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Abstract 
 
This paper adopts a deep learning methodology in assessing economic cost of damage arising from 
pluvial flooding which occurrence is increasingly exacerbated by global climate change. This 
investigation exploits a recently released, sizable claim database from the US National Flood Insurance 
Program and meteorological data from National Oceanic and Atmospheric Administration in training 
several competing models which are later used for prediction on test datasets which have not been used in 
the training process. Separate analyses are provided in this paper for claims on building and claims on 
content.  
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1 Introduction 

 
With the advent of global climate change, both the frequency and intensity of extreme 
precipitation events have been rising unprecedentedly in recent times. However, assessing the 
timing and location of such events with any desired degree of accuracy has proven to be a 
daunting task for climate scientists in general. This is due primarily to the complexity of the 
climatic system (Kunkel, 2003, and Karl and Knight, 1998). 

 
Flood is among the costliest natural disasters to this date. According to a report recently 
published by MunichRE (2020) losses due to flooding amounts to more than $1 trillion globally 
over the period of 1980-2019 and, moreover, only 12% of the losses is insured. The report 
published by MunichRE (2020) also posits that flood is perhaps among the most 
underestimated natural hazards and represents a staggering 40% of all loss-related natural 
catastrophes worldwide over the same time period. This report provides an important impetus 
for us to undertake research on assessing, or more precisely, predicting, economic costs of 
damage arising from pluvial flooding. 

 
Insurance industry has a gargantuan challenge to reduce the insurability gap and also improve 
a societal natural-disaster resilience by offering affordable and innovative insurance products. 
In regard to the pluvial flooding, the insurance industry needs to ensure that future victims of 
flood events are able to receive adequate compensation to restore their properties and 
belongings through a sound flood-risk management. Achieving such an endeavor would 
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necessitate a sound and reliable statistical methodology that is capable of assessing flood risk 
and also estimating the economic cost of extreme precipitation events at a reasonable degree of 
accuracy. 
 
Most insured residents against floods in the US are part of the National Flood Insurance Program 
(NFIP), which was enacted in 1968 by the US Federal Emergency Management Agency 
(FEMA). In 2019, FEMA released a broad database consisting of more than 2 million historical 
claims for damages due to flooding.  
 
This study provides a first-step analysis of the aforementioned database by exploiting a deep 
learning methodology in order to build predictive models to assess, or more precisely, 
forecast, the economic cost of damage due to pluvial flooding. Briefly pluvial flooding occurs 
when an extreme rainfall event causes flooding independent of an overflowing water 
body. The specific goal of this study is to use this newly released dataset to unearth any 
improvement that an artificial neural network (ANN) architecture from the deep learning 
domain could potentially offer in terms of improved accuracy in assessing, or more specifically  
predicting, the economic cost of flood damage in comparison to a multiple linear regression 
(MLR) framework which is more commonly used in this type of study. 

 
The rest of the paper is structured as follows. Section 2 provides a selected review of the 
literature most relevant to our study and provides some background knowledge on the subject 
matter. Section 3 presents some descriptive statistics of the data and outlines the statistical 
methods and models that are used in this study. Section 4 provides a set of results on the 
preliminary analysis of the empirical research and proposes directions for further research, 
which is urgently needed. Section 5 summarizes the key findings of the study and concludes the 
paper. 

 
2 Selected literature review 
2.1 Climate change and extreme precipitation events 
 
Global climate change poses a continuing threat to our socio-economic system as well as the 
terrestrial life on our planet. In essence climate change is a natural and cyclical occurrence 
caused by varying levels of greenhouse gases in the earth atmosphere and it happens over the 
span of a hundred of thousands of years or so. However, in the last few centuries alone, the 
level of anthropogenic greenhouse gases is reported to have risen substantially. In fact the world 
is already experiencing an increase in average global temperature of 1°C since 1901 (Storey et 
al., 2019). Additional evidence on the potential effects of the global climate change continues 
to accumulate in this field unabatedly (Manabe et al. (1967), Keeling et al. (1976), and Held et 
al. (2006)). 

 
One major impact on climate is a potential increase in both the frequency and intensity in 
precipitation events. According to Karl and Knight (1998), the contiguous US has experienced a 
10% increase in total annual precipitation since 1910. It is reported that about half of the 
increase is attributed to the increase in frequency of precipitation events  and the other half to 
the increase in severity of heavy precipitation events. According to a widely cited study on trends 
in extreme precipitation in North America (Kunkel, 2003), a foreseeable increase in global 
temperature is likely to result in more frequent and severe precipitation events since 
atmospheric water vapor will be more readily available to the climatic system to generate 
precipitation events. As a result a potential increase in the frequency of pluvial flooding can 
not be ignored. This turn of events can pose a threat to, but also provide an opportunity for, 
the insurance industry, especially the property insurance sector, to engage more consistently in 
products related to this event. 

 
Actuaries, far from being climate experts, are overtly expressing their growing concern about 
climate change and its precarious effects on the insurance industry. According to a global survey 
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of more than 70 insurance analysts conducted by Ernst & Young in 2008, global climate change 
is considered to be the riskiest endeavor facing the industry (Mills, 2012). Insurers, being 
institutional investors, are already divesting carbon-intensive energy, such as underwriting 
coal projects (Storey et al., 2019). However a mitigation effort alone is unlikely to be 
realistically sufficient to ensure the continuingly vibrant existence of the industry. On the other 
hand having a thorough understanding and a proper perspective of climate change risks, and 
also being able to offer innovative and affordable insurance products in a timely manner can 
go a long way in enhancing the industry’s ability in its efforts to improve the societal natural-
disaster resilience. 

 
In the case of the pluvial flooding, an exhaustive database which comprises well-specified flood 
metrics and a predictive model with the ability to predict accurately the economic cost of 
extreme precipitation events are undoubtedly twin essential to an equitable pricing of flood 
insurance and for closing the insurability gap. In 2018, the US Federal Emergency 
Management Agency (FEMA) released a wealth of data on its National Flood Insurance 
Program (NFIP), which acted as a game changer in research in this field.  The following 
subsection presents  a brief historical overview of NFIP claims. 

 
2.2 A brief history of the national flood insurance program 
 
In 1965 Louisiana was hit by a destructive hurricane known as Betsy, flooding 165,000 residences 
within a matter of just few hours and leaving behind thousands of victims with no means of 
restoring their possessions. In 1968 a continued lack of interest from the private sector and the 
provision of federal relief to flood victims, regarded as free insurance, eventually compelled the 
US federal government to enact the National Flood Insurance Program (NFIP). Under the 
NFIP, US citizens are eligible to purchase flood insurance policies including building coverage 
up to $250,000 and content coverage up to $100,000 (Michel-Kerjan, 2010). The absence 
of a private market for flood insurance can be explained by the nature of flood risk. Figure 1 
depicts the NFIP annual aggregate claim amount paid in 2018 dollars and confirms that 
potential insurers bear a relatively high risk of heavy losses periodically. In other words a 
year teemed with a multitude of hurricanes and floods can result in catastrophic losses and 
put the potential insurers quickly out of business. 
 

 
   Figure 1. NFIP annual aggregate claim amount paid adjusted for inflation (in 2018 dollars) 
 
In 2005 Hurricane Katrina hit New Orleans with such a devastating force that it costed the NFIP 
a staggering $18.5 billion (in 2018 USD) in claim payments and put the economic feasibility of 
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the NFIP to test. Already operating on a deficit, the U.S Treasury had to lend $18.6 billion to the 
program (Michel-Kerjan, 2010). Hurricane Sandy in 2012 brought the total claim value paid 
by the NFIP to $6.5 billion (in 2018 USD). The total claim value paid by the NFIP in 2017 
amounted to a hefty $9.4 billion (in 2018 USD) as the US was hit by Hurricanes Harvey, Irma 
and Maria. The economic viability of the NFIP is undermined due to a variety of reasons, such as 
inadequate premium charges, outdated flood maps, expensive administration fees charged by 
private insurers  amongst others. Michel-Kerjan (2010) and Kousky et al. (2017) present an 
impressively exhaustive research on the operation of the NFIP and also propose a concrete set 
of measures to improve the effectiveness of the program. 

 
Figure 2. Annual average claim paid on building adjusted for inflation (in 2018 dollars). 
 

 
Figure 3. Annual average claim paid on content adjusted for inflation (in 2018 dollars). 
 
Figures 2 and 3 present an annual average claim value paid in 2018 US dollars for building and 
content respectively. One stark observation from these figures is that the highest average claim 
values are on the latter part of the timeline for both types of claims, in particular, for the calendar 
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years mentioned above. Another important point worth highlighting from these figures is that, 
even after adjusting for inflation, both of them still display a highly visible upward trend in the 
average claim value. As a note, a 3-year moving average line is overlaid on both figures in view 
to highlight a more distinctly discernible pattern. 
 
 
2.3 Selected literature review on methodology used for predicting flood 
risk 
 
With the advent of global climate change, insurers more than ever need to revisit their 
methodology used to model and predict the economic cost of damage caused by flooding more 
critically. With regards to insuring against floods, researchers in this field often have to concede 
that the lack of data availability, but most importantly the lack of data quality, may have seriously 
impaired studies on flood substantially (Spekkers et al., 2013). It appears to be the case that 
insurance claims databases cannot be accessed readily by investigators interested in studying 
this issue. Moreover, even when an access is granted to researchers, recorded measurements 
are often redacted or become obsolete and, therefore, are of little use for modelling complex 
events such as flooding. 
 
Spekkers et al. (2015) pointed out that existing literature scarcely investigates the causes of 
flooding (i.e. drainage system in urban areas). This is because innovative data collection 
methods must often be devised first in order to capture information about the underlying reason 
and mechanism behind the damage caused by the pluvial flooding. 
 
Cheng et al. (2012) presented a study of heavy rainfall-related damage claims for the province of 
Ontario in Canada. By averaging results from five downscaled global climate models, the study 
shows a substantial increase in potentially incurred losses solely due to the pluvial flooding. 
Spekker et al. (2013) used a logistic regression model to perform an analysis on how the 
probability of damage caused by the pluvial flooding is affected by rainfall intensity. But the 
model leaves a substantial portion of variance in damage on both building and content still 
largely unaccounted for. 
 
More recently and also most related to our study Lyubchich et al. (2019) provided an extensive 
overview of the limited existing literature on machine learning techniques which are used to 
model natural hazard risk for property insurance. It concludes that as far as research using the 
machine learning techniques to predict flood risk is concerned, daily precipitation is found 
consistently to be the most studied meteorological variable and is also consistently regarded as 
the most important predictor in the models. 
 

3 Data and research methodology 
3.1.1 NFIP claim dataset 
 

The National Flood Insurance Program (NFIP) claim dataset, which is publicly 
available from the URL: https://www.fema.gov/, is used in this study. This dataset is 
composed of 39 variables and 2,432,888 observations, which span the period from 
1968 to 2019. The description of each variable originally contained in this dataset is 
provided in Appendix A. The dataset is truncated for the time range starting from 
January 1st, 1978, to December 31st, 2018, which is a time period equivalent to 41 years. 
The dataset contains both claims which resulted in payment and claims without 
payment. Since the study focuses on estimating the economic cost of the pluvial 
flooding, non-payment claims are filtered out, reducing the number of claims to 
1,282,090. The monthly Consumer Price Index (CPI) for the same time period is 
retrieved from the URL: https://fred.stlouisfed.org/ which is used to construct annual 

https://www.fema.gov/
https://fred.stlouisfed.org/
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inflation rates and adjust every claim to the 2018 US dollars. 
 
 
3.1.2 NOAA daily precipitation dataset 
 

The claim dataset contains the latitude and longitude of the location, where the damage caused 
by flooding occurred. The latitude and longitude for each claim is used to find the nearest 
meteorological station in a radius of 500 km. Due to our computational limitations, only 
meteorological stations, which are related to more than 500 claims, are retained in our study. 
Of this, 432 meteorological stations satisfied the aforementioned criteria and the number of 
claims in the dataset exceeds 900, 000 claims. Four meteorological variables ,  namely daily 
precipitation, 1-day lag precipitation, daily snowfall and 1-day lag snowfall for the period January 
1st, 1978, to December 31st, 2018, are retrieved from these stations. A column containing daily 
precipitation data from the nearest meteorological station for the date, when water first 
entered the insured building for each claim is appended to the original claim dataset. 
Columns for the three other meteorological variables  are constructed and appended to the 
original claim dataset in a similar fashion. 
 
3.1.3 Data cleansing and data partitioning 
 
A substantial number of missing values for daily precipitation is observed in the dataset. 
Discarding the claims with missing values for daily precipitation brings the number of claims in 
the dataset down to 117,542, which is almost a nine-fold reduction in the size of the dataset. This is 
attributed to the fact that the temporal availability of meteorological data varies from station to 
station and do not always match the date when the damage occurred. Since the original NFIP 
dataset does not include the reason behind the flood related claims, a rather loose but logical 
assumption is made in order to proceed with the investigation reported in this study. The 
assumption entails that claims for damage occurred on rainy days is related to the pluvial 
flooding, thereby discarding all claims with daily precipitation data of value zero. This further 
reduces  the effective number of claims in the dataset to 98,655. 
 
The prima facie redundant variables (e.g. ID, census tract, etc.) are manually discarded from the 
analysis. Variables with more that 10 percent of missing values are also removed from the 
dataset with the exception of the two meteorological variables, namely, daily and 1-day lag 
snowfall which are imputed with zero. Variables with less than 10 percent of missing values are 
imputed with the measure of center, which is deemed to be more appropriate individually. A 
list of the final variables retained for our study can be viewed in Appendix B. Customary practices 
for pre-processing the data for machine learning algorithms are used before partitioning the 
data. Specifically the one hot-encoding method is used to create dummy variables for categorical 
variables and numerical variables are standardized prior to the analysis. Finally the dataset is 
split into two subsets: 80% of the dataset, which consists of 78,614 observations, is used to train 
the models (representing a training dataset) and the remaining 20%, which is equivalent to 
20,041 observations, is used to assess the performance and robustness of the models 
(representing a test dataset). The partitioning of the dataset is carried out in this study is done 
on an ad-hoc basis and a more refined data-driven method can readily be used. 
 

3.1.4 Exploratory data analysis 
 
Random Forest is an ensemble learning algorithm in the machine learning domain. It averages 
the output of standard decision trees. As a by-product of this, it very usefully allows the ranking 
of variables by importance (as measured by a percentage increase in Mean Square Error), 
which is an informative way of learning about the variables in a given dataset and this particular 
feature of random forest is judiciously exploited in this subsection. 

 



7 
 

The analysis of claims on property and content damage is carried out separately in order to 
increase the visibility on variable importance in each case. Random Forest is performed to 
examine the predictive strength of each feature variable or predictor. The hyper-parameter m-
try that controls the split-variable randomization feature of Random Forests is set to 29, 
which is a customary third of the number of predictors as generally prescribed for regression 
problems. The results are depicted in the figures below and brief descriptions of the most 
important variables are also presented below. 
 

Figure 4. Variables importance for claims on building based on percentage increase in Mean 
Square Error. 

 
Consistent with the existing literature daily precipitation (prcp) is the most important variable 
when it is used to predict damage caused by the pluvial flooding. It is ranked in the first position 
for claims on building damage and second for claims on content damage. 
 
The 1-day lag precipitation (prcp_lag1) also appears in other related studies and is used to build 
rainfall intensity measures. Rainfall intensity measures dissolve some of the rigidity that 
temporal variables might carry. A1-day lag precipitation is ranked second for claims on building 
damage and first for claims on content damage. This indicates that content will more likely be 
damaged after a certain amount of rainfall. 
 

The community rating system discount (crsdiscount) is a discount on premium for policy- 
holders in a community, who are collectively taking migration measures (i.e. installing 
drainage) to reduce flood risks (See Appendix A for further detail). Both the above figures 
confirm its importance. 
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Figure 5. Variables importance for claims on content based on percentage increase in Mean 
Square Error. 

 
A dummy variable, labelled a numberoffloorintheinsuredbuilding_2, indicates that the insured 
building consists of two floors. It is an interesting variable that could potentially affect the 
structure of buildings in an effort to mitigate flood risks. 

 
A dummy variable, labelled as elevatedbuildingindicator_Y, indicates whether the insured 
building has no structure below the ground (i.e. the basement).  Further detail of specifications 
to satisfy this criterion is provided in Appendix A. This variable is expected to be an important 
feature in predicting economic damage. 

 
Flood Insurance Rate Map (FIRM), denoted as floodzones, comprises different zones which 
bear different risks. The zonification by flood risk facilitates pricing of insured buildings 
according to their peculiarities, although a great deal of criticisms about its obsolescence has 
been raised (Michel-Kerjan, 2010). 

 
A dummy variable, labelled as occupancytype_2, refers to a residential building composed of 
two to four units. The description for the other occupancy type is also provided in Appendix A. 

 

3.2.1 Multiple linear regression framework 
 
Multiple linear regression (MLR) is a basic statistical technique which is used to model a linear 
(or approximately linear) relationship between a response variable, 𝑦𝑦𝑖𝑖,   and a set of p feature 
variables or predictors, 𝑥𝑥𝑗𝑗𝑖𝑖  (with the first element being an intercept term) 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖 + 𝜀𝜀𝑖𝑖

  
 or 
                                                                                    
                                        𝑦𝑦𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖

 
 where 𝑋𝑋𝑖𝑖 = �1, 𝑥𝑥2𝑖𝑖 , … . , 𝑥𝑥𝑝𝑝𝑖𝑖�, ,  𝛽𝛽 = �𝛽𝛽0,𝛽𝛽1, … . ,𝛽𝛽𝑝𝑝�

′,            with 𝜀𝜀𝑖𝑖~𝑖𝑖. 𝑖𝑖.𝑑𝑑(0,𝜎𝜎2)  and Cov(𝑋𝑋𝑖𝑖 , 𝜀𝜀𝑖𝑖) = 0     for 
𝑖𝑖 = 1, … ,𝑛𝑛.        As noted above, it is usually assumed that 𝜀𝜀𝑖𝑖  is independent and identically distributed 
(i.i.d) with mean equal to 0 and variance equal to 𝜎𝜎2.                   MLR is used as a benchmark model in this 
study and its performance is assessed by a root mean square error (RMSE) criterion which is 
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calculated on the test dataset which has not been used in the training of the MLR model. 
 
3.2.2 Artificial Neural Network architecture 
 
Artificial Neural N etwork (ANN) is a learning algorithm which is intended to mimic the 
functioning of neurons in a human brain. Essentially the neurons in the hidden layers are 
weighted sums of the input data and a predetermined activation function selects which sums 
will be used to predict the output. 

  
 

 
Figure 6. An ANN model with 2 input variables and 1 hidden layer with 3 neurons  

 
In the above diagram only one hidden layer is shown to illustrate the rudimentary principle 
which governs a deep-learning technique. However, more complex neural networks are 
devised in real life especially when dealing with big datasets. This study seeks to exploit neural 
network’s ability to capture nonlinear relationships between a set of relevant feature variables 
and response variables and to recognize underlying patterns in the data. For a coherent 
comparative analysis, the efficacy of this model is also assessed by the RMSE criterion which is 
again calculated on the test dataset as mentioned earlier. 
 
4 Empirical analysis  
4.1 Results 
 

With the same rationale as in the previous section, results from damage on building and 
content are analyzed separately. Four models, which are a multiple linear regression model 
and three neural network architectures, are run for both types of claims. Detailed specifications 
of all of the models are provided in Appendix B. The visual aspect of plots is exploited by 
super-imposing the prediction of a trained model on the actual claim amount for the test 
dataset. 
 
A quick observation from the diagram presented below is that some amount of variance is still 
left unexplained by all of the four models considered in this study after they have been trained on 
the training dataset. However the ANN architectures consistently outperform the benchmark 
MLR model, although none of the four models is able to predict high claim amounts with a high a 
degree of accuracy. 

Y Output 

Hidden layer 

  

Input 
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Figure 7. Comparison between prediction by each model and actual value of claim amount paid 
on building in test dataset. 

 
The RMSE values, which are calculated on both the train and test datasets, are tabled below. 
The numerical value of the RMSE of a trained model to predict standardized claim amounts 
does not mean much standing alone. Moreover, the conversion back to 2018 dollars is deemed 
unnecessary for comparative purposes given the performance of the models. 
 

Amount Paid on Building 
         Model Train RMSE Test RMSE 

MLR (M1) 0.0781798 0.07788014 
NN (M2) 0.0673668 0.0722917 
NN (M3) 0.0676438 0.0718767 
NN (M4) 0.0659166 0.0721947 

Table 1. Train and test RMSE for each model for claim amount paid on building. 
 
It is important to observe from Table 1 that the test RMSE values confirm that the ANN 
architectures bring about some degree of improvement over that of the MLR when they are 
used to model claim damage paid on building. The train RMSE for the neural network 
architectures is substantially smaller in magnitude than their respective test RMSE, indicating a 
potential for overfitting the models when the ANN architectures are trained. 
 
For the claim amount paid on the content case, the figure below also shows that some amount of 
variance is still left unexplained by all of the four models considered in this study. The recorded 
performance of the models in comparison to claim amount paid on building appears to be 
relatively weaker. The ANNs outperform the benchmark MLR model to a lesser extent and, again, 
none of the four models predicts high claim amounts with a high degree of accuracy. The results 
reflect unerringly the complex nature of modelling claim amounts paid on content. 
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Figure 8. Comparison between prediction by each model and actual value of claim amount 
paid on content in test dataset. 

 
Amount Paid on Content 

           Model  Train RMSE   Test RMSE 
MLR (M5) 0.03644489 0.03533696 

NN (M6) 0.03390541 0.03482989 
NN (M7) 0.03343500 0.03488170 
NN (M8) 0.03323435 0.03615184 

Table 2. Train and test RMSE for each model for claim amount paid on content. 
 
The test RMSE values confirm that the predictions from the ANNs architectures, which are 
denoted as M6, M7 and M8 respectively, are generally more superior to those of the 
benchmark MLR model. However the train RMSE for the ANNs is uniformly smaller in 
magnitude than their respective test RMSE, providing again the potential for overfitting the 
models when the ANNs are trained. 
 
4.2 Research extension 
 
This study contributes to a limited amount of existing literatures on the U.S National Flood 
Insurance Program by showing that the deep learning method could bring about some potential 
improvement in predicting the economic cost of floods in comparison to the more conventional 
MLR framework, especially for claim amounts paid on building.  However, it is also evident that 
all of the models presented in the previous subsection are not accurate enough to b e  used for 
real life estimation of economic cost for flood events. Numerous reasons for this failure can be 
readily put forward for the sources of the reported inaccuracy of the prediction results generated 
by these models. This  section includes some of the most salient ones in the hope to encourage 
further investigation into this issue. 
 
In this study meteorological data is retrieved from the nearest meteorological station in a radius 
of 500 km in order to preserve the maximum amount of claim data. Moreover, within the 
meteorological stations selected by the aforementioned criteria, only those with more than 500 
claim payments are retained for analysis due to our computational limitations as well as for 
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consistency. These concessions are necessary when dealing with conventional meteorological 
data. Unfortunately this also renders the meteorological data to have a substandard quality 
especially in the localized scale context. A better alternative would be satellite meteorological 
data, known as Precipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN) which can be obtained from https://chrsdata.eng.uci.edu/. 
 
The latitude and longitude values provided in the NFIP datasets for each claim are only up 
to two decimal places. FEMA rightly truncates the coordinates in order to protect the privacy 
concerns of policyholders. However a low level of precision of a grid location inevitably leads to 
to an inaccurate meteorological data which, in turn, has major ramifications on the accuracy 
of the model, especially when the most highly important variable is inaccurately measured for 
all observations. 
 
Based on the results reported in this study we reach a tentative conclusion that the complexity of 
modelling flood events is unlikely to be addressed adequately by using the precipitation data 
alone. An improvement in the quality of feature variables or predictors is needed in order to build 
models with higher degree of accuracy in prediction. For instance, whether a damage is caused 
specifically by a rainfall event for a claim is not reported in the NFIP claim dataset. Moreover new 
data collection methods need to be carefully devised to replace existing records. For example 
the maximum water depth in the insured building on the date of loss is a very informative 
feature variable. Installation of innovative devices that can collect high quality data during 
flood events can in principle be mandated as underwriting criteria. 
 
Lastly a reliable statistical model for assessing the economic cost of flood events accurately 
would not be complete unless the data also includes damage from non-insured property and 
content damages as predictors Models with a high degree of accuracy in prediction, which are 
trained on both insured and non-insured data, can ideally be used in combination with a 
projection of rainfall and other flood metrics data by the use of extreme value theory in statistics, 
to predict the total economic cost of prospective flood events. 
 
5 Conclusion 
 
In this paper the performance of the ANN models in predicting the economic cost of flood 
damage is compared to that from the standard MLR framework, which is more commonly 
used in this type of study.  Claim data from the U.S National Flood Insurance Program 
(NFIP) is used to build a number of predictive models. The analysis for claims on building 
and claims on content are carried out separately. The grid location for each claim is used to 
identify the nearest meteorological station to where the damage occurred. Subsequently the 
meteorological data is retrieved for each station from the National Oceanic and Atmospheric 
Administration (NOAA). The meteorological variables of interest are selected specifically for the 
date when water first entered the insured building. The data is then preprocessed before they 
are utilized to train the models. The feature of Random Forest in determining the important 
variables is judiciously exploited to present a useful preview of the candidate variables needed 
for assessing, or more precisely predicting, the economic cost of damage due to the pluvial 
flooding. 
 
ANN models are shown to perform uniformly better than the conventional MLR models for 
claims on building and to a lesser extent also for claims on content. The results endorse the fact 
that claims on content have a more complex nature and are not easy to model statistically. 
Another theme pointed by our results is the amount of variance of claim value left unaccounted 
for by all of the four models. This theme is recurrent in the existing literature and often justified 
by the fact that the current data collection methods and flood maps are seemingly obsolete. In 
other words improvement in a model's prediction accuracy is limited by default. Encouraging the 
installation of innovative devices that collects informative points of data could be the next game 
changer we are looking for in order to solve this aspect of the challenge. In conclusion ANN has 

https://chrsdata.eng.uci.edu/
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demonstrated its ability to capture more informative elements than the conventional MLR 
framework in assessing economic damage caused by the pluvial flooding. Further research on 
this topic is urgently called for as the occurrence of pluvial flooding is expected become a less 
rare-event worldwide compared to even the most recent past due to the on-going global climate 
change. 
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Appendix A. NFIP variables description 
 

Field Name Description 
agricultureStructureIndicator Yes (Y) or No (N) indicator of whether or not a building is 

reported as being an agricultural structure in the policy 
application. 

asOfDate The effective date of the data in the file. 

baseFloodElevation Base Flood Elevation (BFE) is the elevation at 
which there is a 1% chance per year of flooding in feet from 
the elevation certificate. 

basementEnclosureCrawlspaceType Basement is defined for purposes of the NFIP as any level or 
story which has its floor subgrade on all sides.  Basement 
structure values are as follows: 
0 – none. 
1 – Finished Basement/Enclosure. 
2 – Unfinished Basement/Enclosure. 
3  - Crawlspace. 
4 – Subgrade Crawlspace. 

reportedCity This is the city of the insured property as reported to us by our 
Write Your Own (WYO) partners.  

condominium Indicator This is an indicator of what type of condominium 
property is being insured. Condominium Code - 1 
character: 
- Not a condominium (N). 
- An individual condominium unit owned by a unit 

owner, or by a condominium association (U). 
The entire condominium building owned by the association 
insuring building common elements as well as building 
elements (additions and alterations) within all units in the 
building, not eligible under Condominium Master Policy 
(A). 
The entire residential condominium building owned by the 
association eligible under Condominium Master Policy, 
insuring the entire condominium building common 
elements as well as building elements (additions and 
alterations)within all units in the building, (H) for High-
Rise or (L) for Low-Rise. 
Townhouses (T). 
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policyCount Insured units in an active status. A policy contract ceases to be 

in an active status as of the cancellation date or the expiration 
date. Residential Condominium Building Association Policy 
(RCBAP) contracts are stored as a single policy contract but 
insure multiple units and therefore represent multiple 
policies. 
 countyCode FIPS code uniquely identifying the primary county (e.g., 
011 represents Broward County) associated with the 
project. Note, the County Code field may not reflect the 
individual county the property is located as projects can be 
associated with more than one county. 

communityRatingSystemDiscount The Community Rating System (CRS). 
Classification Credit Percentage used to rate the policy. The 
insurance premium credit is based on whether a property is 
in or out of the Special Flood Hazard Area (SFHA) as shown 
on the community's Flood Insurance Rate Map. The 
premium credit for properties in the SFHA increases 
according to a community's CRS class. 

 
1 - SFHA 45% ** Non SFHA 10% ** 
2 - SFHA 40% ** Non SFHA 10% ** 
3 - SFHA 35% ** Non SFHA 10% ** 
4 - SFHA 30% ** Non SFHA 10% ** 
5 - SFHA 25% ** Non SFHA 10% ** 
6 - SFHA 20% ** Non SFHA10% ** 
7 - SFHA 15% ** Non SFHA 5% ** 
8 - SFHA 10% ** Non SFHA 5% ** 
9 - SFHA 5% Non SFHA 5% 
10 - SFHA 0%  Non SFHA 0% 

 
*For the purpose of determining CRS Premium Discounts, all 
AR and A99 zones are treated as non-SFHAs. 
**These percentages are subject to change. Always refer 
to the Flood Insurance Manual for the latest information. 

dateOfLoss Date on which water first entered the insured building. 

elevatedBuildingIndicator Yes (Y) or No (N) indicator of whether or not a building 
meets the NFIP definition of an elevated building.  An 
elevated building is a no-basement building that was 
constructed so as to meet the following criteria: 
1. The top of the elevated floor (all A zones) or the bottom of 
the lowest horizontal structural member of the lowest floor 
(all V zones) is above ground level. 
2. The building is adequately anchored. 
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 3. The method of elevation is pilings, columns (posts and 

piers), shear walls (not in V zones), or solid foundation 
perimeter walls (not in V zones). 

elevationCertificateIndicator Indicates if a policy has been rated with elevation certificate 
1 - No Elevation Certificate, original effective date prior to 
October 1, 1982, with no break in insurance coverage or 
change in insurable interest. Policies will be rated using “No 
Base Flood Elevation” +2 to +4 feet rates. 
2 - No Elevation Certificate, original effective date on or 
after October 1, 1982, with no break in insurance coverage or 
change in insurable interest. Policies will be rated using “No 
Elevation Certificate” rates. 
3 - Elevation Certificate with BFE. Policies will be rated 
using “With Base Flood Elevation” rates. 
4 - Elevation Certificate without BFE. Policies will be rated 
using “No Base Flood Elevation” rates. 

elevationDifference Difference in feet between the elevation of the lowest floor 
used for rating or the flood proofed elevation and the base 
flood elevation (BFE), or base flood depth, as appropriate 
from the elevation certificate. 

censusTract US Census Bureau defined census Tracts; statistical 
subdivisions of a county or equivalent entity that are 
updated prior to each decennial census. The NFIP relies on 
our geocoding service to assign census tract code. 11 digit 
code defining census tract. 

floodZone Flood zone derived from the Flood Insurance 
Rate Map (FIRM) used to rate the insured property. 
A - Special Flood with no Base Flood Elevation on 
FIRM. 
AE, A1-A30 - Special Flood with Base Flood Elevation on 
FIRM. 
A99 - Special Flood with Protection Zone AH, AHB* - 
Special Flood with Shallow Ponding. 
AO, AOB* - Special Flood with Sheet Flow X, B - 
Moderate Flood from primary water source.  Pockets of 
areas subject to drainage problems. 
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 X, C - Minimal Flood from primary water source.  Pockets of 

areas subject to drainage problems. 
D - Possible Flood. 
V - Velocity Flood with no Base Flood Elevation on 
FIRM. 
VE, V1-V30 - Velocity Flood with Base Flood Elevation on 
FIRM. 
AE, VE, X - New zone designations used on new maps 
starting January 1, 1986, in lieu of A1-A30, V1-V30, and B 
and C. 
AR - A Special Flood Hazard Area that results from the 
decertification of a previously accredited flood protection 
system that is determined to be in the process of being 
restored to provide base flood protection AR Dual Zones– 
(AR/AE, AR/A1-A30, AR/AH, AR/AO, AR/A) Areas subject 
to flooding from failure of the flood protection system (Zone 
AR) which also overlap an existing Special Flood Hazard Area 
as a dual zone. 
*AHB, AOB, ARE, ARH, ARO, and ARA are not risk zones 
shown on a map, but are acceptable values for rating 
purposes. 

houseWorship Yes (Y) or No (N) indicator of whether or not a building is 
reported as being a house of worship in the policy application. 

Latitude Approximate latitude of the insured building (to 1 decimal 
place). This represents the approximate location of the 
insured property. The precision has been lessened to ensure 
individual privacy. This may result in a point location that 
exists in an incorrect county or state. Use the state and county 
fields for record aggregation for these dimensions. 

locationOfContents Code that indicates where within the structure the contents 
are located. 
1 - Basement/Enclosure/Crawlspace/Subgrade Crawlspace 
only. 
2 - Basement/Enclosure/Crawlspace/Subgrade Crawlspace 
and above. 
3 - Lowest floor only above ground level (No basement/ 
enclosure/crawlspace/subgrade crawlspace). 
4 - Lowest floor above ground level and higher floors (No 
basement/enclosure/crawlspace/subgrade crawlspace). 
5 - Above ground level more than one full floor. 
6 - Manufactured (mobile) home or travel trailer on 

   foundation. 
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Longitude Approximate longitude of the insured building (to 1 decimal 

place). This represents the approximate location of the 
insured property. The precision has been lessened to ensure 
individual privacy. This may result in a point location that 
exists in an incorrect county or state. Use the state and 
county fields for record aggregation for these dimensions. 

lowestAdjacentGrade Lowest natural grade adjacent to the insured structure 
prior to excavating or filling. The difference in feet of 
the lowest natural grade adjacent to the building from 
the reference level of the building. 

lowestFloorElevation A building's lowest floor is the floor or level (including 
basement/enclosure/crawlspace/subgrade crawlspace) that 
is used as the point of reference when rating a building.  
This includes the level to which a building is flood proofed*. 
The elevation in feet of the reference level of the building 
from the elevation certificate. 

numberOfFloorsInTheInsuredBuilding Code that indicates the number of floors in the 
insured building.  
1 = One floor. 

  2 = Two floors. 
   3  = Three or more floors.  
   4 = Split-level. 

5 = Manufactured (mobile) home or travel trailer on 
foundation. 
6 = Townhouse/Rowhouse with three or more floors 
(RCBAP Low-rise only). 

nonProfitIndicator Yes (Y) or No (N) indicator of whether or not a building is 
reported as being a non-profit in the policy application. 

obstructionType Code that gives the type of obstruction (if any) in the 
enclosure (if any). With obstruction: enclosure/ crawlspace 
with proper openings not used for rating (not applicable in 
V zones) – 15. 
With obstruction:  less than 300 sq. ft. with breakaway 
walls, but no machinery or equipment attached to 
building below lowest elevated floor, or elevation of 
machinery/ equipment is at or above Base Flood. 
Elevation - 20 
With obstruction:  less than 300 sq. ft. with breakaway 
walls or finished enclosure and with machinery or 
equipment attached to building below lowest elevated 
floor, and elevation of machinery/equipment is below. 
Base Flood Elevation - 24 
With obstruction:  300 sq. ft. or more with breakaway 
walls, but no machinery or equipment attached to 
building below the Base Flood Elevation – 30. 
With obstruction:  300 sq. ft. or more with breakaway 
walls or finished enclosure and with machinery or 
equipment attached to building below the Base Flood 
Elevation - 34 With obstruction:  no walls, but the 
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 the building is located below the BFE. – 95. 

With Obstruction: Elevated buildings with elevator below the 
BFE in V zones. Breakaway wall obstruction is finished or is 
used for other than parking, building access, or storage. - 96 
With Obstruction: Elevated buildings with elevator below the 
BFE in V zones. No other obstruction, but has M&E servicing 
the building located below the BFE. – 97. 
With Obstruction: Elevated buildings with elevator below the 
BFE in V zones. Breakaway walls obstruction and M&E 
servicing the building are located below the BFE. – 98. 

occupancyType Code indicating the use and occupancy type of the insured 
structure. One digit code:  
1=single family residence.  
2 = 2 to 4 unit residential building.  
3 = residential building with more than 4 units.  
4 = Non-residential building. 

originalConstructionDate The original date of the construction of the building. 

originalNBDate The original date of the flood policy. 

amountPaidOnBuildingClaim Dollar amount paid on the building claim. In some instances, a 
negative amount may appear which occurs when a check issued 
to a policy holder isn't cashed and has to be re-issued. 

amountPaidOnContentsClaim Dollar amount paid on the contents claim. In some instances, 
a negative amount may appear, which occurs when a check 
issued to a policy holder isn't cashed and has to be re-issued. 

amountPaidOnIncreasedCostOfCom
plianceClaim 

Dollar amount paid on the Increased Cost of Compliance (ICC) 
claim. Increased Cost of Compliance (ICC) coverage is one of 
several flood insurances resources for policyholders who need 
additional help rebuilding after a flood. It provides up to 
$30,000 to help cover the cost of mitigation measures that will 
reduce the flood risk. 

postFIRMConstructionIndicator Yes or No Indicator on whether construction was started 
before or after publication of the FIRM.  For insurance rating 
purposes, buildings for which the start of construction or 
substantial improvement was after December 31, 1974, or on 
or after the effective date of the initial FIRM for the 
community, whichever is later, are considered Post-FIRM 
construction. 
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rateMethod Indicates policy rating method: 

1 – Manual. 
2 – Specific. 
3 – Alternative. 
4 - V-Zone Risk Factor Rating Form. 
5 - Underinsured Condominium Master Policy.  
6  – Provisional. 
7 - Preferred Risk Policy (PRPs issued for eligible properties 
located within a non-Special Flood Hazard Area [non-SFHA]). 
8 – Tentative. 
9 - MPPP Policy. 
A - Optional Post-1981 V Zone. 
B – Pre-FIRM policies with elevation rating - Flood 
Insurance Manual rate tables. 
E – FEMA Pre-FIRM Special Rates. 
F – Leased Federal Property. 
G – Group Flood Insurance Policy (GFIP) P – Preferred 
Risk Policy (A PRP renewal issued in the first year 
following a map revision for an eligible property that was 
newly mapped into the SFHA by the map revision, or new 
business written for an eligible property that was newly 
mapped into the SFHA by a map revision effective on or 
after October 1, 2008 – PRP Eligibility Extension). 
Q – Preferred Risk Policy (subsequent PRP renewals where the 
previous policy year was reported as a ‘P’ or ‘Q’). 
S – FEMA Special Rates. 
T – Severe Repetitive Loss Properties (formerly Target Group 
Full Risk). Effective October 1, 2013, code will no longer be 
valid. W – Pre-FIRM policies with elevation rating – Submit-
for-Rate procedures. 

smallBusinessIndicatorBuilding Yes (Y) or No (N) indicator of whether or not the insured 
represents a small business. Small business is defined as a 
business with fewer than 100 employees in the policy 
application. 

State The two-character alpha abbreviation of the state in which the 
insured property is located. 

totalBuildingInsuranceCoverage Total Insurance Amount in dollars on the Building. 

totalContentsInsuranceCoverage Total Insurance Amount in dollars on the Contents. 

yearofLoss Year of Loss = Year in which the flood loss occurred. 

reportedZipCode 5 digit Postal Zip Code of the insured property. 
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primaryResidence Yes (Y) or No (N) indicator of whether or not a building is a primary 

residence. 
A primary residence is a single family building, condominium unit, 
apartment unit, or unit within a cooperative building that will be 
lived in by the policyholder or the policyholder's spouse for: More 
than 50% of the 365 calendar days following the current policy 
effective date; or 50% or less of the 365 calendar days following the 
current policy effective date if the policyholder has only one 
residence and does not lease that residence to another party or use it 
as rental or income property at any time during the policy term. A 
policyholder and the policyholder's spouse may not collectively have 
more than one primary residence. 

Id Unique ID assigned to the record. 

 

Appendix B. List of variables used for regression 
• Daily precipitation. 

• 1-day lag precipitation. 

• Daily snowfall. 

• 1-day lag snowfall. 

• Community rating system discount. 

• Elevation difference. 

• Basement enclosure crawl space type. 

• Condominium indicator. 

• Elevated building indicator. 

• Flood zone. 

• Number of floors in insured building. 

• Occupancy type. 

• Post FIRM construction indicator. 
 
Appendix C. Summary of Results  
 
M1 (R-Output) 
Call: 

       

lm(formula = amountpaidonbuildingclaim ~ ., data = train1) 
  

Residuals: 
      

  Min IQ Median 3Q Max 
   

-0.22351 -0.04566 -0.0211 0.02151 0.92086 
   

  Coefficients 
      

    
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 
  

-0.034 0.023689 -1.435 0.151213 
crsdiscount 

 
  0.129048 0.004622 27.921 < 2e-16 *** 

Elevationdifference 
 

-0.00612 0.001447 -4.228 2.36e-05 *** 
prcp 

  
  0.032865 0.001636 20.093 < 2e-16 *** 

prcp_lag1 
  

  0.090638 0.002392 37.887 < 2e-16 *** 
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snow 
   

-0.06522 0.016092 -4.053 5.06e-05 *** 
snow_lag1 

  
-0.0821 0.030598 -2.683 0.007296 ** 

basementenclosurecrawlspacetype_1   -0.02651 0.001221 -21.709 < 2e-16 *** 
basementenclosurecrawlspacetype_2   -0.01609 0.001177 -13.673 < 2e-16 *** 
basementenclosurecrawlspacetype_3   -0.0196 0.001578 -12.423 < 2e-16 *** 
basementenclosurecrawlspacetype_4   -0.00154 0.002783 -0.555 0.578812 
Condominiumindicator H   

 
0.080108 0.024777 3.233 0.001225 ** 

condominiumindicator_L   
 

0.129439 0.026245 4.932 8.16e-07 *** 
condominiumindicator_N   

 
0.051127 0.02362 2.165 0.030427 * 

condominiumindicator_U 
 

-0.00441 0.023852 -0.185 0.853435 
elevatedbuildingindicator_Y 

 
-0.01191 0.000916 -13.009 < 2e-16 *** 

floodzone_A00 
 

 -0.00753 0.01102 -0.683 0.494693 
floodzone_A01    0.009895 0.001999 4.950 7.45e-07 *** 
floodzone_A02 

 
 0.031224 0.002987 10.453 < 2e-16 *** 

floodzone_A03 
 

 0.058869 0.002472 23.811 < 2e-16 *** 
floodzone_A04 

 
 0.042971 0.002282 18.833 < 2e-16 *** 

floodzone_A05 
 

 0.039338 0.002186 17.997 < 2e-16 *** 
floodzone_A06 

 
 0.031118 0.002027 15.352 < 2e-16 *** 

floodzone_A07 
  

0.017234 0.002579 6.681 2.38e-11 *** 
floodzone_A08 

  
0.024736 0.002205 11.219 < 2e-16 *** 

floodzone_A09 
  

0.014334 0.003061 4.683 2.83e-06 *** 
floodzone_A0B 

  
-0.02765 0.014614 -1.892 0.058454 

floodzone_A10 
  

0.031467 0.002742 11.475 < 2e-16 *** 
floodzone_A11 

  
0.03275 0.003592 9.117 < 2e-16 *** 

floodzone_A12 
  

0.006728 0.005133 1.311 0.18995 
floodzone_A13 

  
0.01231 0.003337 3.689 0.000225 *** 

floodzone_A14 
  

0.021158 0.00347 6.098 1.08e-09 *** 
floodzone_A15 

  
0.015962 0.003732 4.277 1.90e-05 *** 

floodzone_A16 
  

0.01919 0.005891 3.258 0.001124 ** 
floodzone_A17 

  
0.016822 0.005991 2.808 0.004984 ** 

floodzone_A18 
  

-0.0081 0.00691 -1.172 0.241313 
floodzone_A19 

  
-0.00701 0.020948 -0.335 0.737774 

floodzone_A20 
  

0.011005 0.009059 1.215 0.224447 
floodzone_A21 

  
0.014191 0.013893 1.021 0.307047 

floodzone_A22 
  

0.033322 0.019598 1.700 0.089076 
floodzone_A23 

  
0.024166 0.045189 0.535 0.592812 

floodzone_A25 
  

0.019158 0.045217 0.424 0.671799 
floodzone_A30 

  
0.012473 0.039136 0.319 0.749953 

floodzone_A4 
  

-0.00646 0.078247 -0.083 0.934223 
floodzone_A99 

  
-0.00029 0.004764 -0.062 0.950784 

floodzone_AA 
  

-0.0159 0.078233 -0.203 0.838968 
floodzone_AE 

  
0.021032 0.001319 15.952 < 2e-16 *** 

floodzone_AH 
  

0.018583 0.006893 2.696 0.007019 ** 
floodzone_AHB 

  
-0.02652 0.002782 -9.534 < 2e-16 *** 

floodzone_AO 
  

0.024725 0.004017 6.155 7.55e-10 *** 
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floodzone_AOB                      
 

0.031497 0.005411 5.821 5.86e-09 *** 
floodzone_AR 

  
0.004629 0.078243 0.059 0.952824 

floodzone_B 
  

0.037847 0.001655 22.87 < 2e-16 *** 
floodzone_C 

  
0.009416 0.001621 5.809 6.29e-09 *** 

floodzone_D 
  

0.01041 0.009493 1.097 0.272829 
floodzone_V 

  
0.001808 0.016358 0.111 0.911967 

floodzone_V02 
  

-0.0058 0.023623 -0.246 0.805975 
floodzone_V03 

  
-0.01082 0.031963 -0.339 0.734875 

floodzone_V04 
  

0.003262 0.021732 0.150 0.880699 
floodzone_V05 

  
0.01843 0.011363 1.622 0.1048 

floodzone_V06 
  

0.03164 0.011367 2.783 0.005379 ** 
floodzone_V07 

  
0.009931 0.023622 0.420 0.674175 

floodzone_V08 
  

-0.00236 0.009187 -0.257 0.797174 
floodzone_V09 

  
-0.00166 0.010937 -0.152 0.879299 

floodzone_V10 
  

0.020988 0.009238 2.272 0.023101 * 
floodzone_V11 

  
-0.01767 0.011729 -1.506 0.131979 

floodzone_V12 
  

-0.0026 0.007129 -0.365 0.715358 
floodzone_V13 

  
-0.00236 0.008831 -0.267 0.789723 

floodzone_V14 
  

-0.00778 0.011024 -0.705 0.480605 
floodzone_V15 

  
0.043444 0.013477 3.223 0.001267 ** 

floodzone_V16 
  

0.00737 0.010927 0.675 0.499981 
floodzone_V17 

 
 0.015382 0.023619 0.651 0.514888 

floodzone_V18 
 

 0.109887 0.031966 3.438 0.000587 *** 
floodzone_V19 

  
0.076048 0.013692 5.554 2.79e-08 *** 

floodzone_V20 
  

-0.00037 0.018493 -0.02 0.984156 
floodzone_V21 

  
0.020063 0.017126 1.171 0.241407 

floodzone_VE 
  

0.017032 0.00349 4.881 1.06e-06 *** 
floodzone_X 

  
0.037113 0.001367 27.16 < 2e-16 *** 

numberoffloorsintheinsuredbuilding_2  0.017652 0.00072 24.51 < 2e-16 *** 
numberoffloorsintheinsuredbuilding_3  0.012957 0.001095 11.838 < 2e-16 *** 
numberoffloorsintheinsuredbuilding_4  0.010037 0.00231 4.346 1.39e-05 *** 
numberoffloorsintheinsuredbuilding_5  -0.02498 0.002863 -8.724 < 2e-16 *** 
numberoffloorsintheinsuredbuilding_6 -0.02054 0.02179 -0.942 0.345972 
occupancytype_2 

  
-0.00798 0.001376 -5.799 6.70e-09 *** 

occupancytype_3 
  

0.038724 0.002911 13.304 < 2e-16 *** 
occupancytype_4 

  
0.017833 0.001373 12.988 < 2e-16 *** 

occupancytype_6 
  

0.078634 0.003489 22.536 < 2e-16 *** 
postfirmconstructionindicator_Y 0.012385 0.000778 15.924 < 2e-16 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  
 

Residual standard error: 0.07822 on 78526 degrees of freedom  
 

Multiple R-squared: 0.122,                    Adjusted R-squared: 0.121 
 

 F-statistic: 125.4 on 87 and 7852 DF, p-value: < 2.2e-16 
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M2 (Python-Output) 
Model: "M2" 
Layer (type) Output Shape Param # 
dense_562 (Dense) (None, 87) 7656 
dense_563 (Dense) (None, 87) 7656 
dense_564 (Dense)           (None, 16) 1408 
dense_565 (Dense) (None, 1) 17  

Total params  16,737 
 

Trainable  params  16,737 
 

Non-trainable  params  0 
 

 
 
M3 (Python-Output) 
Model: "M3" 
Layer (type) Output Shape Param # 
dense_558 (Dense) (None, 58) 5104 
dense_559 (Dense) (None, 58) 3422 
dense_560 (Dense) (None, 16) 944 
dense_561 (Dense) (None, 1) 17  

Total params 9,487 
 

Trainable  params  9,487 
 

Non-trainable  params 0 
 

 
M4 (Python-Output) 
Model: "M4" 
Layer (type) Output Shape Param # 
dense_498 (Dense) (None, 58)              5104 
dense_499 (Dense) (None, 512)          30208 
dense_500 (Dense) (None, 8) 4104 
dense_501 (Dense) (None, 1) 9  

Total  params  39,425 
 

Trainable  params  39,425 
 

Non-trainable  params 0 
 

 
M5 (R-Output) 
Call: 
lm(formula = amountpaidoncontentsclaim ~ ., data = train2)  

Residuals: 
  Min      1Q             Median 3Q Max 

   

-0.16819 -0.01652 -0.00792 0.00563 0.9654 
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  Coefficients     
Estimate Std. Error t-value Pr(>|t|) 

(Intercept) 
  

-5.62E-03 1.10E-02 -0.509 0.610711 
crsdiscount 

  
1.98E-02 2.16E-03 9.167 < 2e-16 *** 

Elevationdifference 
 

-2.22E-03 6.75E-04 -3.286 0.001017 ** 
prcp 

   
1.39E-02 7.63E-04 18.276 < 2e-16 *** 

prcp_lag1 
   

3.14E-02 1.12E-03 28.128 < 2e-16 *** 
snow 

   
-1.48E-02 7.50E-03 -1.969 0.048957 * 

snow_lag1 
  

-1.26E-02 1.43E-02 -0.884 0.376865 
basementenclosurecrawlspacetype_1   -9.33E-03 5.69E-04 -16.384 < 2e-16 *** 
basementenclosurecrawlspacetype_2  -7.06E-03 5.49E-04 -12.866 < 2e-16 ***  
basementenclosurecrawlspacetype_3  -3.63E-03 7.35E-04 -4.938 7.91e-07***  
basementenclosurecrawlspacetype_4  -4.80E-03 1.30E-03 -3.700 0.000216 *** 
condominiumindicator_H 

 
1.56E-02 1.16E-02 1.354 0.17575 

condominiumindicator_L 
 

2.28E-02 1.22E-02 1.867 0.061943 
condominiumindicator_N 

 
1.56E-02 1.10E-02 1.419 0.155848 

condominiumindicator_U 
 

1.22E-02 1.11E-02 1.093 0.274397 
elevatedbuildingindicator_Y        -7.43E-03 4.27E-04 -17.393 < 2e-16 *** 
floodzone_A00 

  
-6.26E-03 5.14E-03 -1.218 0.223229 

floodzone_A01 
  

5.73E-04 9.32E-04 0.615 0.5388 
floodzone_A02 

  
5.84E-03 1.39E-03 4.190 2.79e-05 *** 

floodzone_A03 
  

1.24E-02 1.15E-03 10.781 < 2e-16 *** 
floodzone_A04 

  
7.92E-03 1.06E-03 7.447 9.67e-14 *** 

floodzone_A05 
  

3.82E-03 1.02E-03 3.748 0.000178 *** 
floodzone_A06 

  
2.91E-03 9.45E-04 3.075 0.002105 ** 

floodzone_A07 
  

6.77E-04 1.20E-03 0.563 0.573491 
floodzone_A08 

  
3.10E-03 1.03E-03 3.013 0.002590 ** 

floodzone_A09 
  

4.98E-03 1.43E-03 3.489 0.000485 *** 
floodzone_A0B 

  
-2.13E-02 6.81E-03 -3.119 0.001815 ** 

floodzone_A10 
  

8.16E-03 1.28E-03 6.383 1.74e-10 *** 
floodzone_A11 

  
6.47E-03 1.68E-03 3.866 0.000111 *** 

floodzone_A12 
  

1.31E-03 2.39E-03 0.545 0.585412 
floodzone_A13 

  
4.20E-03 1.56E-03 2.703 0.006878 ** 

floodzone_A14 
  

4.26E-03 1.62E-03 2.635 0.008404 ** 
floodzone_A15    

 
6.91E-03 1.74E-03 3.971 7.16e-05 *** 

floodzone_A16 
  

7.91E-03 2.75E-03 2.881 0.003971 ** 
floodzone_A17 

  
1.72E-03 2.79E-03 0.615 0.538641 

floodzone_A18 
  

-5.07E-03 3.22E-03 -1.575 0.115208 
floodzone_A19 

  
-1.59E-02 9.77E-03 -1.624 0.104391 

floodzone_A20 
  

-3.94E-03 4.22E-03 -0.933 0.351052 
floodzone_A21 

  
2.62E-04 6.48E-03 0.040 0.96776 

floodzone_A22 
  

5.76E-02 9.14E-03 6.305 2.90e-10 *** 
floodzone_A23 

  
1.31E-01 2.11E-02 6.226 4.82e-10 *** 

floodzone_A25 
  

-2.94E-05 2.11E-02 -0.001 0.998888 
floodzone_A30 

  
-3.73E-03 1.82E-02 -0.204 0.838137 
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floodzone_A4 
  

-1.02E-02 3.65E-02 -0.28 0.779641 
floodzone_A99 

  
-6.80E-03 2.22E-03 -3.063 0.002192 ** 

floodzone_AA 
  

-1.05E-02 3.65E-02 -0.289 0.772935 
floodzone_AE 

  
4.15E-03 6.15E-04 6.757 1.42e-11 *** 

floodzone_AH 
  

1.61E-03 3.21E-03 0.501 0.616121 
floodzone_AHB 

  
-5.84E-03 1.30E-03 -4.502 6.74e-06 *** 

floodzone_AO 
  

3.17E-03 1.87E-03 1.693 0.090445 
floodzone_AOB 

  
7.74E-03 2.52E-03 3.067 0.002161 ** 

floodzone_AR 
  

-1.94E-02 3.65E-02 -0.531 0.59517 
floodzone_B 

  
1.15E-02 7.72E-04 14.935 < 2e-16 *** 

floodzone_C 
  

1.02E-03 7.56E-04 1.353 0.175923 
floodzone_D 

  
-2.02E-04 4.43E-03 -0.046 0.963639 

floodzone_V 
  

-4.98E-03 7.63E-03 -0.653 0.513937 
floodzone_V02 

  
-3.41E-03 1.10E-02 -0.309 0.757159 

floodzone_V03 
  

-8.86E-03 1.49E-02 -0.594 0.552296 
floodzone_V04 

  
-1.15E-02 1.01E-02 -1.132 0.25751 

floodzone_V05 
  

3.25E-03 5.30E-03 0.614 0.539213 
floodzone_V06 

  
-4.36E-03 5.30E-03 -0.823 0.410612 

floodzone_V07 
  

-2.42E-03 1.10E-02 -0.22 0.825966 
floodzone_V08 

  
-3.83E-03 4.28E-03 -0.894 0.371462 

floodzone_V09 
  

-7.83E-03 5.10E-03 -1.535 0.124708 
floodzone_V10 

  
-9.45E-05 4.31E-03 -0.022 0.982492 

floodzone_V11 
  

-1.05E-02 5.47E-03 -1.927 0.053996 
floodzone_V12 

  
-4.22E-03 3.32E-03 -1.270 0.204189 

floodzone_V13 
  

-2.90E-03 4.12E-03 -0.704 0.481267 
floodzone_V14 

  
-1.27E-02 5.14E-03 -2.472 0.013439 * 

floodzone_V15 
  

4.10E-03 6.28E-03 0.653 0.514076 
floodzone_V16 

  
-1.19E-04 5.09E-03 -0.023 0.981421 

floodzone_V17 
  

-2.10E-04 1.10E-02 -0.019 0.984814 
floodzone_V18 

  
3.41E-02 1.49E-02 2.290 0.022029 * 

floodzone_V19 
  

1.64E-02 6.38E-03 2.564 0.010360 * 
floodzone_V20 

  
1.71E-03 8.62E-03 0.199 0.842519 

floodzone_V21 
  

4.09E-03 7.98E-03 0.512 0.608892 
floodzone_VE 

  
-1.53E-03 1.63E-03 -0.939 0.347672 

floodzone_X 
  

7.06E-03 6.37E-04 11.075 < 2e-16 *** 
numberoffloorsintheinsuredbuilding_2  2.47E-03 3.36E-04 7.349 2.01e-13 *** 
numberoffloorsintheinsuredbuilding_3  -4.39E-04 5.10E-04 -0.860 0.389911 
numberoffloorsintheinsuredbuilding_4  1.61E-03 1.08E-03 1.497 0.134349 
numberoffloorsintheinsuredbuilding_5  -8.98E-03 1.34E-03 -6.725 1.77e-11 *** 
numberoffloorsintheinsuredbuilding_6  -4.62E-03 1.02E-02 -0.455 0.64927 
occupancytype_2 

  
-6.84E-03 6.41E-04 -10.67 < 2e-16 *** 

occupancytype_3 
  

-1.15E-02 1.36E-03 -8.445 < 2e-16 *** 
occupancytype_4 

  
2.53E-02 6.40E-04 39.533 < 2e-16 *** 

occupancytype_6 
  

3.39E-02 1.63E-03 20.809 < 2e-16 *** 
postfirmconstructionindicator_Y 4.98E-03 3.63E-04 13.742 < 2e-16 *** 



28 
 

----- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  
 

Residual standard error: 0.03647 on 78526 degrees of freedom  
 

Multiple R-squared: 0.08632, Adjusted R-squared: 0.0853  
  

F-statistic: 85.27 on 87 and 78526 DF, p-value: < 2.2e-16 
  

 
M6 (Python-Output) 
Model: "M6" 
Layer (type) Output Shape Param # 
dense_566 (Dense) (None, 87) 7656 
dense_567 (Dense) (None, 87) 7656 
dense_568 (Dense) (None, 8) 704 
dense_569 (Dense) (None, 1) 9  

Total params  16,025 
 

Trainable  params  16,025 
 

Non-trainable params 0 
 

 
M7 (Python-Output) 
Model: "M7" 
Layer (type) Output Shape Param # 
dense_597 (Dense) (None, 87) 7656 
dense_598 (Dense) (None, 512)            45056 
dense_599 (Dense) (None, 64) 32832 
dense_600 (Dense) (None, 4) 260 
dense_601 (Dense) (None, 1) 5  

Total  params  85,809 
 

Trainable  params 85,809 
 

Non-trainable  params 0 
 

 
M8 (Python-Output) 
Model: "M8" 
Layer (type) Output Shape Param # 
dense_702 (Dense) (None, 87) 7656 
dense_703 (Dense) (None, 128) 11264 
dense_704 (Dense) (None, 128) 16512 
dense_705 (Dense) (None, 8) 1032 
dense_706 (Dense) (None, 1) 9  

Total params  36,473 
 

Trainable params  36,473 
 

Non-trainable params 0 
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