIZATION, we can show that two compatibly typed commands
are mutually absolutely continuous:

THEOREM 4.5 (ABSOLUTE CONTINUITY BY TYPING). If o; @, m;: t# X ande; e+, my: T#3,
then for any measurable set A of traces, [m;] (A) # 0 if and only if [m,] (A) # 0.

Proofs of the theorems can be found in Appendix A

We now specialize Theorem 4.5 to amortized inference of the PCFG model in Figure 5. There,
amortization is over a free variable obs in the model m,, and in the guide my. As discussed in
Section 3.1, both training and importance sampling require that mg {v,ps/0bs} be absolutely contin-
uous with respect to my, {vops/0bs}. Let X o {a : Foeg }unit. Because o; o +,, m, {vghs/0bs}: 1 # 3
and e; ek, mg {vgps/0bs} : 1 # 3, we know that AC is guaranteed to hold for my,, and m, by Theo-
rem 4.5. What remains to be shown is that m, can be automatically generated and that generated

guides have the right trace types (Section 6).

5 IDENTIFYING CORRELATIONS AND INDEPENDENCES

We want a generated guide to faithfully yet parsimoniously respect conditional dependences.
However, the control-flow expressiveness of a universal PPL poses challenges.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 13

Consider conditional dependences in the PCFG model in Figure 5a.]
The model uses stochastic branching and general recursion, so it is ﬁ]

impossible to express it as a BN. But given any of its traces, we can (2]

unfold recursion for that trace, as Figure 10 does. Nodes| | stand Dﬁ \D [a]

for returns of recursive calls to pcfg, and arrows signify dataflow. D/ \D
Absent of control flow, the dataflow graph is essentially a BN. Per [a] [a]

the notion of BN active trails, colliders in Figure 10 mean that leaf D/E] \D [a]

nodes [c] are correlated with each other and with [obs]. But we had

to unroll recursion to identify such correlations for a given trace.

Yet it is infeasible to unroll recursion for every possible trace, as Figure 10. Dataflow graph fora

general recursion yields traces of infinitely many shapes. single trace of the PCFG model.
Adding to the complexities is that control dependences may or may not transmit correlation.

o In Figure 5a, we know that a (line 6) and pcfg’s return (line 14) must be correlated. We also know
that this correlation is due to control dependence: a determines which branch is taken and thus
influences pcfg’s return value.

e In contrast, we know that a’s value and c’s value (line 8) must be independent given a < .5. Yet c
is control-dependent on a: a determines if c is sampled in the first place.

How can a guide generator identify such correlations and independences that involve control flow?
Fidelio extracts program dependences into a graph representation (Section 5.1). It uses a notion
of active trails for the graph representation as an indicator of correlation (Sections 5.2 and 6).

5.1 A Graph Representation of Dependences

Program dependence graphs (PDGs) [Ferrante et al. 1987], employed by many optimizing compilers,
are a classic idea to represent dependences between program elements. PDGs are appealing because
they represent not only data dependences (as BNs do) but also control dependences. The exact
definition of PDGs are tailored to specific languages and problems being considered.

Figure 11a shows two PDGs, one for the main command and the other for the pcfg function in
Figure 5a. They are generated by the construction in Figure 12. While the presentation of Figure 12
is dense, the construction is mostly standard. It defines three sets Nodes+ (%), CDE+(¥), and
DDE«+(¥) by structural induction. The sets contain nodes, control-dependence edges (CDEs), and
data-dependence edges (DDEs) of the PDG.

There are two types of nodes in a PDG: control nodes and data nodes. Control nodes are drawn as
rounded rectangles (). They include (EnTRY), one per function (or main command), and (¢), one per
branching term ite(e; m;; m;). Metavariable C = | () ranges over control nodes. Control
nodes are sources of CDEs, which are drawn as gray, dashed arrows.

CDEs can have labels ¢ == T | F | &. CDEs from a branching node (e) are labeled either T
or F, signifying the branch taken. For example, in Figure 11a, all CDEs from are labeled.
CDEs from are not labeled (i.e., they have the null label ¢). In Figure 12, the construction
CDE,,,(m) £ C (resp. CDE,(¢) £ C) defines CDEs induced by a command (resp. a term), where C is
the current control parent, and ¢ labels the CDE from the control parent.

Data nodes are drawn as rectangles[_]. They are created for variable bindings[a]and [obs], monadic
returns [ret(e)], call arguments [e], and conditionings [observe(ey; ez) | Data nodes are sources of
DDEs, which are drawn as black, solid arrows.

In Figure 12, DDE,,(m) y N (resp. DDE,(t) y N) defines DDEs induced by a command (resp. a
term). To focus on terms in the monadic fragment, Nodes,, (m) does not create data nodes for
expression variables. However, expression variables can transmit data dependence too. Thus,
DDE,,(m) y N takes as input a substitution y == e | y, x > e for expression variables occurring

14 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

|

ll

|

1
\) ST g |

\ | T | !

1 | \ 1

! \ d dz|: !

observe()l E " !

1] I

|] 1

1 |

' [ret(Const(c re v
| (Const(0) t(Add(dl)] |
Se = //’
é///
(]
(a) PDGs of the PCFG model in Figure 5a (b) PDGs of the PCFG guide in Figure 5b

Figure 11. For the PCFG model program, Fidelio uses the construction in Figure 12 to build the PDGs in (a)
before generating the guide program. For comparison, guide PDGs are shown in (b). The PDG construction
inserts the collider [h]—[_J«{ret(b)], creating active trails between [h] and nodes in the PDG. Informed by
the active trails, the guide generator makes sample and call terms depend on h (e.g., [h]—[za] in (b)), thus
faithfully expressing their correlation to historical information stored in h (Section 6).

free in m, and it uses an auxiliary function TV, (e) to obtain the term variables on which an
expression e transitively depends through expression variables.

The other parameter N in DDE,,,(m) y N is the data node to which the result of evaluating m flows.
It can be either a term variable [a] or a synthetic conditioning sink [] to which a function’s return
flows. It is assumed that stochastically recursive functions like pcfg do not perform conditioning
themselves, since in amortized inference, amortization is always over a statically known set of
observe sites.

Besides the synthetic [], construction Nodes+(¥) also introduces a synthetic [h], and DDE+(F)
adds [h]—[. For example, see collider [h]—[J«—[ret(b)] in Figure 11a. As Section 6 discusses,
Fidelio makes [h] store historical information to which RVs in the current function are correlated.

5.2 A Notion of Active Trails for PDGs

As Section 2 reviews, in BNs, absence of active trails implies conditional independence. We adapt
the notion of active trails to PDGs. We do not claim soundness or completeness of this adapted
notion in the general case, though it is sound and almost complete for BN-like programs. Soundness
and completeness are theoretically appealing properties, but they require much more measure-
theoretic sophistication and we leave them to future work. We satisfy ourselves with experimental
evidence that absence (resp. presence) of active trails is a good indicator of independence (resp.
correlation) (Figure 13), and with an extensive evaluation of how dependence awareness impacts
the effectiveness of deep amortized inference (Section 8.2).

A definition of PDG active trails must take into consideration control dependences. Our definition
uses a few terminologies. A control path, starting from (EnTrY), is a directed path consisting solely
of CDEs. A control node C is a control ancestor of a PDG node N if C is on the control path to N.
Two nodes control-contradict each other if their control paths travel through mutually exclusive
branches of the same branching node.

Definition 5.1 (PDG active trails). Let G be a PDG. Let M be a set of nodes in G. Let Ni, Ny, ..., N,
be a trail in G (i.e., an undirected, acyclic path composed of CDEs and DDEs). The trail is said to be
active given M when all the following conditions hold:

(1) Control ancestors of N; and those of N, are in M.
(2) M is closed under control ancestry. That is, control ancestors of any node M € M are in M, too.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 15

Nodes#(def f{a) = m) &f {, , |:|} U Nodes,,, (m) :- (mdD are synthetic nodes
Nodes,, (ret(e)) = {[ret(e)]}
Nodes,, (observe (e1; e3); m) = {[observe(es; e2)]} U Nodes,,, (m)
def
= Nodes,, (m)
Nodes;, (a = t; m) o {El} U Nodes; (t) U Nodes,,, (m)
Nodes; (m) &f Nodes,,, (m)
Nodes; (ite(e; mq;m2)) o {@} U Nodes,;, (m1) U Nodes;,, (m2)

Nodes,, (x = e; m)

Nodes; (sample(e)) &%
Nodes, (call(f;e)) £ [e]
CDE #(def f(a) = m) o CDE,,, (m) e #m has control parent

CDE,, (ret(e)) £C &f {ije}
CDE,, (observe(eg; ez); m) ¢C 2 {C* s[observe(ey; e2) |} U CDE,,(m) £C

CDE,,(x = e; m) £C & CDE,,(m) ¢C
CDE,,(a=t; m)¢C ¥ {C*[a]} UCDE,(t) £CUCDE,,(m)¢C
CDE,;(m) £C £ CDE,,(m) ¢C

CDE; (ite(e;my;mz)) £ C &f {C ¢ %@} U CDE,,,(mq) T@ U CDE,;, (mz2) F@ #m; has conlrolparenl@
def

CDE, (sample(e)) ¢C = @
CDE, (call(f;e)) £C £ {4 [e]y

DDE #(def f{a) = m) o {—>D} UDDE,,, (m) 'D # function’s return flows intoD
DDE,, (ret(e)) y N £ {[a]—[ret(e)] | a € TV, (e)} U {[ret(e)|—N}
DDE,,, (observe(er; e2); m) y N o {{a]—[observe(ei;ez)] | a € TV (e1) UTV,(e2)} UDDE,,(m)y N

DDE,, (x =e; m)y N &t DDE,,(m) (y, x — e) N # substitution y is extended
DDE,,(a=t; m)y N et DDE; (t) y@ UDDE,,,(m)y N # evaluation result of t flows into |E|
DDE;(m)yN & DDE,,(m)y N

. def
DDE, (ite(e;m1;my)) y N = {[a]—(e) | a € TVy(e)} UDDE,,(m;) y N UDDE,,(m;) y N
def

DDE, (sample(e))y N = {@—>N |a€TVy(e)}
DDE, (call(f;e)) y N £ {[a]—[e] | a € TV, (e)} U {[e]—N}
TVy(e) o {alaeFV(e)} U{a|xeFV(e) hae TV, (y(x)}

Figure 12. Constructing PDGs for model programs.

(3) No node in the trail control-contradicts N;, N,,, or M.
(4) The trail is active given M, in the sense of Bayesian networks. That is,
(i) for any collider N;_; — N; < Nj;; in the trail, N; or one of its descendants is either in M or a

conditioning node (namely or[]);

(ii) no other node in the trail is in M or is a conditioning node.

Only when two nodes are both reached in the same execution does it make sense to speak of
correlation between them. Condition (1) ensures that when we speak of conditional dependence
between N; and N,,, we do condition on the branching choices that caused N; and N, to be reached
in the first place. Condition (2) further ensures that the branching nodes themselves are reached.
Condition (3) says that correlation cannot be transmitted through nodes impossible to be reached
when Nj, N, and M are all reached. Finally, condition (4) requires that a PDG active trail be active
in the BN sense.

16 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

a = sample(NorMAL(4;10)) a = sample(NorMAL(4;10))
b =ifa<4then b =ifa<4then
c1 = sample(NormAL(0;2)) a<4 c1 = sample(NormMAL(0;2))
ret(c) ret(c)
else else
C2t(: ;)ample(NORMAL(S;l)) c2 (: ;;mple(NoRMAL(a;l))
ret(c ret(c
d = sample(NoRMAL(0;4)) @ d = sample(NoRMAL(0;4)) @ [b]
observe(NorMAL(b+d;0.1); obs) observe(NorMAL(b+d;0.1); obs)
ret(unit) ret(unit)
(@) (b)
= le(NORMAL(0;10
E _ Zznnjlf)l:ENORM ALEO;l)))) In (a),a&b are correlated. In (a), fl & cl are independent.

¢ = sample(NorMAL(8;1)) ﬁ&’"
if a > 0 then a>0 : m ’
observe(NormAL(b;0.1); 0.2) AR

Iret(unit)
else
observe(NorMAL(c;0.1); 7.8)
i
(c) (d) Visualization of correlation and independence

Figure 13. Independence (resp. correlation) as visualized in (d) agrees with the absence (resp. presence) of
PDG active trails per Definition 5.1. (ENTRY nodes have been elided in PDGs.)

By conditions (1) and (2), is always in M, which by condition (4) implies that
cannot be on an active trail. So we elide (and CDEs from it) in PDG drawings hereafter. Also
notice that conditions (1)—(3) are automatically satisfied when the PDG does not have branching
nodes—that is, when the PDG can be reduced to a BN. In this case, results about soundness [Verma
and Pear] 1988] and (almost sure) completeness of active trails [Meek 1995] carry over.

We use examples in Figure 13 to further explain and justify Definition 5.1:

e An active trail can contain CDEs. In program (a), a and b are correlated, as is visualized by the
top-left plot in (d). The correlation agrees with the presence of active trails between a and b in

the PDG. All the active trails contain a CDE (e.g., [a]—(< 4)- - *[ret(c2) |—[b]).

o Control ancestors of end nodes are always considered given. That is, they are in M per condition (1).
Independence between a and c1 in (a) is visualized by the top-right plot in (d). In the PDG,
because c1’s dependences are in question, the value of its control parent is considered

known. Thus, given (a < 4), the trail [a]—(a < 4)-+[c1] is inactive in the BN sense, and so is the
trail [t} ~@ =) (2] [ret(e2]}—{ble—{retc D)1}

e An active trail cannot contain nodes that control-contradict any end node. Program (b) dif-
fers from (a) in the line c2 = sample(NormaL(a;1)). Hence, its PDG has an extra DDE [a]—[c2].
But still, a and c1 are independent, as visualized by the bottom-left plot in (d). The trail
[a]—[c2]—[ret(c2)|—[b]e—{ret(cl) Je—{c1] is inactive per condition (3): [c2] and in the
trail are on the false branch, whereas end node [c1]is on the true branch.

e An active trail can contain intermediary nodes that control-contradict each other. In program (c), b
and c are correlated, as visualized by the bottom-right plot in (d). The correlation agrees with an

active trail in the PDG: [b]—[observe(.)]« (a>0)- - +[observe(.)]«—[c]. Although the trail contains

nodes on mutually exclusive branches, it is still active per Definition 5.1.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 17

Active trails are compositional across call boundaries. Definition 5.1 does not unroll recursive
functions. A call can create correlations internal to the callee; they are addressed by the callee’s
PDG. A call can also create correlations across call boundaries. We can show that when a call is
unrolled, a trail across the call boundary is active if and only if (1) the caller part of the trail is
active and (2) the callee part of the trail is active. Below we illustrate this compositionality using
PDGs in Figure 11a:

e obs in the main command is correlated with c in the callee pcfg. The correlation is indicated by

two active trails: [obs]—[observe(...) |«—a] in the caller, and [ret(b) J¢—[b]«—{ret(Const(c))|«—[c] in
the callee, with the call’s return value flowing from to [a]

e Right subtree d2 is correlated with the ¢ sampled by the left subtree d1 = call(pcfg), as indicated by

two active trails: [d2]—]{ret(Add(d1,d2)) |«—[d1]in the caller, and [ret(b) |«—[b]« ret(Const(c)) |«—{¢]
in the callee, with the recursive call’s return value flowing from to [d1].

6 GUIDE GENERATION AS TYPE-DIRECTED, DEPENDENCE-AWARE TRANSLATION

We formalize guide generation as a translation of model programs. The translation makes sure
that generated guides have the same trace type as their models, thereby guaranteeing absolute
continuity. The translation can reorder computations under the same control parent and reconfigure
data dependences using the notion of active trails, thereby offering faithfulness and parsimony.

Figure 14 presents the translation rules. The translation is by structural induction on typing
derivations of commands, terms, and function definitions.

Translating function definitions. Compositionality of active trails (Section 5.2) implies that
guide generation is intra-procedural and thus modular. A key insight is that guide functions can use
an extra hidden-state parameter h as a proxy for transmitting correlations across call boundaries.
Rule GG:DEF defines the translation of a function, informed by its PDG G. The translated function
has an extra parameter h.

At a call site, the guide generator gathers into a hidden state the historical information correlated
with the call’s return, and passes the hidden state to the callee (GG:Tm:CALL). In turn, inside the
callee,” if a sample or call term has an active trail to parameter h in the PDG—indicating correlation
with history through the return value—then the guide generator makes that term depend on h
(GG:Tm:SampLE and GG:Tm:CALL). We expand on this translation below.

Translating terms. TranslationofatermthasformG; C; A’; h:Rya +, (A;TH t:7#S) ~» 1,
where G is the PDG of the current function ¥, C is the set of control ancestors, A’ is the term vari-
ables in scope after reordering (done by GG:Cmp), h is the hidden-state parameter added for #, and

a is the term variable to which t and ¢" are bound. GG:Tm:BrancH and GG:Tm:CMD translate branch-
ing terms and nested commands, by recursively invoking command translation. GG:Tm:SAMPLE
and GG:Tm:CALL translate sample and call terms, and they must rewire data dependences.

Translating sample terms by reconfiguring dependences. GG:TM:SAMPLE translates sample(e).
It first chooses a learnable distribution Dy, having the same type as e. For instance, a = sample(UNIF)
inline 6 of Figure 5a is translated using BETA(NN,(+)) as the learnable distribution over Ryq] (lines 5~
6 of Figure 5b). It is also possible to choose a universal density estimator using recent advances in
normalizing flows [Huang et al. 2018].

GG:Tm:SamPLE then passes relevant data dependences «y, ..., i as input to the learnable distri-
bution via Dy, (a, ..., ak). Data dependences ; € {by, ..., b,, h} are chosen from variables lexically

Recall that in Figure 12, the PDG construction adds a synthetic node [h|and connects it to the function’s return via a

collider —>|:|<— See, for instance, collider —>|:|<— in Figure 11a.

18 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

(REORDER)
i);—1 1s a permutation of (i);° € Nodes;(t,). |a;, N € G.edges) = j <
()Y, i ion of (1), (3N € Nodes, () N € G.edges) k
(ay, = tli)fil reordersg (a; = ti)ﬁl
[G:C N hiR by (NTrum:it#3) w m
(GG:Cmp)

N N
i=1 i=1

TermBindings(m) = (a; = t;) (aj, = 1,) -, reordersg (a; = t;)
Vi. G; C; N, ag T, @ TS h:R; aj, ki <Ali; Fl,- kit 1y, #Sl,-> > tll'

N
i=1

G CA;h:R by (A Tram:et#{a;:S,.,an :SN}e) w a = tl'lg Ay = tl'N;ret(e)

’Q; C;N;h:Ryabr, (A;Trt:T#S) ~ t/

(GG:TM:SAMPLE)

by:71,...bn:h; h: R, D¢a(a1, e ap) @ dist(7) MY cuy {,...,,}
{a1, g} = {a € {by,....by, h} | there is an active trail in G between@ and@given M\ {@} }

G; C; by :1y,..sbp:my; h: Ry a + (A; T+ sample(e) : 7 # atomz) o> sample(D¢a(a1,..., ag))
(GG:Tm:CALL)

ME U {[Ea)....). [2]}
{a1, . ap} = {a € {b1,....,by, h} | there is an active trail in G between@ and@given M\ {@} }

G; C; by i1y, .uby it hi Ry a +p (A; Tk call(fse) : T #F(e)) ~» call(f;e; op¢a((x1,,.., ag))

(GG:Tm:BRANCH)
Vi. G; CU{@}; A hiR by (AT hpmiit#3) ~w m)
G; C; N;h:Ryak; (AT ite(esmizmy) i T#31 +e Z2) ~ ite(e; mg;mé)

(GG:Tm:CmD)
G, CAN;h:RbF, (ANTr,m:743) ~» m

G, CN;h:Rijar, (INTrHm:7#%) ~ m'

‘g;h:R Fr (Fe Filn) ~> 0 #F) > F/

(GG:DEF)
f:{r1)~»> 1 #F typedef F=Va: 7.3

G; {}, a:1; h:R by (a:r; 0k min#3) w m
Gih:R by (Fyrdeff(a) =m:(r1) ~ 1, #F) ~> def f(a)(h) = m’

Figure 14. Guide generation as translation of typing derivations

in scope, including the hidden-state parameter h. The translation uses existence of PDG active
trails as an indicator of correlation. That is, @; is considered a dependency of a = sample(Dy,(...))
if an active trail exists in G between and [a] given all other variables in scope (as well as all

control ancestors).
For instance, consider translating ¢ = sample(NorMAL(0; 1)) in line 8 of Figure 5a. In the PDG

(Figure 11a), trail [c]—[ret(Const(c)) | —[b|—[ret(b) | =]«—[h]is active given { (ENTRY), (2 < .5),[a] }.

So h is input to the learnable distribution NormaL(NN,(-)) for c in lines 8-9 of Figure 5b:

G; {@®NTRY),(@ < 5} a:Rpgqp; h: Ry ¢k (a:Rpgqy; @+ sample(NorMAL(0; 1)) : R # atomR)

~~> sample(NorMAL(NN(h)))

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 19

(a): Dataflow graph
of the Fidelio guide
(Figure 5b)

(b): Dataflow graph
of an RNN guide

Figure 15. Dataflow in two guides, for the same trace of the PCFG model (cf. Figure 10).

Translating call terms by evolving hidden states. GG:Tm:CaLL translates function calls. As in
GG:Tm:SamPLE, dependencies ay, ..., o are those in-scope variables to which active trails exist in
the PDG. They are input to a learnable function op,, (-), whose output is then passed to the callee
as its hidden-state parameter.

For instance, consider translating d1 = call(pcfg) in line 11 of Figure 5a. In the PDG,

o [d1]—[ret(Add(d1,d2))J«—{d2]is an active trail given { (enTRrY), (a < .5),[h].[a]}, and
e [d1]—[ret(Const(c))]—[b]—[ret(b) | = J«—[h]is an active trail given { , ,[dz2],[a] }.

So both h and d2 are merged into the hidden state passed to the callee, in lines 14-15 of Figure 5b:

G; {(EnTRY),(2 < 5)}; a: Rio,1]-d2 : Expr; h: R; d1 +; <a :R[o,1]; ® F: call(pefg) : Expr # chfg>
~» call(pefg; NNgq (h, embed(d2)))

d2 needs an embedding layer because it is a syntax tree (of type Expr) rather than a scalar value.

If we unfold recursion in the PCFG guide for the same trace of execution as in Figure 10, we get
Figure 15a, which makes it explicit how the hidden state is evolved to include history. Initially, the
hidden state contains only information about obs. Visiting a right subtree simply uses the parent’s
hidden state. Before visiting a left subtree d1, the hidden state is updated to include information
about the right subtree d2 just visited (see the leftward horizontal arrows [h]e—[]).

While information about historically sampled c’s flows into the hidden state via returns of
recursive calls [], information about historically sampled a’s is never merged into h. As the
beginning of Section 5 analyzes, an [a] is independent of all RVs to be sampled later in the current
subtree, given the branching condition (a <.5). An [a]is also independent of all RVs to be sampled
after the current call returns, given the call’s return value [_]

Contrast that with Figure 15b, which visualizes dataflow for the same trace but in a guide that
uses an RNN to create correlations [Le et al. 2017]. Unaware of the program dependence structure,
the RNN inevitably renders all RVs correlated. As the syntax tree is traversed, the RNN’s hidden
state accretes information about every RV visited thus far, causing a later RV to treat all earlier RVs
as dependencies. As a result of the to-and-fro dataflow, hidden states contain unneeded information,
diluting learning signals.

Translating commands and reordering terms. Rule GG:CwmD translates a model command, which
has the trace type {a; : S, ..., an : Sy}, to a guide command of form aj, = 1] ; ...; aj = s ret(e).

Importantly, the guide command can choose a different ordering (a;, = tli)i\il of term bindings
than the original ordering (a; = t;)~,. Rule REORDER specifies the constraint that reordering must
satisfy. In particular, if a; ;isa free variable in a checkpoint node in term ¢;, , then a; ;= f;; mustoccur
before a;, = t;, . Recall from Section 4.3 that checkpoints are part of trace types, so satisfaction of

20 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

Guide (b) uses the same ordering of

term bindings as model (a).
Guide (c) uses an inverted ordering.

Both guides are faithful, but guide (c)

|:| has a sparser dependence structure.

(a) model PDG (b) guide PDG (c) guide PDG
Figure 16. Ordering of term bindings has implications for the data-dependence sparsity of faithful guides.

the constraint helps ensure that the translated guide command can use the same checkpoints and
thus be compatibly typed.

Each subterm of the model command is translated by recursively invoking the term translation
rules. The term-variable environment for subterm tl’i is extended with ay,, ..., a;,_,, the term variables
in scope for the guide term after reordering.

Reordering of term bindings is often desirable because it can lead to fewer dependences while
maintaining faithfulness. Fidelio follows the heuristic of Stuhlmdiller et al. [2013] and Paige and
Wood [2016] to invert topological orderings (while respecting the reordering constraint).

Consider a model that has a PDG as shown in Figure 16a. There, al, a2, a3, a4, b1, b2, cis a
valid topological ordering of the term bindings. In (b) is the PDG of a faithful guide, using the
same ordering. (Notice that removing any DDE makes it unfaithful by introducing conditional
independences not found in the model.) In (c) is the PDG of another faithful guide, using an
inverted topological ordering c, b1, b2, a1, a2, a3, a4. Whereas (b) is almost fully connected, guide (c)
attains a sparse dependence structure using available conditional independences—e.g., given b2,
a3 is independent of all variables in {obs, ¢, b1, al,a2}. As we show in Section 8, for the same total
number of neural-network parameters, guide (c) leads to better performance than guide (b), both
for training and for inference.

AC by construction. We prove that the translation preserves trace typing:

THEOREM 6.1 (TYPE-PRESERVING TRANSLATION).
If G; {(enTRY)}; ®; Obs: R +, (e obs: R, my:7#3) ~ mg, thene; obs: R ¥, mg:7#3.

It follows from Theorems 4.5 and 6.1 that for a well-typed model, the translation is guaranteed to
generate a guide that is mutually absolutely continuous with the model:

THEOREM 6.2 (ABSOLUTE CONTINUITY BY CONSTRUCTION).

If G; {(enTRY)}; @ Obs:R F, (e obs:RF, myn:7T#X%) ~ my and v : R, then for any
measurable set A of traces, [my, {vops/obs}] (A) # 0 if and only if [[mg {vobs/obs}ﬂ (A) #0.

7 IMPLEMENTATION

Fidelio uses Pyro [Bingham et al. 2019] as the underlying inference engine. A Fidelio model is
compiled to a model and a guide in Pyro with explicit name mangling. The user can specify as
arguments hyperparameters including the number of layers in a network, the number of neurons in
each layer, and the activation function used. It is also easy to modify neural networks in generated
guides, as we do in setting up our experiments (Section 8.2).

A few surface-syntax features help streamline guide generation. (1) Fidelio supports directives
using which the programmer can hint shapes of tensors. (2) Fidelio supports directives for specifying
embedding functions for data that warrant special embedding layers (e.g., convolutional networks

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 21

Table 1. ® model and guide have compatible types. O model and guide fail to be compatibly typed. Last
seven programs appeared in the expressiveness evaluation conducted by Wang et al. [2021].

Program Description Lew et al. [2019] Wang et al. [2021] Fidelio
collider Figure 1 (model & guide2) o O o
pcfg Figure 5, (a) & (b) O O []
treebn Figure 16, (a) & (c) ([J O [
curvefit Curve fitting, Lew et al. [2019, Fig. 4] ([O [
kalman Kalman Smoother ([(] [
branching Random Control Flow O (] [
marsaglia Marsaglia Algorithm O ([[
aircraft Aircraft Detection ([([[
gmm Gaussian Mixture Model (] (] [
sprinkler ~ Bayesian Network o (] [
dp Dirichlet Process O O O

as image embeddings). (3) Fidelio provides an option that generalizes MADE [Germain et al. 2015]
to allow weight sharing among local networks.

8 EVALUATION
8.1 Expressiveness of the Trace-Type System

Table 1 evaluates the expressiveness of Fidelio’s type system, comparing it with state-of-the-art type
systems for AC [Lew et al. 2019; Wang et al. 2021]. The benchmark programs include examples in
this paper and also those taken from prior work [Lew et al. 2019; Wang et al. 2021], Anglican [Wood
et al. 2014], and Pyro, with reasonable modifications so that they conform to our syntax.

The type system of Lew et al. [2019] cannot type-check models of pcfg, branching, and marsaglia,
because they use branching and recursion in their general forms. The type system of Wang
et al. [2021] cannot type-check guides of collider, pcfg, treebn, and curvefit, because they reorder
computations. dp uses stochastic memoization, a PPL feature not yet supported by these systems.

8.2 Performance Implication of Dependence-Awareness for Training and Inference

We assess the implications of adopting dependence-aware guide generation for both ahead-of-time
training and run-time inference. Table 2 summarizes our benchmarks, which include a variety of
applications, program sizes, dependence structures, and training setups.

We compare Fidelio mainly with two methods for guide generation in a universal PPL: mean-field
guides, which make strong independence assertions, and RNN guides, which make all variables
correlated. Generated Fidelio guides were modified so that they have the same number of trainable
parameters (i.e., capacity) as the other two guides. Networks in the Fidelio guides and mean-field
guides typically have no more than four linear layers and use ReLU activation. All guides for a
benchmark program are trained for the same number of iterations. An appendix in the technical
report documents experimental setups and additional statistics. The RNN we use in all experiments
is LSTM [Hochreiter and Schmidhuber 1997], which deals with the vanishing gradient problem
and is thus better at remembering correlation than vanilla RNNs.

Table 2 shows validation loss as a metric for evaluating training performance. Fidelio consistently
leads to lower validation loss as computed by (2.3)—trained Fidelio guides are closer approximations
to true posteriors than mean-field or LSTM guides, averaged on the validation sample set.

Validation losses alone do not tell the whole story, however. Below we explain our benchmarks
and findings in more detail.

22 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

Table 2. Benchmarks for evaluating different approaches to guide generation. Column “#RVs”: expected
number of RVs sampled in a trace. Validation loss is computed per (2.3) on a validation sample set.

LoC . Validation Loss
Program Structures #RVs (model) Capacity Mean-Field LSTM Fidelio
2K 51.88 45.76 41.07
treebn BN 3 37 5K ‘ 5188 43.96 41.04
. 10K 11.89 15.28 16.56
ecoli70 BN 4 > 15K ‘ 1194 1531 16.60
longrange (k = 5) loop 8 16 1.4K ‘ 25.39 24.49 21.88
longrange (k = 10) loop 13 16 14K | 44.05 43.69 40.38
longrange (k = 20) loop 23 16 1.4K ‘ 81.23 81.32 77.59
longrange (k = 40) loop 43 16 1.4K ‘ 155.8 156.0 152.1
captcha recursion 6 43 4.4M ‘ 1.644 -1.325 -1.212
100K 6.226 2.352 1.980
astropcfg recursion 15.0 159 175K 6.217 2.362 2.035
250K 6.216 2.387 2.114
1.1M 7.962 14.84 3.603
mathcaptcha recursion 14.5 237 1.25M 8.150 14.78 2.242
1.5M 8.329 14.79 1.950
3M 8.380 9.531 2.511
20K 111.1 257.8 16.22
gmmcc recursion 217.4 49 50K 111.2 170.1 15.16
80K 111.1 152.4 14.55

Long-range correlation. Benchmark longrange [Harvey et al. 2019] tests the ability for guides to
capture correlation between variables sampled far apart. The model samples two Gaussian variables
a and b—and also k noise variables in between—before observing the sum of all k + 2 variables.

We assess how well the inferred posteriors capture the strong correlation between a and b
sampled k variables apart, with k € {5, 10, 20,40}. We draw 2, 000 samples after training each guide
for 20, 000 steps and plot them in Figure 17. In columns one and three, samples are drawn from the
trained guides. In columns two and four, samples are drawn using IS, with the guides as proposals.

The LSTM guide manages to capture the correlation to some degree when k = 10. However, the
LSTM guide fails to remember correlation when k = 20. Quality of the learned proposal distributions
has a knock-on effect on IS. When k = 20, the LSTM guide results in visibly lower-quality IS samples
than the Fidelio guide of equal capacity. We also compute the effective sample size (ESS) for each
guide, as a quantitative (though not comprehensive) metric of sample quality [Kong 1992]; Fidelio
guides lead to significantly higher effective sample sizes.

Computation reordering. Benchmark treebn assesses the impact of computation reordering on
training and inference performance. The model is linear Gaussian BN, similar to Figure 16a in
structure. In addition to the mean-field and LSTM guides, we compare two Fidelio guides that either
retain or invert the model’s topological ordering of variables (cf. Figures 16b and 16c¢).

Figure 18 plots the training loss (2.3) as training progresses. All four guides have the same
capacity (5K). The sparser Fidelio guide converges to the best solution. The table in Figure 18 shows
the Fidelio guide with an inverted topological ordering results in significantly higher ESS than all
the other guides: a sparser yet faithful dependence structure makes inference more effective.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 23

k = 10, guide k =10,1S k = 20, guide k =20,1S
, ESS
= 3 M.-F. LSTM Fidelio
—
5 153 308 505

] 10 100 221 419
e \ \ " 20 219 154 56.0
g L T 40 266 119 456
i -

Figure 17. Drawing samples from LSTM and Fidelio guides trained for the longrange benchmark. Plots
visualize correlation between two variables that are sampled k variables apart in the model.

‘ — Mean-Field — LSTM
60
- — Fidelio, Fig. 16b — Fidelio, Fig. 16¢
z | ESS
3 W \ Capacity
© Fidelio Fidelio
+ 50 |- -
2 ‘ M-F LSTM Fig. 16b Fig. 16c
e 2K 139 313 8.67 82.8
40 - | | | ‘ | 5K 138 9.84 9.51 84.1

1K 2K 3K 4K 5K
training steps

Figure 18. Experimental results for treebn. Left: Training steps vs. training loss profile, with all guides having

capacity 5K. Right: Quality of IS samples as measured by ESS.

The sparser guide is rejected by a prior type system [Wang et al. 2021], which disallows reordering
computations. Trace-type systems have performance implications.

ECOLI?70: a large Bayesian network. We use benchmark ecoli70 [Schifer and Strimmer 2005] to
evaluate the implication of dependence-aware guide generation for large BN models. The program
is a linear Gaussian BN with 46 variables and 70 arcs. Results can be found in an appendix; they
show (1) that the mean-field guide and the LSTM guide did equally poorly on ecoli70 and (2) that
Fidelio significantly improves on these dependence-agnostic approaches.

Captcha: a regular grammar. In benchmark captcha [Mansinghka et al. 2013], the model gener-
ates a captcha image by sampling a probabilistic regular grammar, and the inference problem is
to recognize captcha text given an image. Guide programs use convolutional networks as image
embeddings (Section 7). Experimental results can be found in an appendix.

While the mean-field guide did poorly on captcha, the LSTM guide and the Fidelio guide did
almost equally well, in terms of convergence and recognition rates. A possible explanation is given
by the structure of the model. Because captcha samples from a regular—rather than context-free—
language, the dataflow exhibits a linear-recursive pattern (shown in an appendix). As a result, the
model has almost no conditional independence for Fidelio to exploit, and the unfolded dataflow
graph for the Fidelio guide is almost identical to that induced by an RNN.

Astronomer: a context-free grammar. In benchmark astropcfg [Manning and Schiitze 1999],
the model samples sentences such as “astronomers saw stars with telescopes”. We consider the
inference task of regenerating observed sentences. The program consists of mutually recursive
functions corresponding to nonterminal symbols in the PCFG.

Figure 19 shows the training-loss profile for all guides of the same capacity (175K). It also shows
inference accuracy, as measured by sentence regeneration rates and Levenshtein edit distances for

Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

24
Accuracy of sentence regeneration
o 1 [Mean-Field — LSTM — Fidelio | Y &
k7 ‘ Regeneration Rate ‘ Levenshtein Distance
g | Capacity
: M.-F. LSTM Fidelio ‘ M.-F. LSTM Fidelio
2 4r 100K 40.0% 57.4% 71.7% | 4.36 2.99 2.72
s 175K 39.8% 60.8% 71.3% | 4.41 3.08 2.63
250K 39.2% 62.4% 69.8% | 4.36 3.04 2.75

10K 15K 20K

training steps

Figure 19. Experimental results for astropcfg. Left: Training steps vs. training loss profile, with all guides
having capacity 175K. Right: Inference accuracy, at three capacities.

15[% — Mean-Field — LSTM — Fidelio Accuracy of captcha recognition
b . Recognition Rate ‘ Levenshtein Distance
= Capacity - L1
S 10 | M-F. LSTM Fidelio | M.-F. LSTM Fidelio
+
g 100K+CNN | 35.8% 8.94% 70.5% 250 4.25 0.809
51 250K+CNN | 36.8% 9.82% 79.5% 245 421 0.579
‘ ‘ ‘ ‘ ‘ 500K+CNN | 35.3% 9.67% 83.1% | 2.59 4.22 0.463
2M+CNN | 34.9% 39.4% 77.6% 2.62 266 0.650

10K 15K 20K

training steps
Figure 20. Experimental results for mathcaptcha. Left: Training steps vs. training loss profile, with all guides
having capacity 3M. Right: Inference accuracy, at four capacities. All guides use a CNN of capacity M.

600

—— M.-F. — LSTM — Fidelio

LT

0 I I 1
0 200 400 600

400

200

KL + const

ik

Mean-Field

training steps LSTM Fidelio

Figure 21. Experimental results for gmmcc. Left: training steps vs. training-loss profile. Right: ground-truth
clusters (yellow) and clusters inferred using trained guides (blue). All guides have the same capacity.

all guides and for three capacities. Fidelio demonstrates a clear advantage over the LSTM guide.
In particular, it increases regeneration rate by 10% on average. The results suggest that it pays off
to exploit the tree-recursive dataflow pattern and the resulting conditional independences in the
astropcfg model (Figures 10 and 15).

Math captcha. We design a second captcha benchmark, mathcaptcha, that samples simple arith-
metic expressions and renders them as captcha images (e.g., 9+2*6+1). Unlike captcha, mathcaptcha
samples from a context-free language, so we expect Fidelio to improve convergence and captcha
recognition rate over the LSTM guide.

Figure 20 confirms our belief: Fidelio outperforms mean-field and LSTM guides, by a large margin.
The LSTM guide did not start to pick up until network capacity was raised to 3M (including an
invariant 1M for a CNN embedding). In contrast, with limited network capacity and training budget,
Fidelio can do better. Conditional independences inherent in PCFG-like models make them favored
applications for Fidelio.

Gaussian mixture model for clustering and classification. In benchmark gmmcc [Le et al.
2017], the model samples a stochastic number of Gaussians and further samples data points from

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 25

them. Given an observed dataset, the inference task is to simultaneously identify clusters and
classify data points into clusters. This model is challenging because it samples a large number
of RVs (~200). Nonetheless, since data points are independently distributed, it offers conditional
independences that Fidelio can potentially tap into.

Figure 21 plots the training-loss profile and kernel density estimations: with the same number of
particles, the Fidelio guide is the only guide that correctly inferred the number of clusters.

Summary. We observe that Fidelio consistently improves over LSTM and mean-field guides, both
on convergence of training and on accuracy of inference. Our experiments suggest that compared
with LSTM, it is most favorable to use Fidelio for models that contain conditional independences
and contain ~10 RVs or more.

For models containing ~20 RVs or more, a mean-field guide may be competitive against LSTM;
see ecoli70, longrange (k = 20, 40), mathcaptcha, and gmmcc. Unaware of program dependence
structures, LSTM has to accrete information about all RVs in its hidden state. Unlike Fidelio or
mean-field guides, LSTM guides are unable to directly express any conditional independence, which
leads to diluted learning signals especially when the number of RVs is large. In contrast, Fidelio
guides capitalize on available conditional independences, so training can focus on learning the real
correlations.

9 RELATED WORK

Language-based solutions to absolute continuity. Lew et al. [2019] and Wang et al. [2021]
design type systems to check AC statically. Lew et al. [2019] formulate AC in terms of a denotational
measure semantics for a trace-based PPL. Their type system allows some forms of stochastic control
flow, including loops, but disallows general recursion or the kind of stochastic branching needed
for models such as PCFGs. It allows guides to reorder computations in some way.

Wang et al. [2021] propose a coroutine-based PPL, where a model and a guide send and receive
messages over communication channels to synchronize on sampled values, branching choices,
and function calls. AC is formulated in terms of a measure semantics induced by this operational
semantics. The approach is inspired by session types [Honda et al. 1999]: their guide types describe
communication protocols of model-guide pairs. Unlike Lew et al. [2019], the type system allows
branching and recursion in their general forms. However, it requires that computations happen in
exactly the same (total) order as prescribed by guide types.

In both prior approaches, it is the programmer who authors guides and makes sure that guides
have compatible types with models. In our approach, guides are automatically generated and are
guaranteed to have compatible types with models.

Lee et al. [2019] introduce a static analysis for Pyro’s stochastic variational inference. The
analysis aims to prove that a guide has the same support as the model and satisfies differentiability
conditions. It deals with Pyro features including tensors and plating, but it does not support
stochastic branching or general recursion.

Generating guides automatically. A recent spate of work in machine learning has focused on
generating guide programs [Stuhlmiiller et al. 2013; Paige and Wood 2016; Le et al. 2017; Webb
et al. 2018, 2019; Baudart and Mandel 2021]. Except for Le et al. [2017], the prior approaches
deal with graphical models or non-universal PPLs; stochastic branching and general recursion
are not supported. Le et al. [2017] address the challenge by having a guide program talk to an
LSTM network, leading to faithful but “fully connected”, non-parsimonious guides. Webb et al.
[2018] create faithful, parsimonious guides, but only for BNs. Webb et al. [2019] and Weilbach et al.
[2020] integrate normalizing flows [Rezende and Mohamed 2015; Huang et al. 2018] to increase the

26 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

representational power of learnable continuous distributions; it is an orthogonal extension that can
be incorporated into Fidelio.

Dependence analysis for PPLs. Hur et al. [2014] study program slicing for an imperative PPL
with loops. Like guide generation, slicing takes into account conditional dependences as indicated
by active trails. Unlike guide generation, the slicer is concerned with conditional dependencies of a
program’s return value, which exists in all finite executions, whereas a guide generator is concerned
with conditional dependencies of sample and call terms, which are reached only stochastically
and subject to reordering in guides. Gorinova et al. [2021] use an information-flow type system
to identify conditional independences in a non-universal PPL. It is interesting to study if the
information-flow perspective can be applied to a universal PPL, which could serve as a good basis
for studying soundness of PDG active trails as proposed in Section 5.2.

10 CONCLUSION

We have presented Fidelio, a framework that can automatically generate guide programs for
deep amortized inference in a universal PPL. It addresses challenges posed by the control-flow
expressiveness of a universal PPL. Fidelio uses a novel trace-type system and generates guides via a
type-guided, dependence-aware translation of models. Theoretical results show that the translation
is type-preserving and thus ensures absolute continuity by construction. Experimental results show
that symbolic dependence information in probabilistic programs can be used effectively to aid in
neural-network-based inference.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. We thank Nada Amin, Hongfei
Fu, Edward Lee, Yingzao Li, Di Wang, and Rob Zinkov for discussions and help. This work was
supported by the Natural Sciences and Engineering Research Council of Canada. The views and
opinions expressed are those of the authors and do not necessarily reflect the position of any
funding agency.

REFERENCES
autoguide 2022. Automatic guide generation (Pyro documentation). https://docs.pyro.ai/en/1.8.0/infer.autoguide.html.

Guillaume Baudart and Louis Mandel. 2021. Automatic guide generation for Stan via NumPyro. In Int’l Conf. on Probabilistic
Programming (PROBPROG). arXiv:2110.11790

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,
Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep universal probabilistic programming. Journal of
Machine Learning Research (JMLR) 20, 1 (2019). arXiv:1810.09538

Johannes Borgstrom, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for
universal probabilistic programming. In ACM SIGPLAN Conf. on Functional Programming (ICFP). https://doi.org/10.1145/
2951913.2951942

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A general-purpose
probabilistic programming system with programmable inference. In ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI). https://doi.org/10.1145/3314221.3314642

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program dependence graph and its use in optimization.
ACM Tran. on Programming Languages and Systems (TOPLAS) 9, 3 (July 1987). https://doi.org/10.1145/24039.24041

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE: Masked autoencoder for distribution
estimation. In Int’l Conf. on Machine Learning (ICML). http://proceedings.mlr.press/v37/germain15.pdf

Noah Goodman, Vikash K. Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A language
for generative models. In Conf. on Uncertainty in Artificial Intelligence (UAI). arXiv:1206.3255

https://docs.pyro.ai/en/1.8.0/infer.autoguide.html
https://arxiv.org/abs/2110.11790
https://arxiv.org/abs/1810.09538
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1145/24039.24041
http://proceedings.mlr.press/v37/germain15.pdf
https://arxiv.org/abs/1206.3255

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 27

Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, and Matthijs Vakar. 2021. Conditional independence by typing.
ACM Tran. on Programming Languages and Systems (TOPLAS) 44, 1 (Dec. 2021). https://doi.org/10.1145/3490421
arXiv:2010.11887

William Harvey, Andreas Munk, Atzim Giines Baydin, Alexander Bergholm, and Frank Wood. 2019. Attention for inference
compilation. arXiv:1910.11961

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. 1995. The “wake-sleep” algorithm for unsupervised
neural networks. Science 268, 5214 (1995). https://doi.org/10.1126/science.7761831

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (Nov. 1997). https:
//doi.org/10.1162/nec0.1997.9.8.1735

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1999. Language primitives and type discipline for structured
communication-based programming. In European Symp. on Programming (ESOP). https://doi.org/10.1007/BFb0053567

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. 2018. Neural autoregressive flows. In Int’l Conf.
on Machine Learning (ICML). http://proceedings.mlr.press/v80/huang18d/huang18d.pdf

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. 2014. Slicing probabilistic programs. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/2594291.2594303

Michael L. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. 1999. An introduction to variational
methods for graphical models. Machine learning 37, 2 (1999). https://doi.org/10.1023/A:1007665907178

Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational Bayes. In Int’l Conf. on Learning Representations
(ICLR). arXiv:1312.6114

Augustine Kong. 1992. A Note on Importance Sampling Using Standardized Weights. Technical Report 348. Department of
Statistics, University of Chicago. https://d3qi0qp55mx5f5.cloudfront.net/stat/docs/tech-rpts/tr348.pdf

Tuan Anh Le, Atilim Gines Baydin, and Frank Wood. 2017. Inference compilation and universal probabilistic programming.
In Int’l Conf. on Artificial Intelligence and Statistics (AISTATS). arXiv:1610.09900

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and Frank Wood. 2019. Revisiting reweighted wake-sleep for
models with stochastic control flow. In Conf. on Uncertainty in Artificial Intelligence (UAI). arXiv:1805.10469

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2019. Towards verified stochastic variational inference
for probabilistic programs. Proc. of the ACM on Programming Languages (PACMPL) 4, POPL (Dec. 2019). https:
//doi.org/10.1145/3371084

Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. 2019.
Trace types and denotational semantics for sound programmable inference in probabilistic languages. Proc. of the ACM
on Programming Languages (PACMPL) 4, POPL (Dec. 2019). https://doi.org/10.1145/3371087

Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang. 2023. Type-preserving, dependence-aware guide generation for
sound, effective amortized probabilistic inference. Proc. of the ACM on Programming Languages (PACMPL) 7, POPL (2023).
https://doi.org/10.1145/3571243

Carol Mak, C.-H. Luke Ong, Hugo Paquet, and Dominik Wagner. 2021. Densities of almost surely terminating probabilistic
programs are differentiable almost everywhere. In European Symp. on Programming (ESOP). https://doi.org/10.1007/978-
3-030-72019-3_16 arXiv:2004.03924

Christopher Manning and Hinrich Schitze. 1999. Foundations of Statistical Natural Language Processing. MIT Press.
Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov, and Joshua B. Tenenbaum. 2013. Approximate Bayesian image

interpretation using generative probabilistic graphics programs. In Conf. on Neural Information Processing Systems (NIPS).
arXiv:1307.0060

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic
programming with programmable inference. In ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI). https://doi.org/10.1145/3192366.3192409

Christopher Meek. 1995. Strong completeness and faithfulness in Bayesian networks. In Conf. on Uncertainty in Artificial
Intelligence (UAI). arXiv:1302.4973

Brooks Paige and Frank Wood. 2016. Inference networks for sequential Monte Carlo in graphical models. In Int’l Conf. on
Machine Learning (ICML). arXiv:1602.06701

Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
https://doi.org/10.1016/B978-0-08-051489-5.50001-1

https://doi.org/10.1145/3490421
https://arxiv.org/abs/2010.11887
https://arxiv.org/abs/1910.11961
https://doi.org/10.1126/science.7761831
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/BFb0053567
http://proceedings.mlr.press/v80/huang18d/huang18d.pdf
https://doi.org/10.1145/2594291.2594303
https://doi.org/10.1023/A:1007665907178
https://arxiv.org/abs/1312.6114
https://d3qi0qp55mx5f5.cloudfront.net/stat/docs/tech-rpts/tr348.pdf
https://arxiv.org/abs/1610.09900
https://arxiv.org/abs/1805.10469
https://doi.org/10.1145/3371084
https://doi.org/10.1145/3371084
https://doi.org/10.1145/3371087
https://doi.org/10.1145/3571243
https://doi.org/10.1007/978-3-030-72019-3_16
https://doi.org/10.1007/978-3-030-72019-3_16
https://arxiv.org/abs/2004.03924
https://arxiv.org/abs/1307.0060
https://doi.org/10.1145/3192366.3192409
https://arxiv.org/abs/1302.4973
https://arxiv.org/abs/1602.06701
https://doi.org/10.1016/B978-0-08-051489-5.50001-1

28 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

Danilo Rezende and Shakir Mohamed. 2015. Variational inference with normalizing flows. In Int’l Conf. on Machine Learning
(ICML). arXiv:1505.05770

Daniel Ritchie, Paul Horsfall, and Noah D. Goodman. 2016. Deep amortized inference for probabilistic programs.
arXiv:1610.05735

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka. 2019. Bayesian
synthesis of probabilistic programs for automatic data modeling. Proc. of the ACM on Programming Languages (PACMPL)
3, POPL (2019). https://doi.org/10.1145/3290350 arXiv:1907.06249

Juliane Schéfer and Korbinian Strimmer. 2005. A shrinkage approach to large-scale covariance matrix estimation and
implications for functional genomics. Statistical Applications in Genetics and Molecular Biology 4 (2005). https://doi.org/
10.2202/1544-6115.1175

N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman, Pushmeet Kohli, Frank Wood,
and Philip Torr. 2017. Learning disentangled representations with semi-supervised deep generative models. In Conf. on
Neural Information Processing Systems (NIPS). arXiv:1706.00400

Andreas Stuhlmiiller, Jessica Taylor, and Noah D. Goodman. 2013. Learning stochastic inverses. In Conf. on Neural Information
Processing Systems (NIPS). https://proceedings.nips.cc/paper/2013/file/7f53f8c6¢730af6aeb52e66eb74d8507-Paper.pdf

Marcin Szymczak and Joost-Pieter Katoen. 2019. Weakest preexpectation semantics for Bayesian inference. In Int’l School
on Engineering Trustworthy Software Systems (SETSS). https://doi.org/10.1007/978-3-030-55089-9_3

Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul, Matthew Johnson,
and Rif A. Saurous. 2018. Simple, distributed, and accelerated probabilistic programming. In Conf. on Neural Information
Processing Systems (NeurIPS). arXiv:1811.02091

Alan M. Turing. 1937. On computable numbers, with an application to the entscheidungsproblem. Proc. of the London
mathematical society 2, 1 (1937). https://doi.org/10.1112/plms/s2-42.1.230

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2021. An Introduction to Probabilistic Programming.
arXiv:1809.10756

Thomas Verma and Judea Pearl. 1988. Causal networks: Semantics and expressiveness. In Conf. on Uncertainty in Artificial
Intelligence (UAI). arXiv:1304.2379

Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound probabilistic inference via guide types. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI). arXiv:2104.03598

Stefan Webb, Jonathan P. Chen, Martin Jankowiak, and Noah Goodman. 2019. Improving automated variational inference
with normalizing flows. In 6" ICML Workshop on Automated Machine Learning. https://www.automl.org/wp-content/
uploads/2019/06/automlws2019_Paper23.pdf

Stefan Webb, Adam Goliniski, Robert Zinkov, N. Siddharth, Tom Rainforth, Yee Whye Teh, and Frank Wood. 2018. Faithful
inversion of generative models for effective amortized inference. In Conf. on Neural Information Processing Systems (NIPS).
arXiv:1712.00287

Christian Weilbach, Boyan Beronov, William Harvey, and Frank Wood. 2020. Structured conditional continuous normalizing
flows for efficient amortized inference in graphical models. In Int’l Conf. on Artificial Intelligence and Statistics (AISTATS).
http://proceedings.mlr.press/v108/weilbach20a/weilbach20a.pdf

Frank D. Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. A new approach to probabilistic programming
inference. In Int’l Conf. on Artificial Intelligence and Statistics (AISTATS). arXiv:1507.00996

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2017. Understanding deep learning requires
rethinking generalization. In Int’l Conf. on Learning Representations (ICLR). arXiv:1611.03530

Cheng Zhang, Judith Biitepage, Hedvig Kjellstrom, and Stephan Mandt. 2019. Advances in variational inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 41, 8 (2019). https://doi.org/10.1109/TPAMI.2018.2889774
arXiv:1711.05597

https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1610.05735
https://doi.org/10.1145/3290350
https://arxiv.org/abs/1907.06249
https://doi.org/10.2202/1544-6115.1175
https://doi.org/10.2202/1544-6115.1175
https://arxiv.org/abs/1706.00400
https://proceedings.nips.cc/paper/2013/file/7f53f8c6c730af6aeb52e66eb74d8507-Paper.pdf
https://doi.org/10.1007/978-3-030-55089-9_3
https://arxiv.org/abs/1811.02091
https://doi.org/10.1112/plms/s2-42.1.230
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1304.2379
https://arxiv.org/abs/2104.03598
https://www.automl.org/wp-content/uploads/2019/06/automlws2019_Paper23.pdf
https://www.automl.org/wp-content/uploads/2019/06/automlws2019_Paper23.pdf
https://arxiv.org/abs/1712.00287
http://proceedings.mlr.press/v108/weilbach20a/weilbach20a.pdf
https://arxiv.org/abs/1507.00996
https://arxiv.org/abs/1611.03530
https://doi.org/10.1109/TPAMI.2018.2889774
https://arxiv.org/abs/1711.05597

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference
A COMPLETE SEMANTICS OF FCC
In this appendix, we present the complete semantics of FCC and proofs of the main theorems.
A.1 Operational and Static Semantics
See Figures 22-26.
elo
(EE:TR1v) (EE:TRUE) (EE:FALSE) (EE:CoND:TRUE) (EE:CoND:FALSE)
e || true e1 o e || false ex o
unit |} unit true | true false | false if(e;er;e2) Yo if(e;er;e2) J o
(EE:REAL) (EE:NAT) (EE:Op) (EE:ABs)
e1 | 01 ex | vy v =01 O Uy
rir nl|n opy(erzez) Lo Ax.e || Ax.e
(EE:App) (EE:LET) (EE:BER)
et ixeg e2llvz eofoz/xtlo erlor ex{or/x}t o ello
app(er;ez) J o let(e1;x.e2) | v2 Bern(e) || BERN(0)
(EE:UNT1F) (EE:BETA) (EE:GaMMA)
er o1 ez | 0z eror exlo
UnrF || Untr BeTA(e1; e2) || BETA(01;02) GammMma(er;ez) | GaMMA(v1;02)
(EE:NORMAL) (EE:CAT) (EE:GEO)
e1 | 01 er | vy Vie{l,---,n}.e; | v; elo
NormaAL(e; e2) || NORMAL(v1;02) Cart(ey, - ,en) | Car(vy, - ,0p) Geo(e) | Geo(v)
(EE:Pors)
elo

Pois(e) || Pors(v)

Figure 22. Evaluation rules for expressions.

29

30 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

(E:SAMPLE)
(E:CmD) eld v € d.support (E:BRANCH)
ocrmm{Yo w = d.density(v) elbd ormmy Vo
traceac by m |V o atomo +; sample(e) |* v injo +; ite(e; Mrye; Mease) 4 ©
(E:CALL)

def f{a)(x) = m e1 | vg ez | ox
o+t m{vg/a} {vx/x} [V 0

fold o +; call(f;eq;e2) ™ o

(E:OBSERVE)

(E:RET) e ld e 107
elo v € d.support wy = d.density(vy) o hmm ™o
{} Fm ret(e) .Ul 0 o km ObSerVe(el;EZ); m U'WI-WZ o
(E:BND:TERM)
R skt ™o {a’ : 5’} Fm m{o1/a} | 0z
el ve ok, mive/x} Vo
ormx=em|™o {a:s> a':s,} Fma=t;m{™™ v,

Figure 23. Evaluation rules for terms and commands.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 31

(TE:EVAR) (TE:TVAR) (TE:TR1v) (TE:TRUE) (TE:FALSE)
A Tox:TtkX:T Na:r;Tra:t A; Trunit: 1 A; T+ true: 2 A; T+ false: 2
(TE:ConD) (TE:UREAL) (TE:PREAL)
ATre:2 A;Tre:t ATre:t re[0,1] r>0 (TE:ReAL)
A; T rif(eserser) i 7 Ay TRr:Rpgq) A;Trr:Ry A;TrP:R
(TE:FNAT) (TE:Op) (TE:ABs)
n<m (TE:NaT) A;TF e O.arg, A;Trep: Oarg, AT,x:tre: 7
A;TER:Npg A;TrHn:N A; T +opg(er;er) : O.res ATrAxe:t—o 1
(TE:App) (TE:LET)
ATrer:11 > A;Trey:mp A;Tre iy A;T,x:11bFey: 1
A; T+ app(er;ez) : 12 A; T+ let(er;x.ez) : 12
(TE:BER) (TE:BETA)
A; Tre:Rygyq (TE:UnIF) A;Trep Rt A;Trey: Rt
A; T + Bern(e) : dist(2) A; T+ Unrr : dist(Ryo 1) A; T+ BeTa(er; ez) : dist(Rpg17)
(TE:GaMMA) (TE:NORMAL)
A;Trep Ry A;Trey:Ry A;Tre:R A Trey: Ry
A; T + GAMMA (eg; e2) : dist(Ry) A; T + NorMAL(eqg; e2) : dist(R)
(TE:CaT) (TE:GEo) (TE:Pors)
Vie{l,---,n}.A; T +e: Ry A; Tre:Rygq A;Tre:Ry
A; T+ Car(e, -, ep) : dist(Ny) A; T + Geo(e) : dist(N) A; T + Pois(e) : dist(N)
(TV:UREAL) (TV:PREAL)
(TV:Tr1v) (TV:TRUE) (TV:FALSE) re(0,1) >0
unit : 1 true : 2 false : 2 r:Ryoq] r:Ry
(TV:FNaT) (TV:Cro) (TV:BER)
(TV:ReAL) n<m (TV:NaT) V:T TtAxe:r— 1 v:Ryo1]
r:R n:Npy n:N clo(V,Ax.e) : 7 — 1’ BERN(0) : dist(2)
(TV:BETA) (TV:GamMmA)
(TV:UNIF) [/5 R+ 02 R+ U1 R+ [R+
Unir : dist(Rg,17) BeTA(01;02) : dist(Ryo,1]) GaMmMA (v1;02) : dist(Ry)
(TV:NORMAL) (TV:Car) (TV:Geo) (TV:Pors)
v1:R vy : R4 Vie{l,---,n}.0; : Ry v:Rpo1) v:Ry
NorMAL(v71;02) : dist(R) Cat(vy,- -+ ,0p) : dist(Ny) Geo(v) : dist(N) Pois(v) : dist(N)

Figure 24. Typing rules for expressions and values.

32 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

(S:Cmp) (S:SAamPLE)
ATr,m:T#3 A; T v, e dist(r)

A; THym:7#trace A; T +; sample(e) : 7 # atom ¢
(S:BRANCH)

A ot e:2 N Th,ymp:T#3 N Tr,ymg:T#3)

A; T+ ite(e;my;my) : T# 21 +e X2

(S:Carr)
f:<T1>(T2)’\/>T3#F A, ot.e1:1q A;Troeg:1m
A; Ty ocall(fseg;ep) : 73 # Fler)
(S:OBSERVE) (S:BND:ExXPR)
(S:RETURN) A; T+, e : dist(7) AN;Troe:mg
A, et.e:T AN;Troer: 1 AN Tr,yom:T#2 AT, x:mqbyym:mp#2
A; Trpret(e) : 7 # {Je A; T+, observe(er;ex); m:T#3 ANTr,ax=em:m#X
(S:BND:TERM)

AN Trit:m #S A,a:rl;l"l-mm:rg#{a’:S’}

e

A;FI—,,la:t;mzrg#{a:S, a’:S’}
e

FrF i {mi)(m) ~ 13 #F‘

(S:DEF)
f:{(r1)(rp) ~ 13 #F typedef F=Va: 7.3
a:T; X:To by, Mm:T3 #2

ko def f(a)(x) =m: (r1)(12) ~ 13 #F

Figure 25. Typing rules for terms, commands, and function definitions.

‘SI—_\-SUU‘ ‘O’I—UZ.U,U‘

(W:EVENT:ATOM) (W:EVENT:TRACE) (W:EVENT:BRANCH)
v:T ors 2o el b orts2p o
atomo +; atomt | v trace o + trace | v injo ks Ztrue +e Zfalse U ©
(W:EVENT:CALL) (W:TRrACE:BND)
typedef F=Va: 7.3 (W:TrACE:RET) sk.S o {ﬂ} . {ﬂ} {01/a} Lo
el v ots2{vg/a} o elo e
fold o ks Fe) |} v Oro e lo {a:s,a’:s’}l—g {a:S,a/:S’}eﬂv

Figure 26. Typing rules for traces and events.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 33

A.2 Measure semantics
Before developing the measure semantics for FCC programs, we first review the basics of measure
theory briefly.

o-algebras A c-algebra on a set X is a collection ® of subsets of X that includes X itself and
is closed under complement and under countable unions. Let F be an arbitrary family of
subsets of X, then there exists a unique smallest o-algebra that is a superset of F. This
o-algebra is said to be generated by F, denoted by o(F).

Measurable spaces A measurable space (X,) consists of an underlying set and its o-algebra.

Extended nonnegative reals R* is the set of nonnegative reals extended with infinity co.

Measures Let (X, ®) be a measurable space. A function y : ® — R, is called a measure if it
satisfies nonnegativity, null empty set, and countable additivity.

Measure spaces The triple (X, ®, y) is called a measure space.

o-finite measures The measure y of a measure space (X, ®, i) is o-finite if X can be decom-
posed into a countable union of sets with finite measure.

Lebesgue measure The Lebesgue measure is a o-finite measure for n-dimensional Euclidean
space, corresponding to length, area and volume for n = 1, 2, 3.

Borel spaces A set is a Borel set if and only if it is obtained by countable union, countable
intersection, and relative complement from open sets in a topological space. For a topological
space (X, 1), the collection of all Borel sets on X forms a o-algebra, known as Borel o-algebra,
notated B(X). A measurable space (X, ®) is said to be a standard Borel space, if ® is a Borel o-
algebra generated by a complete metric space on X. A measurable space (X, ®) is a standard
Borel space if and only if it is isomorphic to R, or a subset of N.

Product measure space Given two measure spaces (Xi, &1, p1) and (X, @y, p12), the product
measurable space is defined as

def
(X1,®1) ® (X, D) = (X3 X X5, 0({B1 X Bz | B; € ®; and B, € ,})).

The product measure is defined as (y; ® p») (By X By) o 11(By) - iz (Bz). The measure iy @ iy
is o-finite when both p; and p, are o-finite.

Coproduct measure space Given two measure spaces (X;, @1, yp) and (X, 2, p12), the coprod-
uct measure space is defined as

(X1, 1) O (X, @,) = (X; W X5, 0({B, WB; | By € ®; and B, € @,})).

The coproduct measure is defined as (p; U pp)(B; W By) o 11 (By) + p12(By). Countable
coproduct preserves o-finiteness.
Measurable spaces denoted by types. The definition of [r] for each data type 7 as a standard
Borel space is standard:

def

[1] = ({unit}, p({unit}))
2] &t ({true, false}, p({true, false}))

[Rioq] < ((0.1),8(0,1))
[R+] = ((0,), B(0,0))
[[R]] def ((=00, 0), B(—00, 0))

[[Nn]]d:Ef({O,l,n-,n—l},g)({o,l,...,n_l}))

34 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

def

[N] = ({0.1,-- }, p({0. 1,--- }))

Then for each trace type ¥ (resp. event type S), we construct a standard Borel space [2] (resp.
[S])- To handle recursive trace types, we first define a step-indexed version [Z]" (resp. [S]"). The
definition uses helper injections that map sets formed by the substructures of traces and events
into the corresponding sets of traces and events:

Ly (A) Z {{a1 251, ccoan 15N} | (51,58) €A} where ay,ay are lexicographically ordered’
Ltom(A) £ {atomo |0 e A}
Lrace(A) & {trace o | o € A}
Linj(A) déf{injo-| (LoyeA}
Iiold (A) £ {foldo | (o) € A}

We can now define the step-indexed measurable spaces [2]" and [S]", by double induction, first on
the step index, and then on the structure of types:

a1 81 = SNl & (T 00 { oy (B) [B @) where (x, @) & é) [5:]" and (ay,);Y, is
the lexicographicl:llreordering of ()N,
[atom 7]" = (Latom(X), { Lntom(B) | B€ ®}) where (X, ®) € [1]
[trace =" £ (Iace(X), { Iirace(B) | B€ ®}) where (X, ®) £ [3]"
[S1 +e Z2]" £ (inj(X), {Tinj(B) | B @}) where (X, ®) £ [5,]" 1 [5,]"
[Fe]’ = (2,0(2))

[F)™ = (Troia(X), { Irola (B) | B € @}) where (X, @) £]_[[{e/a}]" and

i=0

typedef F=Va: 7.2

Measurable spaces [2] and [S] can then be defined by induction on the structure of types, with the
[F(e)] case taking the fixed point:

N
def def N
[{a1 : S1,...an : SN}e] = (Iall,---,‘le (X), {Iall,_",alN (B) | Be @}) where (X, ®) = ® [[Sliﬂ and (ali)i:1 is
i=1
the lexicographical reorderingof (ai)fi 1

latom 7] £ (atom (X), { Latom(B) | B € ®}) where (X, ®) € [7]

[trace 2] df (Ttrace (X), {Itrace (B) | Bed }) where (X, ®) = def =]
[21+e S2] & (Eoj(X). { Enj(B) | B ®}) where (X, ®) £ [1] L [%,]
[F(e)] & (Ifol L0O0 {1 ,(B)|Be q»}) where (X,) "=f]_[[F(e)]"

n=0

def

where I/ | (A) = {foldo | (_foldo) € A}.

3The lexicographical ordering is on variable names. A canonical ordering of the term variables is needed, because traces are
unordered maps but the construction of N-tuples requires an ordering.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 35

Stock measures. The stock measure y; on the measurable space [r] denoted by a data type 7 is
standard, with p1, p2, un,, and pun being the counting measures on their respective spaces, and
HRyy)» HR, and pr the Lebesgue measure.

For each trace type X (resp. event type S), we define a stock measure ys (resp.) on its semantic
domain [3] (resp. [S]). Again, we first define a step-indexed verion, pf and 7, via double induction
on the index and the structure of types:

N
”?alzsl,...,aN:SN}e (Iall,---,azN (B)) = (® pgli) (B) where (a;,);., is the lexicographical reordering of (al-)fi1
i=1

'uzr:tom T (IatOm (B)) = Hr (B)
ﬂ?race s (Itrace (B)) = /Jg (B)

def
s, (e (B) £ (2 1142) (B)

def
Hiey (@) = 0
g (17
/,11'}2'61> (Iioid(B)) = (U :“lz{e/a}) (B) where typedef F=Va: 7.3
i=0
Measures uf and ug are then defined by induction on the structure of types:

N
H{ay:St,...an:Sn e (Iazl,---,‘dzN (B)) = (® /1511-) (B) where (ali)f.\il is the lexicographical reordering of (ai)fil
i=1

Hatom = (TIatom (B)) S pz(B)
Htrace = (Itrace (B)) = pz(B)
15145, (lnj(B)) = (g, 1 i5,) (B)

PF(e)(I;OH(B)) = (ltljulr:l<6>) (B)

The measures are o-finite, because the measures y, are o-finite, and because o-finiteness is preserved
by finite products and countable coproducts, which are used to construct p5 and ps.

Definition A.1 (Restatement of Definition 4.1). A closed command m of trace type X (o; o +,, m :
7 # 3) induces a measure [m] over a measurable space [2] of traces:

w (W, for,m Yo o
Po(o) & { [m] (4) & /A Pon(0) i5(do)

0, otherwise

36 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

B METATHEORETICAL DEVELOPMENT FOR FCC
B.1 Theorems in Section 4

ProrosITION B.1. Ifd : dist(r) and v is a value, then v : 7 if and only if v € d.support (i.e.,
d.density(v) > 0).

Proor. Appeal to mathematical properties of primitive distributions. O

PROPOSITION B.2 (PRESERVATION AND STRONG NORMALIZATION OF STLC).
o IfA;Tr.e:r,ande) v, thenA; T, 0: 7.
o IfA; T+, e : 1, then there exists a value v such thate |} v.

Proor. Appeal to type soundness and strong normalization of the simply-typed lambda calculus.

O
LEmma B.3.
(1) Ifo+, m|Y o, thenw > 0.
(2) Ifs+, t |” v, thenw > 0.
Proor. By mutual structural induction on evaluation derivations. O
LEMMA B.4 (SUBSTITUTION OF EXPRESSIONS).
(D) IfA; Ty x:pkoe:pandA; T h o1y, thenA; T v, e {o/x}: 1.
@) IfNa:t; Tr.e:pandA; T o1y, thenA; T+, e{v/a} : 1.
PROOF. Appeals to the substitution lemma of the simply-typed lambda calculus.]
LEMMA B.5 (SUBSTITUTION FOR COMMANDS).
(D) IAN T, x:n i t:n#SandA; Tr o1y, then Ay Tk t{o/x} : o #S.
@) IfAa:t; T t:np#SandA; T, 0:1q, thenA; T+, t{v/a} : 1p # S{v/a}.
@) AT, x:nry,m:n#Xand\; T o1y, thenA; Ty m{o/x} i # 2.
4) IfNa:tr; Tr,m:np#XandA; T ro 01, thenA; T+, m{v/a} : o, # X {v/a}.
PROOF. We show several nontrivial cases for (item 4) and (item 2).
Proof by mutual induction.
Case: (S:RETURN)
(1) Aa:r;; Trpret(e) iy #{}eand A; T 0: 1y (ASSUMPTION)
(2) A,a:11; 0Fce: 12 (INVERSION) & (1)
(3) A; ok, efv/a}:m (Lemma B.4) & (1) & (2)
(4) A; T rpy ret(e {v/a}) T2 # {}e{v/a} S:RETURN & (3)
Case: (S:BND:EXPR)
1) ANa:m;Trpyx=em:n#XandA; Trov:1g (ASsUMPTION)
2) A,a:t; Tree:tcand A acio; [Xt by mip #3 (INVERSION) & (1)
(3) A;Treefo/a}l: 7y (LEmMA B.4) & (1) & (2)
4) AsTyx:t ko0 (WEAKENING) & (1)
(5) A; T, x:74 by m{v/a} : 1o # 2 {0v/a} (LH.) & (2) & (4)
6) A; Tryx=e{v/a}; m{v/a}: 1 #3X{v/a} S:BND:ExPR & (3) & (5)
Case: (S:BND:TERM)

1) A a: ra,l"i-,,,b:t;m:rz#{b S, a’ S’} and A; T ko0 1y (AssumPTION

3) A;Tr t{ofa) 7 # S {o/a) ¢ (LH) & (1) & (2

(1))
2 Aa:r; Trtip#SandA a:t, by Thym:im # { S’} (INVERSION) & (1)
3)
4) Ab:t; Troo:ny (WEAKENING) & (1)

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 37

) A by T hpmioja) o # {a/ LS {u/a}} (LH.) & (2) & (4)
e{ov/a}

6) AT hpnb=t{ofa); m{v/a):1s# {b :S{vfa), 2 : 5 {U/a}}e{v/a} S:BND:TERM & (3) & (5)
Case: (S:Cmp)

1) Aya:t; Trim:mp#traceXand A; TR 01 (ASSUMPTION)

2 Aa:t;; Thym:m#2 (INVERSION) & (1)

(3) A; T+, m{o/a}: 1y 43 {v/a} (LH) & (1) & (2)

(4) A; T m{v/a}: o #traceX {v/a} S:Cmp & (3)
Case: (S:SAMPLE)

(1) A, a:71; T+ sample(e) : o #atommpand A; T Fo0 i1y (ASSUMPTION)

(2) A,a:1y; T, e:dist(r) (INVERSION) & (1)

(3) A; T+, efv/a} : dist(rp) (LEMMA B.4) & (1) &(2)

(4) A; T+, sample(e{v/a}) : 72 # atom 1y S:SAMPLE & (3)
Case: (S:BRANCH)

—

(1) A,a:1y; THite(e;my;mg) ip#X1+e X2and A; T ooy (ASSUMPTION)
(2) A,a:1y; @kce: 2,
A a:1;TFymg:1y#21 and

Na:r;; Trhymy:m#3) (INVERSION) & (1)
(3) A; er.e{v/a}: 2,

A; T vy, my{v/a} : o #21 {v/a} and

A; T ryymo{o/a} : o # 21 {v/a} (ProposITION B.2) & (LH.) & (1) & (2)

(4) A; Tryite(e{v/a};my{v/a};my{v/a}): 12 # 21 {v/a} e{v/a} 3y {v/a} S:BRANCH & (3)
Case: (S:CaLL)
(1) Aya:11; THycall(feg;en) i3 #F(epyand A; T o0y (ASSUMPTION)
@) f:{r)(r2) ~» 3 #F
A a:tg; eF.e1: 1y

—

ANa:tg;Theey:n (INVERSION) & (1)

(3) A; or.e1{v/a}: 1y
A Troex{v/a}: (LEMMA B.4) & (1) & (2)
(4) A; T+ call(f;eq {v/a}; e {v/a}) : 3 # F(e1 {v/a}) S:CaLL & (2) & (3)
O

THEOREM B.6 (RESTATEMENT OF THEOREM 4.3).

(1) Ife; o+, m:74 3, ando v+, m|" v, thene; o+, v:7andot+, X | v.
(2) Ife; o, t:7#Sandst, t |V v, thene; o+, v:1Tandst+,S | v.

PROOF. By mutual induction on the derivation of o +,, m |* v, and s +; ¢ |* v followed by inversion on
o, o, m:r#Xande; e, t:1#S respectively. We show several nontrivial cases; others are similar to one
of these cases.

Case: (E:RET)

(E:RET) (S:RETURN)
elo A, or.e:T
{} ko ret(e) §' 0 A; Tk ret(e) s 7# {}e
(1) ; @+, e:7ande | v (ASSUMPTION)
(2) o;0F,0:T (PrOPOSITION B.2) & (1)

@) Jro{lelo W:TRACE:RET & (1)

38 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

Case: (E:BND:EXPR)

(S:BND:ExPR)
(E:BND:EXPR) A;Troe:r
el ve ok, mive/x} Vo AT, x:Tibpm:in#2
orpx=e;m|Vo AN Trox=esm:m#%
(1) o; e+, e: 7y ande || ve (ASSUMPTION)
(2) o; @k, ve: 1y (ProOPOSITION B.2) & (1)
3) ;x:T1Fyym:#3 (AssUMPTION)
(4) o, o, m {Ue/X} Ty # X (LEMMA B.S) & (2) & (3)
(5) o Fm m{ve/x} ¥ o (ASSUMPTION)
(6) o; @, 0: 1y (LH.) & (4) & (5)
(7) o+ 2|0 (LH.) & (4) & (5)
Case: (E:BND:TERM)
(E:BND:TERM)
skt ™ oy {a’ :s’} b m{or/a} UM vy
{a i, m} Fma=tm]"™ oy
(S:BND:TERM)
AN;THit:m #S ANa:ry; Thym: Tg#{ S’}
e
A Trypa=t;m: Tz#{a S, a’ S’}
e
(1) o; ok, t:ry#Sandst; ¢t ™ vg (ASSUMPTION)
(2) o; @k, 01 : 1y (LH.) & (1)
(3) atr; @k m: #{ 5’} (ASSUMPTION)
(4) o o F, mi{v/a} : 1 # { } {01/} (LemMa B.5) & (2) & (3)
e
(5) {a } ko m{oi/a} ™2 v (ASSUMPTION)
(6) o; @+, vy : 1y (LH) & (4) & (5)
) {a' } {a/ : s'} {o1/a} | 02 (LH) & (4) & (5)
e
(8) sty S| o1 (LH.) & (1)
9) {a ;s @ T } by {a O 5/} U oz W:TRACE:BND & & (7) & (8)
e
Case: (E:OBSERVE)
(E:OBSERVE) (S:OBSERVE)
e1 Jd e | vy A; Tk, eq : dist(7)
v € d.support wi = d.density(v2) ory,m|™o A;Trhoep:T AN Thym:T#3
ok, observe(er;ex); m M ™M o A; T+, observe(er;es); m:7#3
(1) ; o+, m:t#Xandot+, m| ™o (ASSUMPTION)
(2) ;0. v:7andot, 2 o (LH.) & (1)
Case: (E:CmD)
(E:CmD) (S:Cmp)
orpm|Yo ATr,m:T#3
traceocFrm |V o A;Trim:7#traceX
(1) ¢; o, m:t#Xandot, m ™o (ASSUMPTION)
(2) o; o+, v:7andot, 2 o (LH.) & (1)

(3) traceo t; traceX | v W:EVENT:TRACE & (2)

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 39

Case: (E:SAMPLE)

(E:SAMPLE)
eld v € d.support (S:SampLE)
w = d.density(v) A; T+, e: dist(r)

atomo +; sample(e) J* v A; T +; sample(e) : 7 # atom

(1) o; o+, e:dist(r) and v € d.support (ASSUMPTION)
(2) o;0F, 0:T (ProrosITION B.1) & (1)
(3) atomo +, atomz o W:EVENT:ATOM & (2)
Case: (E:BrRaNCH)

(E:BRANCH)
el b ormmy ™o

injo +; ite(e; Mirue; Mfalse) "o

(S:BrancH)
A; or,e:2 N Tr,mp:T#3 N Tr,ymg:T#3)

A; T+ ite(e;my;mg) : T# 21 +e X2

(1) o; o+, mj:7#3;and o +; m; | v where i = ite(vp, 1, 2) (ASSUMPTION)
(2) o;0F,v:T (LH) & (1)
B) orsZi o (LH) & (1)
(4) o; o, e:2ande || v (ASSUMPTION)
(5) injo ks Z1+e 22) vp W:EVENT:BRANCH & (3) & (4)
Case: (E:CAaLL)
(E:CaLr)
def f(a)(x) =m e1 | vg ez | vy
o+ m{vg/a} {ox/x} | 0
fold o +; call(f;ey;e2) ™ 0
(S:CarL)
f:{r)(r2) ~> 3 #F A ek, e1: 1y A Troer:m
A; T+ call(f;eq;e) : 73 # Fer)
(S:DEF)
f:{(r1)(r2) ~> 3 #F typedef F=Va:7;.2
a:T; X:To by, m:T3#2
b def f(a)(x) =m: (r1)(12) ~> w3 # F
(1) att; Xk m:T3#2 (ASSUMPTION)
(2) o; @k, e1:71,0; @, e3: 12, e1 Jugand ep || vy (ASSUMPTION)
(3) o; 0. v :11and e; @k, vy : T2 ProrosiTION B.2 & (2)
(4) o; o+, m{vg/a} {vx/x}: 13 # X {vg/a} LEmMMA B.5 & (3)
(5) or: m{vg/a} {ox/x} IV 0 (AssSUMPTION)
(6) o; @k, 0: T3 (LH.) & (4) & (5)
(7) ors Z{vg/a} Jo (LH.) & (4) & (5)
(8) typedef F=Va:71.2 (ASSUMPTION)
(9) foldo s : Fle) J o W:EVENT:CALL & (2) & (7) & (8)
O

THEOREM B.7 (RESTATEMENT OF THEOREM 4.4).

(1) Ife; o+, m: 74X and o +, 2 |} v, then there exist w such that o +,, m ||* v.
(2) Ife; o+, t:7#S ands +, S | v, then there exist w such thats +, t |* v.

40 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

PRrOOF. By mutual induction on the derivation of ®; ® ,, m : 7#3,and o; e +; ¢ : 7 # S, followed by
nested inductionon o +, £ |J v and s - S |} v respectively.

Case: (S:RETURN)

(S:RETURN) (W:TRACE:RET)
A;er.e:T elo

A; T kpyret(e) s T# {Je Ore{3elo
(1) ; @+, e:7ande | v (ASSUMPTION)
@) {}oFmret(e) 1o ERET & (1)

Case: (S:BND:ExPR)
(S:BND:ExPR)
A Troe: g

AT, ximpbyym:mp#2

AN Trux=e,m:mp#2

(1) o; 0. e:1y (ASsSUMPTION)
(2) there exists a value ve s.t. e | ve and e; @ +, ve : 7y (PropOSITION B.2) & (1)
B) &;x:T bypymiT2#2 (ASSUMPTION)
(4) o o+, m{ve/x} 2 #3 (LEmmA B.5) & (2)
(5) o2 0 (ASSUMPTION)
(6) there exists w and v s.t. o +,,, m{ve/x} ™ v (LH.) & (4) & (5)
(7)) ormx=em|™¥o E:BND:ExPr & (2) & (6)
Case: (S:BND:TERM)
(S:BND:TERM)
AN;TrHt:T #S A,a:rl;l"l—mm:rz#{a’:S’}
e
A; FI—,,,azt;mzrg#{a:S, a’_S’}
e
(W:TRACE:BND)
skoslo @ (5} (or/ar Lo
e
fa:s a5} v fais @59} o
e
(1) o; o, t:y #Sandst, S | vy (ASSUMPTION)
(2) there exists wy s.t.s Fy t ™ vy (LH) & (1)
(B) a:r; @b, m:To # {W} (ASSUMPTION)
e
(4) o; o+, 01 :17q (THEOREM B.6) & (1) & (2)
(5) & ornmivifatin# {755} {or/a) (LEMMA B5) & (3) & (4)
e
(6) {a :s, a’ :s’} Fo {a 1S, al S’} Jo (AssuMPTION)
e
) {a' : s’} o {af : s'} {o1/a} Lo W:TRACEBND & (1) & (6)
e
(8) there exists wy s.t. {a’ : s’} ko m{oi/a} (™2 v (LH.) & (5) & (7)
9) {a s, al: s’} Fma=t; m™M W o E:BND:TERM & (2) & (8)
Case: (S:OBSERVE)

(S:OBSERVE)
A; Tk, eq : dist(7)
AN;Ttroeg:t AN Trym:T#2

A; T+, observe(ej;ey); m:7#3

(1) ¢; o+, m:7#Xandot, 2 o (ASSUMPTION)

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 41

2) there exists wy s.t. ok m ™2 o
3) o; e, e :dist(r)and e; ek, ep: T

5) v € d.support and wy = d.density(v) and w; > 0
6) o k., observe(er;ez); m ™1™z o

(
(
(4) e1d,esJvande; e+, d:dist(r)ande; e+, v: 7
(
(

(LH.) & (1)

(ASSUMPTION)
(PROPOSITION B.2) & (3)
(ProposITION B.1) & (4)
E:OBSERVE & (2) & (4) & (5)

Case: (S:Cmp)
(S:Cmp) (W:EVENT:TRACE)
NTr,m:7#% ors 20
A; T rrm:T#traceX traceo + traceX | v

(1) ¢; o, m:7#Xandot, 2 Jov (ASSUMPTION)

(2) there existsws.t.or; m ™ v (LH) & (1)

(3) traceo -y m ™o E:CmD & (2)
Case: (S:SAMPLE)

(S:SAMPLE) (W:EVENT:ATOM)
A; T+, e:dist(r) v:T
A; T +; sample(e) : 7 # atom 7 atomo +; atom7 | v

(1) o; o+, e:dist(r) (ASsUMPTION)

(2) el d (PROPOSITION B.2) & (1)

(3) o; o+, d:dist(r) (THEOREM 4.3) & (1) & (2)

(4) o;0r, v:T (ASSUMPTION)

(5) v € d.support and w = d.density(v) and w > 0 (ProrosITION B.1) & (3) & (4)

(6) atomo +; sample(e) | v E:SAMPLE & (2) & (5)
Case: (S:BraNCH)

(S:BRANCH) (W:EVENT:BRANCH)
A; ok, e:2 AN ThpmyiT#2 AN Thymo:T#3, el b orts2p o

A; T Hyite(e;my;my) 1 T# 31 +e 22

inj o ks Strue +e Sfalse U 0

(1) o; @+, mj:t#3;and o+, 2; || v where i = ite(vp, 1,2) (AssUMPTION)
2) el o (ASSUMPTION)
(3) there exists ws.t.o b, m; | v (LH.) & (1)
(4) injo t; ite(e;my;mg) Y™ o E:BrancHu & (2) & (3)

(S:CaLr)

f:{r1)(r2) ~ 3 #F Aot e1:1q AN;Troen:m

(W:EVENT:CALL)
typedef F=Va:7.%
elvg ok X{oa/a} o

A; T+ call(f;eq;ep) : 73 # Fley)

(S:DEF)
f:(r1)(rp) ~ 3 #F

foldo s F(e) | v

typedef F=Va:7;.2
a7 X:To by, m:T3#2

ko def f(a)(x) =m: (r1)(12) ~ 3 # F

(1) o; 0k, e2: 72

(2) there exists a value vy s.t. ez | 0y
(3) o; ek, e1:11ande; | vy
(4) o; o, v : 11 and e; @k, vy : T2
B)a:t;; Xk mi3#Y
(6) o o+ m{uva/a} {vx/x}: 13 #3{v/a}

(7) ot Z{v/a} o

(8) there exists w s.t. o+ m{vg/a} {vx/x} |V 0
(9) typedef F=Va:7;.%

(ASsUMPTION)

(ProPOSITION B.2) & (1)
(ASSUMPTION)

ProrosITION B.2 & (1) & (2) & (3)
(ASSUMPTION)

LEMMA B.5 & (4)

(ASsUMPTION)

(LH.) & (6) & (7)

(ASSUMPTION)

42 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang
(10) foldo +; call(f;e;e2) UV o E:CaLL & (2) & (3) & (8) & (9)
O

LEMMABS. If &; o, m; : T #3 and e; e \-,, my : T # 3, then it holds that Pp,, (0) # 0 if and only
if P, (o) # 0.

PROOF. The “only if” direction mirrors the “if” direction. Below we show the “if” direction.

(1) Py, (o) >0 ASSUMPTION
(2) o; 0k mi:T#3 ASSUMPTION
(3) s 0k my:T#Y ASSUMPTION
4) ormmg ™o DEFINITION A.1 & (1)
(5) ors 20 THEOREM B.6 & (2) & (4)
6) orpmy ™o THEOREM B.7 & (3) & (5)
(7) Pmy(0) =wo >0 DEFINITION A.1 & LEMMA B.3 & (6)

o

THEOREM B.9 (RESTATEMENT OF THEOREM 4.5). If ®; @+, m; : 7 # X and e; @\, my : T # %, then
for any measurable set A of traces, [m;] (A) # 0 if and only if [m.] (A) # 0.

PROOF. The proof uses the fact that a Lebesgue integral is zero if and only if the integrand is zero almost
everywhere.

= m do =

2] (4) = [Py (@) =0

e A ({o|Pm,(0) - 1g(c) > 0}) =0

=i ({o | P, (0)-1p(0) >0}) =0 Lemma B.8

= [m] (4) = LPml(G)dU =0

B.2 Theorems in Section 6

Define functions CPFV,,(-) and CPFV,(-) that compute free term variables in checkpoints within a
command or a term:

CPEV,,(ret(e)) = Fv(e)

def

CPFV,,(x = e; m) = CPFV,,(m)
CPEV,,(a = t; m) & CPFV,(t) U CPFV,,(m)
CPFV,,(observe(ey; ez); m) &ef CPFV,,(m)

CPFV; (sample(e)) o
CPFV, (ite(e; m1; m2)) & FV(e) U CPEV,, (m;) U CPEV,, (my)

CPEV;(call(f;e)) & FV(e)
CPFV,,(m)

CPFV,(m) &

LEMMA B.10.
1) IfG C AN, h:R v+, (A;TF,m:74#%) ~» m and CPFV,,(m) C domain(A’), then
AN;h:Rbe,m :t#2.
@2 If G C N, h:Rya v, (A;TrH t:7#S) ~» t' and CPFV/(t) C domain(A’), then
AN;h:Re t:T#8S.

N

PROOF. By mutual structural induction on derivations of command translation and term translation. Below
we show the most interesting case, namely the translation of a command.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 43

Case: GG:Cmp
(GG:Cmp)
TermBindings(m) = (a; = ti)%L (al,- = tli)ﬁl reordersg (a; = t;)

. ’ ’
Vi. G; C; Ayay, t1yy,may, i1y iRy ay, ky <Al,»§ 0, ki ty, g, #Sli> ot

G CA;h:R by (A Trum:et#{a;:S,.,an : SN}e) w a = tl'l; o apy = tI'N;ret(e)

N
i=1

1) AsTrym:t#{a; :S1,...,aN : SN}e ASSUMPTION
2) (ay, = tli)£1 reordersg (a; = ti)ﬁ\il ASSUMPTION
(3) Vi.Ai; ik ti:ti #S; (1) & S:BND:TERM
(4) Vi. Ali§ l“li Foty oo, # Sli 2) & (3)
(5) Aay:711,..,aN 1 TN; ®Foe: T (1) & S:RETURN
(6) Aay i1y,.agy i Ty ®Feer T 2) & (5)
(7) Vi. CPFV,(t;,) € domain(A’) U {ay,,...,aj, ,} (2) & REORDER
(8) Vi.A,ay :1p, .8y 1, s h:iRE tl’i DT, # S, LH. & (4) & (7)
(6) & S:RETURN &

(9 Ash:RbEpay = tl’l; oAy = tl'N; ret(e) : T # {al1 TR T :SIN}E (8) & S:BNDTERM
(10) (li)f\:’1 is a permutation of (i)l{il INVERSION OF (2)
(11) {all Y AR T SIN}e ={a; : S1,...aN : SN}, (10)
(12) A’; h:RbFpay = tl’l; oA, = tl'N; ret(e) : 7 #{a1 : S1,...an : SN }e (9) & (11)
O

THEOREM B.11 (RESTATEMENT OF THEOREM 6.1).
If G; {(ENTRY)}; ® Obs:R +,, (& 0bs:R &, my:7#3) ~w mg, thene; obs: Rk, mg: 7#3.

Proor. By Lemma B.10 and by command m being well-typed in an empty term-variable envi-
ronment.]

THEOREM B.12 (RESTATEMENT OF THEOREM 6.2).

If G; {(enTRY)}; @ Obs:R F, (e obs:RF, myn:T#X%) ~ my and v : R, then for any
measurable set A of traces, [my {vobs/0bs}] (A) # 0 if and only if [mg {vens/0bs}] (A) # 0.

Proor. By Theorems B.9 and B.11. O

44 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

C DATAFLOW GRAPHS FOR CAPTCHA MODEL AND GUIDES

a) captcha model (b) LSTM guide for captcha (c) Fidelio guide for captcha

Figure 27. Dataflow for a trace of the captcha model and two guides. In the model (a), RVs ¢ (captcha
characters) are all correlated with each other. As a result, the model contains no conditional independence
for Fidelio to exploit.

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference

D EXPERIMENTAL SETUPS AND SUPPLEMENTAL STATISTICS

45

name structure #RV (qu:)?i(e:l) #iteration guide capacity validation loss
Fidelia 1398 21.87529387
longrange (k=5) loop 8 16 10000 LSTM 1382 24.49491011
mean-field 1386 25.38885483
Fidelia 1398 40.37852367
longrange (k=10) loop 13 16 10000 LSTM 1382 43.68544903
mean-field 1386 44.04598006
Fidelia 1398 77.59334972
longrange (k=20) loop 23 16 10000 LSTM 1382 81.31816754
mean-field 1386 81.24487837
Fidelia 1398 152.1430431
longrange (k=40) loop 43 16 10000 LSTM 1382 156.0312375
mean-field 1386 155.7906566
sparse guide (Fidelia) 994 18.77669632
5000 dense guide (Fidelia) 982 20.46032267
LSTM 996 20.82039981
mean-field 1078 22.88487139
sparse guide (Fidelia) 1540 18.74158391
dense guide (Fidelia) 1533 18.99891774
treebn (h=3) BN 15 20 5000 LSTM 1588 2048320966
mean-field 1484 22.75920135
sparse guide (Fidelia) 2023 18.72428359
5000 dense guide (Fidelia) 2047 19.00601651
LSTM 2116 19.97572785
mean-field 2128 22.75885654
sparse guide (Fidelia) 2055 41.06646845
5000 dense guide (Fidelia) 2154 43.5052426
LSTM 2196 45.76123151
mean-field 2236 51.87590573
sparse guide (Fidelia) 3642 41.04653035
dense guide (Fidelia) 3594 43.11532713
treebn (h=4) BN 31 37 2000 LSTM 3552 4485451233
mean-field 3498 52.33009364
sparse guide (Fidelia) 5196 41.04030352
5000 dense guide (Fidelia) 5298 43.11325543
LSTM 5498 43.95748757
mean-field 5412 51.88407577
Fidelia 52 838 7.536001405
10000 LSTM 50 159 14.76856677
mean-field 52 105 10.29323038
Fidelia 104 951 3.6027033
10000 LSTM 102 437 14.83619706
mean-field 100 217 7.961722895
branching Fidelia 254 555 2.241801572
PCFG-Captcha . stochastic 237 10000 LSTM 250 209 14.78410727
recursion mean-field 250 687 8.149919943
Fidelia 500 603 2.918338221
10000 LSTM 500 049 14.44708732
mean-field 501 999 10.2873026
Fidelia 2000 177 2.511201136
10000 LSTM 2000 705 9.530939491
mean-field 2000 321 8.379732159

46 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang
Table 3 continued from previous page
name structure #RV #LOC #iteration guide capacity validation loss
(model)
Fidelia 1154 20.47216836
2000 LSTM 1112 19.46052641
mean-field 1496 25.98369968
Fidelia 5469 13.36186348
2000 LSTM 5042 15.65118018
mean-field 5456 17.55795286
Fidelia 10505 11.89387623
2000 LSTM 10334 15.28437446
mean-field 10824 16.56617211
Fidelia 15206 11.93564912
ECOLI70 BN 46 54 2000 LSTM 15074 15.31487038
mean-field 15774 16.6019876
Fidelia 50591 11.82502852
2000 LSTM 50774 15.26491375
mean-field 52404 16.76144694
Fidelia 101481 12.03494057
2000 LSTM 100004 14.9902177
mean-field 100166 16.42537214
Fidelia 153566 12.58098554
2000 LSTM 151052 15.17583296
mean-field 152196 17.51372583
branching Fidelia 4416271 -1.21193114347507
captcha . 6 43 200000 LSTM 4416081 -1.3246571659603206
recursion
mean-field 4423701 1.6435429854854278
20000 Fidelia 25028 2.45345686
LSTM 25006 2.570013847
Fidelia 50038 1.83395378
20000
LSTM 50022 2.470131403
Fidelia 74986 1.792654934
20000
LSTM 75035 2.356314919
Fidelia 100023 1.979825721
20000
LSTM 100037 2.351797449
Fidelia 125018 1.785649728
20000
branching . L.STI\'/[124972 2.261098404
Astro-PCFG recursion stochastic 159 20000 Fidelia 150002 2.035392191
LSTM 149928 2.361578974
20000 Fidelia 175040 1.605737646
LSTM 175048 2.338465666
20000 Fidelia 199992 1.591854952
LSTM 200009 2.297783281
20000 Fidelia 225010 1.709513105
LSTM 225078 2.241109376
20000 Fidelia 250013 2.113929184
LSTM 250078 2.386709259
20000 mean-field 175094 6.303524799
Fidelia 20332 16.21922317
5000 LSTM 19794 257.8196954
mean-field 20454 111.1146122
branching Fidelia 49872 15.15900177
gmm recursion 116 49 5000 LSTM 49782 170.0629188
mean-field 50262 111.164391
Fidelia 80222 14.55081707
5000 LSTM 80184 152.3689971
mean-field 81018 111.0644756

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference 47
Table 4. Table 2, with standard deviations.
LoC . Validation Loss
Program Structures #RVs (model) Capacity ‘ Mean-Field LSTM Fidelio
treebn BN 31 37 2K ‘ 51.88 £0.17 45.76 +£1.90 41.07 £ 0.14
5K 51.88 £0.17 43.96 + 1.64 41.04 £0.11
. 10K 11.89 £ 0.13 15.28 £ 0.33 16.56 + 0.21
ecoli70 BN 46 > 15K ‘ 11942013 1531£0.29 16.60 +0.17
longrange (k = 5) loop 8 16 1.4K ‘ 25.39 +0.00 24.49 +0.77 21.88 +0.06
longrange (k = 10) loop 13 16 1.4K ‘ 44.05 £+ 0.00 43.69 £+ 0.43 40.38 + 0.06
longrange (k = 20) loop 23 16 14K | 81.23+0.01 81.32+0.13 77.59 = 0.05
longrange (k = 40) loop 43 16 1.4K ‘ 155.79 £ 0.01 156.02 £ 0.09 152.12 £ 0.06
captcha recursion 6 43 4.4M ‘ 1.644+£0.02 -1.325+0.14 -1.212+0.13
100K 6.23 +0.02 2.35+0.05 1.98 +£0.24
astropcfg recursion 15.0 159 175K | 6.22+0.00 2.36 £ 0.08 2.04 +0.02
250K 6.22 +0.00 2.39+£0.04 2.11+0.25
100K+1M(CNN) 7.96 + 0.46 14.84 £ 0.21 3.60 = 1.58
mathcaptcha recursion 145 237 250K+1M(CNN) 8.15 +0.37 14.78 £ 0.32 2.24 +£0.57
500K+1M(CNN) 8.33 £ 0.68 14.80 = 0.21 1.95 £ 0.39
2M+1M(CNN) 8.39 + 0.60 9.53 +£5.32 2.51+0.43
20K | 111.11+£0.15 257.82 + 46.72 16.22 £ 0.63
gmmcc recursion 217.4 49 50K | 111.16 £0.34 170.06 + 12.03 15.16 £ 0.79
80K | 111.06 +0.32 152.37 £ 6.37 14.55 £ 0.79
Table 5. Table in Figure 17, with standard deviations.
k ESS
M.-F. LSTM Fidelio
5 1.53+£0.69 3.08+2.44 50.45+5.56
10 1.00+0.00 2.21+1.62 41.88+7.76
20 2.19+0.54 1.54+£0.69 55.99 £ 6.55
40 2.66+0.73 1.19+0.24 45.58 +5.75
Table 6. Table in Figure 18, with standard deviations.
‘ Effective Sample Size
Copacity) lspy Fidelio Fidelio
T Fig. 16b Fig. 16¢
2K 1.39+0.56 3.13+2.02 8.67+4.22 82.81+9.56
5K 1.38 £0.57 9.84 £6.53 9.51+341 84.13+3.63
Table 7. Table in Figure 19, with standard deviations.
] Regeneration Rate | Levenshtein Distance
Capacity A R
| M.-F. LSTM Fidelio | M-E LSTM Fidelio
100K 40.00% + 0.45% 57.37% + 2.46% 71.67% +1.89% | 4.36 £0.03 2.99+0.05 2.72+0.17
175K 39.83% +0.31% 60.83% + 0.73% 71.32% +1.14% | 4.41 +£0.01 3.08 £0.10 2.63 +0.07
250K 39.17% + 0.12% 62.42% £ 4.16% 69.83% + 1.03% | 4.36 £0.03 3.04 £0.07 2.75+0.01

48 Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang

Table 8. Table in Figure 20, with standard deviations.

Levenshtein Distance

Recognition Rate

Capacit
P MR LSTM Fideio | M-FE LSTM Fidelio
100K+1M(CNN) | 35.81% % 2.66% 8.94% + 0.96% 70.49% +16.52% | 2.50%0.17 4.25+0.11 0.81%0.35
250K+ 1M(CNN) | 36.75% + 1.99% 9.82% £ 0.73% 79.46% £ 5.00% | 2.45%0.11 4.21+0.09 0.58 % 0.20
500K+1M(CNN) | 35.26% + 3.42% 9.67%+ 0.59% 83.09% + 3.02% | 2.50 + 0.257 4.22 + 0.12 0.46 + 0.10
2M+1IM(CNN) | 34.85% + 3.72% 39.35 + 20.93% 77.56% +3.63% | 2.62+0.27 2.66+1.56 0.65 0.14

Synthesizing Guide Programs for Sound, Effective Deep Amortized Inference

KL + const

40

30

20

49

| | — Mean-Field — LSTM — Fidelio
L . ESS
Capacity
M.-F. LSTM Fidelio
B 10K 41+22 91+70 48.8+27.1
L 15K 5635 9.2+4.6 343+19.5
0K 02K 04K 0.6K 08K 1K

training steps

Figure 28. Experimental results for ecoli70. Left: Training steps vs. training loss profile, with all guides
having capacity 10K. Right: Quality of IS samples as measured by ESS.

KL + const

— Mean-Field — LSTM — Fidelio

Recognition Rate

M.-F. LSTM Fidelio

25.28% = 0.54% 78.72% + 0.90% 77.64% + 1.08%

N WYY RV N YN

100K 150K
training steps

Figure 29. Experimental results for captcha. All guides have capacity 4.4M.

	Abstract
	1 Introduction
	2 Background
	3 Problems and Contributions
	3.1 Absolute Continuity (AC)
	3.2 Faithfulness and Parsimony
	3.3 Contributions

	4 Absolute Continuity by Typing
	4.1 Syntax of FCC
	4.2 Operational Semantics of FCC
	4.3 Static Semantics of FCC
	4.4 Measure Semantics of FCC
	4.5 Theoretical Results

	5 Identifying Correlations and Independences
	5.1 A Graph Representation of Dependences
	5.2 A Notion of Active Trails for PDGs

	6 Guide Generation as Type-Directed, Dependence-Aware Translation
	7 Implementation
	8 Evaluation
	8.1 Expressiveness of the Trace-Type System
	8.2 Performance Implication of Dependence-Awareness for Training and Inference

	9 Related Work
	10 Conclusion
	References
	A Complete Semantics of FCC
	A.1 Operational and Static Semantics
	A.2 Measure semantics

	B Metatheoretical Development for FCC
	B.1 Theorems in sec:sem
	B.2 Theorems in sec:guidegen

	C Dataflow Graphs for Captcha Model and Guides
	D Experimental Setups and Supplemental Statistics

