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A B S T R A C T

This paper presents valuation models of emission allowance options under an emission trading scheme,
operating in an open trading phase, where unused allowances are banked to subsequent phases without any
limit. Empirical studies are carried out to show that allowance option prices exhibit similar volatility smiles
to those of the stock market. Three reduced-form econometrics models, namely a Lognormal allowance price
model, a Skewness–Kurtosis-Modified Lognormal allowance price model, and a Mixture Lognormal allowance
price model are introduced, with each being accorded with a rich interpretation of its own. Numerical
illustration of the models is performed through calibration to the European-Union Emission-Trading-Scheme’s
allowance futures option prices collected for EU ETS Phase 3 and Phase 4 respectively, where statistical fitness
of the models is assessed comparatively within each sample and across the two samples collected to ensure
robustness of the conclusions.
1. Introduction

This paper presents valuation models of allowance options under an
ETS operating in an open trading phase. A phase is defined to be open if
the allowances can be banked without any limit into subsequent trading
phases, while intra-phase banking and borrowing across compliance
years are also permitted. Therefore, under an open trading phase, an
emission allowance is a non-expiring investible contract with no upper
bound on its price. As a result, for an open trading phase, the valuation
of allowance derivatives can appropriately be based on continuous-time
reduced-form econometrics models.

Reduced-form econometric models for emission allowance price
have been proposed only in a few existing studies in the literature.
However, the models presented in most of these studies usually contain
a certain structural emission component as, for instance, in Çetin and
Verschuere (2009), or they rely on discrete-time approximations as, for
instance, in Mnif (2012). Moreover, they are often seen to be lacking
ormalization on the scope of application, where model implementa-
ions are mostly based on EU ETS phase 1, which is a closed trading
hase. A closed trading imposes expiration of unused allowances at the
nd of phase, and thereby induces a dichotomous terminal condition
n allowance price that is best captured by structural valuation models
s argued in Fang et al. (2022). To the best of our knowledge, the
ormalized use of continuous-time reduced-form models for allowance
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option valuation under open trading phases is still somewhat scanty in
the literature.

The present study makes an attempt to fill this gap. Our contri-
butions to the literature are threefold. First, we perform an empirical
assessment of the stylized facts of allowance prices and allowance
option prices using relatively recent market data, with a focus on
option volatility smiles. Observations from this exercise reveal several
stylized behaviors, such as reverse volatility skews similar to those
observed from stock index options. Second, we present three valuation
models for allowance options based on continuous-time reduced-form
allowance price processes adapted from modern stock option price
models. The models have different characteristics and trade-offs in
complexity, statistical fitness, as well as the ability to capture stylized
facts in market prices. Finally, we calibrate the models to real market
option data from two distinct samples collected for EU ETS Phase
3 and Phase 4, as well as perform comparative assessments of their
statistical fitness within each sample and across the two samples for the
purpose of a robustness check. The two-component Mixture Lognormal
model (MLN-2) performs the best in terms of overall fitness across
the two samples. While all three models show signs of mispricing
the out-of-money options, the Skewness–Kurtosis-Modified Lognormal
model (SKM) and MLN-2 models outperform the Lognormal model (LN)
and exhibit somewhat opposite mispricing behavior toward the out-of-
money region. This leads to the conclusion that there is apparently not
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a perfect-for-all model, whose selection should instead be based on the
particular application it intends to serve.

2. Basics of an emission trading scheme

Rising awareness of the impacts of climate change and global
warming has triggered initiatives designed to control the output of
greenhouse gases, commonly measured as carbon dioxide equivalents.
Among these efforts, the establishment of an emission trading scheme
(ETS) is perhaps the most consequential one. A typical ETS adopts a
cap-and-trade strategy by using emission allowances. At the beginning
of each compliance year, participating firms receive from the regulators
an initial grant of allowance contracts, each of which allows outputting
a set unit of carbon dioxide equivalent. At the end of a given year,
firms must undergo compliance filing and submit sufficient allowances
to cover their emissions over the year, or a non-compliance penalty
must be paid on an excess emission. The allowances can be traded
freely on the secondary market along with their corresponding futures
and option contracts. An ETS comprises several trading phases. At the
beginning of each phase, the regulator adjusts the ETS parameters such
as the annual grant and penalty levels to reflect lessons from past
experience and plans to meet future emission control target. Within
each phase, allowances can be banked and borrowed between years.

A formal emission allowance market did not exist until the estab-
lishment of an European Union Emission Trading Scheme (EU ETS) in
2005. Phase 1 of EU ETS spanned the years 2005–2007. As a pilot
period to train and learn from the market, it was designed to be a
closed phase where unused allowances at the end of phase expired with
no value. Such a structure forced a dichotomy of terminal allowance
at either zero or the penalty level as verified by actual price data.
In contrast, the subsequent three EU ETS phases are all open phases
characterized by non-expiration of the allowances, under which the
allowance price reflects the market’s view of the aggregate allowance
balance (surplus or shortages vs. emission generated) as well as the
expected penalty levels in subsequent trading phases.

Over the past decade or so, this market has grown substantially
in size, stability, and liquidity, inspiring the establishment of various
global ETS in both developed countries and emerging markets. The
majority of the in-force emission markets operate in open trading
phases, which include the current EU ETS, Swiss ETS, New Zealand
ETS, Korean ETS, and the Chinese national ETS launched by the world’s
largest emission producing economy. As a result, emission allowance
has become an attractive asset class on its own for many institutional
investors with a thematic preference toward sustainable carbon-neutral
investment portfolios. This is because no other asset classes, so far,
is able to provide such a direct carbon offset. Therefore, research on
an efficient valuation model for allowance derivatives is called for.
To make this study concrete yet manageable in scope, the analyses
reference the directives of Phase 3 (2013–2020) and 4 (2021–2030)
of the EU ETS.

It is also important to note that for most of the affected industries,
the EU ETS has been migrating toward an auction market allocation
instead of a free distribution of allowances at the beginning of each
compliance year. Although not a defining characteristic of an open
trading phase, such a feature is assumed to apply in this paper, since it
is a mechanism that most ETS is expected to adopt in the near future
to fund the emission-mitigating projects. Without loss generality, an
analogy can thus be drawn between an open-phase ETS and the stock
market on market tiers; i.e., the auction-based allocation of allowances
can be viewed as a primary market dealing or seasoned offering, while
the subsequent emission trading activities constitute the secondary
market, which is the subject of our study. The proposed valuation
approach using reduced-form models has a distinct advantage of being
able to conveniently avoid the complexity of capturing the auction
2

market price formation.
Fig. 1. Daily closing EUA spot price from January 2014 to December 2020.

Fig. 2. Daily EUA returns from January 2014 to December 2020.

3. Stylized facts of allowance prices under an open trading phase

Stylized facts of emission allowance prices are examined from EU
ETS Phase 3 data. Phase 3 is the most recently completed trading phase
spanning the period from 2013 to 2020 in our study. Compared to the
previous two trading phases, the phase 3 market is more mature and
stable as evidenced from elevated trading volumes and a harmonized
set of market disciplines that extends into phase 4, which includes the
introduction of a EU-wide emission cap and a wider coverage in sectors
and emission gas types. The market price behavior of Phase 3 is rarely
studied in the literature, to which our study hopefully is able to provide
a fresh contribution.

Fig. 1 shows the daily closing EUA spot prices during the period
from January 2014 to December 2020. The daily prices during the
period are relatively stable. The lack of price convergence to either zero
or the penalty level (100 Euro/tonne) toward the end of the period
resonate with the defining characteristic of an open trading phase.
The lack of clearly observable discrete jumps indicates the suitability
of continuous-time reduced-form econometrics models for the price
dynamics in our paper.

Fig. 2 shows the daily log returns of the EUA prices for the same pe-
riod. Similar to a typical stock price return series, the EUA daily returns
display a ubiquitous presence of both volatility clustering and distinct
volatility regimes, which calls for consideration of more advanced
models to capture these volatility variations.

Summary statistics of the daily allowance returns are presented
in Table 1. Although the return data displays approximately zero
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Table 1
Summary statistics of daily EUA returns January 2014 to December 2020.

Mean Median Variance Skewness Excess kurtosis

−0.001 −0.001 0.001 0.491 4.492

sample mean and median, it exhibits a small sample skewness and a
large sample excess-kurtosis, which are expected from the observed
return volatility clustering behavior over the period. These descriptive
statistics provide insights into our efforts to specify the plausible price
processes in this paper. They will also be used as qualitative criteria to
assess each model presented in this section, in addition to the statistical
fitness of the resultant option valuation models to real market data.
Stylized facts of allowance option prices, particularly the volatility
smile, will be discussed in a later section.

4. Model specifications and assumptions

We denote a filtered probability space by a triplet (𝛺,𝑡,), where
𝑡 ∈ [0, 𝑇 ] in units of years is the time index and 𝑇 is the terminal time
of the current trading phase.1 The following assumptions are made for
all of the models presented in this section:

(1) The market is complete for the trading phase(s) of interest.
(2) Borrowing and lending activities are allowed to take place at a

constant continuously compounded risk-free rate 𝑟.
(3) All tradings take place continuously over time with negligible

transaction costs.

Externality such as undue influences of political forces are not consid-
ered in our models.

Under the open trading phase, the actual emission information has
reduced effect on allowance prices. Releases of the market emission
status may induce shifts in market sentiments toward an allowance’s
compliance value and subsequently price movements, but do not nec-
essarily lead to discrete price jumps, the absence of which is evidenced
in Fig. 1. Therefore, replicating portfolios can be readily constructed for
traded contingent claims on allowance and allowance futures contracts,
including the options market which is of particular interest in this
paper. The improved market stability and volume in the open trading
phase has substantially incentivized the participation of global market
makers, leading to cost-efficient hedging for allowance derivatives.
Hence, we view the complete market assumption as reasonable.

5. Lognormal allowance price model

For the first reduced-form econometrics model, we assume that
the allowance price follows a GBM with constant drift and volatility
parameters. This specification coincides with that in a classic Black–
Scholes model for a stock option valuation proposed in the seminal
work of Black and Scholes (1973). Assume that under the real-world
probability space (𝛺,𝑡,), the spot allowance price 𝑆(𝑡) follows a
time-homogeneous GBM given by:

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑍(𝑡) (1)

with an initial condition 𝑆(0) = 𝑆0, where 𝜇 and 𝜎 are the drift
and volatility parameters of the allowance price return, and 𝑍(𝑡) is
a standard Brownian motion under the real world measure  . The
risk-neutral allowance price process is obtained in the usual manner
by a standard application of Girsanov’s Theorem; so that under the
risk-neutral measure, , we have:

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊 (𝑡), (2)

1 The phase end time 𝑇 plays a limited role in allowance option valuation
for open trading phases, but it is included here for the sake of completeness
only.
3

where 𝑊 (𝑡) is a standard Brownian motion under  with a likelihood
ratio:
𝑑
𝑑

= exp
(

𝜇 − 𝑟
𝜎

𝑍(𝑇 ∗) − 1
2

(𝜇 − 𝑟
𝜎

)2
𝑇 ∗

)

, ∀𝑇 ∗ > 0.

rom now on, we work under the risk-neutral measure and hence the
robability space (𝛺,𝑡,) unless specified otherwise. The arbitrage-
ree price of an allowance futures contract settling at 𝜏′ is given by:

(𝑡, 𝜏′) = 𝑒𝑟(𝜏
′−𝑡)𝑆(𝑡). (3)

y construction, an allowance futures contract always settles before the
nd of the current trading phase. This cap to life of a futures contract
epresents an important difference between the emission allowance and
he stock market, as well as practical implications on rolling futures
ortfolios over trading phases, for which prudent strategies should be
evised. The allowance futures price can be shown to follow a martin-
ale. These results directly translate to conditional lognormality (LN)
n price distribution and hence direct adaption of the Black–Scholes
esults.

Adopt the following notations where superscripts indicate the valu-
tion model used:

(1) 𝐶𝐿𝑁 (𝑡, 𝐾, 𝜏) and 𝑃𝐿𝑁 (𝑡, 𝐾, 𝜏) denote respectively the time 𝑡 val-
ues of a call and put option on the allowance contract with strike
price 𝐾 and maturity 𝜏 under the LN model.

(2) 𝐶𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) and 𝑃𝐿𝑁

𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) denote respectively the time
𝑡 values of a call and put option with maturity 𝜏 and strike price
𝐾 written on the allowance futures to be settled at 𝜏′ under the
LN model, where 0 ≤ 𝑡 < 𝜏 ≤ 𝜏′ ≤ 𝑇 .

n addition, whenever the context is clear, the time index may also
e moved from the bracket to the subscript to emphasize that the
nformation is known as of the valuation time point.

roposition 1. Consider an open trading phase spanning the period [0, 𝑇 ].
ssume that the spot allowance price follows the GBM given by Eq. (1). At
ime 𝑡, the risk-neutral prices of the European allowance call and put option
ith strike price 𝐾 maturing at time 𝜏 ∈ (𝑡, 𝑇 ), respectively, are given by:
𝐿𝑁 (𝑡, 𝐾, 𝜏) = 𝑆𝑡𝛷(𝑑1) +𝐾𝑒−𝑟(𝜏−𝑡)𝛷(𝑑2),

𝑃𝐿𝑁 (𝑡, 𝐾, 𝜏) = 𝐾𝑒−𝑟(𝜏−𝑡)𝛷(−𝑑2) − 𝑆𝑡𝛷(−𝑑1),

here

1 =
ln
(

𝑆𝑡
𝐾

)

+ (𝑟 + 0.5𝜎2)(𝜏 − 𝑡)

𝜎
√

𝜏 − 𝑡
, 𝑑2 = 𝑑1 − 𝜎

√

𝜏 − 𝑡.

The risk-neutral prices of the European allowance futures call and put option
with strike price 𝐾 maturing at time 𝜏, written on an allowance futures
ontract to be settled at 𝜏′ where 0 ≤ 𝑡 < 𝜏 ≤ 𝜏′ ≤ 𝑇 , respectively, are given
y:
𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) = 𝑒−𝑟(𝜏−𝑡)

(

𝐹 (𝑡, 𝜏′)𝛷(𝑑′1) +𝐾𝛷(𝑑′2)
)

,

𝑃𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) = 𝑒−𝑟(𝜏−𝑡)

(

𝐾𝛷(−𝑑′2) − 𝐹 (𝑡, 𝜏′)𝛷(−𝑑′1)
)

here

′
1 =

ln
(

𝐹 (𝑡, 𝜏′)
𝐾

)

+ 0.5𝜎2(𝜏 − 𝑡)

𝜎
√

𝜏 − 𝑡
, 𝑑′2 = 𝑑1 − 𝜎

√

𝜏 − 𝑡.

The results in the proposition are obtained by using risk-neutral
valuation as well as the expected payoff relationship in Eq. (4) below.

𝐸
[

(

𝐹 (𝜏, 𝜏′) −𝐾
)+

]

= 𝑒𝑟(𝜏
′−𝜏)𝐸

[

(

𝑆(𝜏) −𝐾𝑒−𝑟(𝜏
′−𝜏)

)+
]

. (4)

Notice that the allowance futures settlement time 𝜏′ does not enter

the allowance futures option value expression, as the option payoff is
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fully realized at maturity and any resultant marked-to-market cashflows
from the futures position is not attributable to the option.

The LN model serves as a benchmark model in our analysis, based
on which richer specifications of econometrics models are proposed
in subsequent sections. Numerical results from the implementation
of allowance futures option valuations under alternative models are
compared to those from Proposition 1. Due to the heavy tails observed
in actual allowance price returns in Section 3 which, by construction, is
not captured by the GBM price process, it is expected that models which
accommodate the excess kurtosis will bring tangible improvements in
statistical fitness. This will be demonstrated later on by calibrating
them to market option data.

5.1. Volatility smile in allowance options

Volatility smile refers to the phenomenon that the option-implied
volatility varies with respect to the strike price where the relationship
graphically displays a convex curve. It is a well-known stylized be-
havior for stock options, but rarely studied in the emission allowance
market. This section contributes to filling this gap.

Heuristically, implied volatility is derived from the spot option price
by solving for the volatility value that equates the market and model
price of an option. In practice, allowance options are traded over-
the-counter (OTC), forming a small market with comparatively low
liquidity and trading volumes. Hence, the implied volatility are more
reliably derived from the allowance futures option prices. In contrast to
allowance options, allowance futures options are standardized contracts
actively traded in major commodity exchanges such as the ICE Europe.
A formal definition for implied volatility is given below accordingly.

Definition 1. The implied volatility of an allowance futures option,
denoted by 𝜎𝑖𝑚, is the volatility that equates the option’s price under
the LN model to its market price. For a European allowance futures
call with strike price 𝐾 and maturity 𝜏 written on an allowance futures
contract to be settled at 𝜏′, its time-𝑡 implied volatility is defined by the
following relationship:

𝐶𝑚
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) = 𝐶𝐿𝑁

𝐹 (𝑡, 𝐾, 𝜎𝑖𝑚, 𝜏, 𝜏
′), (5)

where 𝐶𝑚(𝑡, 𝐾, 𝜏, 𝜏′) is the time-𝑡 market price of the allowance futures
call option.

Result of Proposition 1 indicate that solving for the implied volatil-
ity from market prices requires numerical procedures except for the
ideal case where the futures option is at the money (ATM), in which
analytical expression for the implied volatility can be obtained.

According to the specification of the LN model, the constant volatil-
ity parameter 𝜎 is invariant to the option parameters. However, our
empirical analysis reveals the existence of volatility smiles where (hold-
ing all else constant) the implied volatility varies with the strike price
to form the shape of a ‘‘smile’’. Fig. 3 illustrate the implied volatilities
at selected dates derived from allowance futures call options maturing
in December 2023 (CKZ23) and December 2024 (CKZ24) respectively
where the corresponding futures prices are also shown.

From Fig. 3, the existence of volatility smile is evident in the
allowance market. Similar to those seen in the financial market, the
curvature is more pronounced for the short-term option compared to
the long-term. One important yet interesting observation is that the
implied volatilities exhibit a reverse skew, which is often seen for
index options. Since emission allowance may be viewed as a production
input for industries under the emission control scheme, one may expect
it to share similar characteristics of the commodity market in which
volatility smiles with forward skews are more common. Leveraging
various plausible explanations and proposed theories, a primary cause
for this phenomenon could be the so-called crash-o-phobia effect, which
is captured through a density cluster of a series of substantial losses.
The fear of suffering such losses increases demand of out-of-money
4

𝐶

put options for downside protection. This effect also contributes to
the excess kurtosis observed in the allowance returns identified in
Section 3, which is not captured by the LN model. A secondary cause for
the reverse smile could be the strong demand for deeply in-the-money
call options by investors pursuing the leverage effect of options. Such
behavior is indicative of market momentum that contribute to non-zero
skewness in the short term.

On the solution side, efforts aimed at capturing volatility smiles in
stock options include stochastic volatility models studied in Hull and
White (1987) and Heston (1993), the local volatility pricing method
proposed in Dupire (1994), and econometric models by incorporating
GARCH-type conditional volatility processes introduced in Engle and
Mustafa (1992). To the best of our knowledge, no studies have been
published to this date on volatility smiles observed in allowance option
markets. This inspires us to present the models in the subsequent
sections which explicitly account for this stylized behavior in allowance
option valuation.

5.2. Accommodation for skewness and kurtosis

One immediate refinement to the original specification of the LN
model draws inspiration from the work of Corrado and Su (1996)
who introduced skewness and kurtosis adjustments to the stock return
model in analyzing the observed deviations from normality in S&P500
index returns. In principle, a similar adjustment can be applied to
the LN model to achieve an improved statistical fitness of the model
to account for the excess kurtosis in the allowance price returns as
discussed in Section 3. First, consider the allowance return over an
arbitrary period [𝑢, 𝑡] given all price information up to 𝑢. Under the
LN model specification, the standardized allowance price return 𝑅(𝑢, 𝑡)
conditioning on 𝑢 follows the Standard Normal Distribution.

𝑅(𝑢, 𝑡) =
ln
(

𝑆(𝑡)
𝑆𝑢

)

− (𝑟 − 0.5𝜎2)(𝑡 − 𝑢)

𝜎
√

𝑡 − 𝑢
∀𝑢 < 𝑡. (6)

To accommodate skewness and excess kurtosis in the return dis-
tribution, Corrado and Su (1996) apply a Gram–Charlier expansion
to the density function with truncated Hermite polynomial terms, so
that the standardized return 𝑅(𝑢, 𝑡) now has the following form of the
conditional density function:

𝑔𝑅(𝑥) = 𝜙(𝑥)
[

1 +
𝜇3(𝑥3 − 3𝑥)

3!
+

(𝜇4 − 3)(𝑥4 − 6𝑥2 + 3)
4!

]

, (7)

where 𝜙(𝑥) is the Standard Normal density function and 𝜇3 and 𝜇4 are
respectively the explicit parameters for the skewness and kurtosis of the
allowance price returns: under this transformed density function, we
have 𝐸(𝑅3) = 𝜇3 and 𝐸(𝑅4) = 𝜇4 with first and second moment being 0
nd 1. Therefore, this modified model can be viewed as a generalized
ersion of LN model, which allows for nonzero skewness and excess
urtosis.

Now, consider the time-𝑡 risk-neutral price of an allowance call
ption with strike price 𝐾 and maturity 𝜏 under this skewness–kurtosis-
odified LN model (abbreviated as a SKM model), denoted by
𝑆𝐾𝑀 (𝑡, 𝐾, 𝜏). Under , risk-neutral valuation gives:
𝑆𝐾𝑀 (𝑡, 𝐾, 𝜏) = 𝑒−𝑟(𝜏−𝑡)[(𝑆(𝜏) −𝐾)+] (8)

= 𝑒−𝑟(𝜏−𝑡) ∫

∞

𝑘

(

𝑆𝑡 exp(𝑥𝜎
√

𝜏 − 𝑡 + (𝑟 − 0.5𝜎2)(𝜏 − 𝑡)) −𝐾
)

𝑔𝑅(𝑥)𝑑𝑥,

where

𝑘 =
ln
(

𝐾
𝑆𝑡

)

− (𝑟 − 0.5𝜎2)(𝜏 − 𝑡)

𝜎
√

𝜏 − 𝑡
.

his expression is evaluated to yield the following:
𝑆𝐾𝑀 (𝑡, 𝐾, 𝜏) = 𝐶𝐿𝑁 (𝑡, 𝐾, 𝜏) + 𝜇 𝑌 + (𝜇 − 3)𝑌 , (9)
3 3 4 4
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Fig. 3. Implied volatilities (IV) vs. strike price at selected dates.
where 𝐶𝐿𝑁 (𝑡, 𝐾, 𝜏) is the corresponding call option price under the LN
model, and

𝑌3 =
𝑆𝑡𝜎

√

𝜏 − 𝑡
3!

(

(2𝜎
√

(𝜏 − 𝑡) − 𝑑1)𝜙(𝑑1) − 𝜎2(𝜏 − 𝑡)𝛷(𝑑1)
)

,

𝑌4 =
𝑆𝑡𝜎

√

𝜏 − 𝑡
4!

(

(𝑑21 − 1 − 3𝜎
√

(𝜏 − 𝑡)𝑑2)𝜙(𝑑1) + 𝜎3(𝜏 − 𝑡)1.5𝛷(𝑑1)
)

,

with 𝑑1 and 𝑑2 as defined in Proposition 1.
The 𝑌3 and 𝑌4 components in this option price expression represent,

respectively, the marginal effect of nonnormal skewness and kurtosis
in allowance returns to the call option value under the risk-neutral
measure. Using the results in Eqs. (4) and (8), we make the incremental
contribution by deriving the valuation expression of allowance futures
options under the SKM model, under which the time-𝑡 risk-neutral price
of a European allowance futures call option with strike price 𝐾 and
maturity 𝜏 ∈ (𝑡, 𝑇 ) written on an allowance futures contract to be settled
at 𝜏′, denoted by 𝐶𝑆𝐾𝑀

𝐹 (𝑡, 𝐾, 𝜏, 𝜏′), 0 ≤ 𝑡 < 𝜏 ≤ 𝜏′ ≤ 𝑇 , can be shown to
follow:

𝐶𝑆𝐾𝑀
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) = 𝐶𝐿𝑁

𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) + 𝜇3𝑌
′
3 + (𝜇4 − 3)𝑌 ′

4 , (10)

where 𝐶𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) is the corresponding allowance futures call option

price under the LN model given in Proposition 2, and

𝑌 ′
3 =

𝐹 (𝑡, 𝜏′)𝜎
√

𝜏 − 𝑡
3!𝑒𝑟(𝜏−𝑡)

((

2𝜎
√

(𝜏 − 𝑡) − 𝑑′
1

)

𝜙(𝑑′
1) − 𝜎2(𝜏 − 𝑡)𝛷(𝑑′

1)
)

,

𝑌 ′
4 =

𝐹 (𝑡, 𝜏′)𝜎
√

𝜏 − 𝑡
4!𝑒𝑟(𝜏−𝑡)

((

𝑑′
1
2 − 1 − 3𝜎

√

(𝜏 − 𝑡)𝑑′
2

)

𝜙(𝑑′
1) + 𝜎3(𝜏 − 𝑡)1.5𝛷(𝑑′

1)
)

,

with 𝑑′1 and 𝑑′2 defined in Proposition 1.
The 𝑌 ′

3 and 𝑌 ′
4 components share similar interpretations as 𝑌3 and

𝑌 but in the context of the allowance futures options. The put option
5

4

prices under the SKM model can be found by using the put–call parity
relationships, whose validity is model-invariant.

6. Mixture lognormal allowance price model

In this section, we present a mixture lognormal model for allowance
prices (abbreviated as an MLN model) that is expected to deliver
improved statistical fitness over the benchmark model by attempting
to capture the excess kurtosis and volatility smile.

Assume that under the real-world probability space (𝛺,𝑡,), the
spot allowance price 𝑆(𝑡) follows a mixture of 𝑁 diffusion processes:

𝑆(𝑡) =
𝑁
∑

𝑖=1
1𝐶=𝑖𝑆𝑖(𝑡), (11)

𝑑𝑆𝑖(𝑡) = 𝑆𝑖(𝑡)𝜇𝑖𝑑𝑡 + 𝜎𝑖𝑆𝑖(𝑡)𝑑𝑍(𝑡), 𝑖 ∈ {1, 2...𝑁}, (12)

with common initial condition 𝑆𝑖(0) = 𝑆0, where 𝑍(𝑡) is a standard
Brownian motion under  . In addition:

(1) 1𝐶=𝑖 is a binary indicator variable that equals 1 when 𝐶 = 𝑖 and
0 otherwise.

(2) 𝐶 is an underlying market state random variable taking values
on 1, 2, 3...𝑁 with 𝑃𝑟(𝐶 = 𝑖) = 𝜆𝑖 subject to the adding-up
restriction that ∑𝑁

𝑖=1 𝜆𝑖 = 1.
(3) 𝜇𝑖 and 𝜎𝑖, respectively, are the drift and volatility parameters of

the allowance price return given that the market is in state 𝑖.

Mathematically, this mixture diffusion specification of allowance
price represents a super-imposition of 𝑁 components price processes
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denoted by triplets
(

𝑆𝑖, 𝜇𝑖, 𝜎𝑖
)

, with corresponding mixing weights de-
oted as 𝜆𝑖, 𝑖 ∈ {1, 2,… , 𝑁}. These weights also serve as probability
asses of the underlying market state variable 𝐶 that dictates the

component process in force, and hence make up the joint distribution
of the parameter pairs (𝜇𝑖, 𝜎𝑖). This additional source of randomness
ntroduces flexibility to the model in terms of being able to capture
otential excess kurtosis in the allowance price returns.

Intuitively, the mixed diffusion specification emphasizes that the
llowance price dynamics is subject to uncertainty due to the agents’
ifferent behaviors and reactions to information under different market
tates. This is consistent with the view espoused by modern economics
heory as pointed out by Neumann (2002). More specifically, market
articipants trade in response to the arrival of new information. Each
omponent diffusion process can be perceived as random results of
nformation events under the corresponding market state. However,
he price responds differently to a given information event based on
he market state. For instance, news of a large emitter downsizing its
usiness should not result in much price reactions in an optimistic
arket that confidently expects a steady economic growth, compared

o a pessimistic market with high informational asymmetry. The market
tate thus represents the aggregate effect of economic outlooks and
arket sentiments, which respectively determine the drift and volatility

n the component price processes in Eq. (12). Since the market state
s not observable in the market, it is modeled as a latent categorical
ariable 𝐶 with discrete probability masses. Note that the state is

assumed for convenience to remain time-invariant in the specification.
As a result, inter-temporal changes in market state are not explicitly
captured in this specification. We can now formally introduce the
mixture lognormal distribution in Definition 2 below:

Definition 2. Under a filtered probability space (𝛺,𝑡,), let C de-
note the underlying discrete state variable taking values on {𝑖 ∣ 𝑖 ∈
1, 2,… , 𝑁} with 𝑃 (𝐶 = 𝑖) = 𝜆𝑖 and 1𝐶=𝑖 denote a binary indicator
variable that takes the value of 1 if 𝐶 = 𝑖 and 0 otherwise. A random
variable Y follows a mixture of lognormal distributions iff

𝑌 =
𝑁
∑

𝑖=1
1𝐶=𝑖𝑋𝑖,

where the 𝑋𝑖’s are independent lognormal random variables with the
following density functions:

𝑓𝑋𝑖
(𝑥;𝑚𝑖, 𝜎𝑖) =

1
√

2𝜋𝑥𝜎𝑖
exp

{

−
(ln 𝑥 − 𝑚𝑖)2

2𝜎2𝑖

}

, 𝑖 ∈ {1, 2...𝑁}.

For notation convenience, let 𝛬, 𝑀 , and 𝛴 ∈ 𝑅𝑁 be vectors of the
eight parameters 𝜆𝑖, the mean parameters 𝑚𝑖, and the standard devi-
tion parameters 𝜎𝑖, 𝑖 ∈ 1, 2...𝑁 in Definition 2. Then the distributional
elationship of Y can be expressed as:

∼ 𝑀𝐿𝑁(𝛬,𝑀,𝛴)

While it is tempting to apply risk-neutral valuation to derive the
ption value expression under the MLN model, the MLN model by con-
truction is an incomplete-market model due to the additional source
f randomness introduced by the market state variable, overturning
he uniqueness of risk-neutral measure. Approaches to valuation of
ontingent claims under incomplete-market models are abundant in the
iterature. This include:

(1) Assuming a particular form of the market’s utility function. This,
in effect, is equivalent to specifying a market price of risk to
be used for an application of the change of measure. Examples
of this first approach include Pellizzari and Gamba (2002) and
Zhang and Han (2013), both of which are studied under the
stock market settings.

(2) Assuming that the risk-neutral measure is chosen to be the one
closest to the real-world measure under some metric. Examples
6

c

of this second approach include He and Zhu (2015) on European
stock option valuation by using the minimal entropy martingale
measure, as well as Çetin and Verschuere (2009) on allowance
valuation under closed trading phases by using the minimal
martingale measure.

(3) Directly specifying the risk-neutral dynamics of the allowance
price process and calibrating the resultant model option prices
to market data. Examples of this third approach include Leisen
(2004) on stock option valuation by using mixture models.

From our perspectives, the third approach is especially appealing
for its objectivity and is therefore chosen to be implemented in our
analysis. There is no convincing evidence to establish that any partic-
ular utility functions are adopted by market agents; this challenges the
validity and robustness of the first approach. A similar argument can
be made for the second approach in that it lacks a solid theoretical
foundation. There is no economic rationale as to why the market
must price a derivative under a risk-neutral measure close to  . In
ontrast, the third approach does not require any assumptions about the
tility functions or a particular risk measure being used by the market.
nstead, The risk-neutral price dynamics is directly specified and the
odel option prices are calibrated to their market quotes, which reflect

ll the information from the true risk-neutral measure  chosen by the
arket.

For the rest of this section, we work under the risk-neutral measure
nd therefore the probability space of interest is given by (𝛺,𝑡,).
ssume that the spot allowance price under  follows a mixture of
iffusion processes given by Eq. (11) and component processes:

𝑆𝑖(𝑡) = 𝑟𝑆𝑖(𝑡)𝑑𝑡 + 𝜎𝑖𝑆𝑖(𝑡)𝑑𝑊 (𝑡), 𝑖 ∈ {1, 2...𝑁}, (13)

ith common initial condition 𝑆𝑖(0) = 𝑆0, where 𝑊 (𝑡) is a standard
rownian motion under  and 𝑟 is the continuously compounded risk-
ree rate. Since each component process follows a GBM that translates
eadily to conditional lognormality as in the result of Section 5, based
n Definition 2, the allowance price follows a conditional mixture
ognormal distribution that can be expressed as:

𝑡 ∣ 𝑆𝑢 ∼ 𝑀𝐿𝑁
(

𝛬, 1𝑁 𝑙𝑛𝑆𝑢 + 1𝑁 𝑟(𝑡 − 𝑢) − 1
2
𝛴2(𝑡 − 𝑢), 𝛴

√

𝑡 − 𝑢
)

, ∀𝑢 < 𝑡

(14)

where 1𝑁 denotes a vector of ones of size 𝑁 . We assume that the market
is arbitrage-free despite the MLN allowance price specification being
an incomplete-market model, so that the relationship in Eq. (4) holds.2
The allowance futures price is a martingale with dynamics given by a
mixture of the following diffusion processes:

𝐹 (𝑡, 𝜏′) =
𝑁
∑

𝑖=1
1𝐶=𝑖𝐹𝑖(𝑡, 𝜏′), (15)

𝐹𝑖(𝑡, 𝜏′) = 𝜎𝑖𝐹𝑖(𝑡, 𝜏′)𝑑𝑊 (𝑡), 𝑖 ∈ {1, 2...𝑁}, (16)

ith a common initial condition 𝐹𝑖(0, 𝜏′) = 𝐹0 and terminal conditions
𝑖(𝜏′, 𝜏′) = 𝑆𝑖(𝜏′). These results are sufficient for the purpose of valua-
ion of allowance options in this section. The most strikingly convenient
roperty of the MLN model is that, for a given option, its value is simply
linear combination of the corresponding 𝑁 option values from the LN
odel calculated with the component drift and volatility parameters
sing the mixture weights as coefficients. This is formally summarized
n Proposition 2 below.

roposition 2. Consider an open trading phase spanning the period of
0, 𝑇 ]. Assume that the spot allowance price follows a mixture diffusion
rocess given by Eqs. (11) and (13) under . The time-𝑡 price of a European

2 Detailed discussions on the relationship between arbitrage-free and
omplete market can be found, for instance, in Bjork (2004).
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allowance option with strike price 𝐾 maturing at time 𝜏 is equal to the linear
combination of those under the LN model calculated by using component
volatilities 𝜎𝑖 weighted by the mixing weights 𝜆𝑖, 𝑖 ∈ {1, 2,… , 𝑁}:

𝑀𝐿𝑁 (𝑡, 𝐾, 𝜏) =
𝑁
∑

𝑖=1
𝜆𝑖𝐶

𝐿𝑁 (𝑡, 𝐾, 𝜏, 𝜎𝑖),

𝑀𝐿𝑁 (𝑡, 𝐾, 𝜏) =
𝑁
∑

𝑖=1
𝜆𝑖𝑃

𝐿𝑁 (𝑡, 𝐾, 𝜏, 𝜎𝑖).

Similarly, The time-𝑡 price of a European option with strike price 𝐾 maturing
t time 𝜏, written on an allowance futures contract to be settled at 𝜏′ where
≤ 𝑡 < 𝜏 ≤ 𝜏′ ≤ 𝑇 , is equal to the linear combination of those under the LN
odel calculated by using component volatilities 𝜎𝑖 weighted by the mixing
eights 𝜆𝑖, 𝑖 ∈ {1, 2,… , 𝑁}:

𝑀𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) =

𝑁
∑

𝑖=1
𝜆𝑖𝐶

𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′, 𝜎𝑖),

𝑀𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′) =

𝑁
∑

𝑖=1
𝜆𝑖𝑃

𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′, 𝜎𝑖),

here 𝐶𝐿𝑁 (𝑡, 𝐾, 𝜏, 𝜎𝑖), 𝑃𝐿𝑁 (𝑡, 𝐾, 𝜏, 𝜎𝑖), 𝐶𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜎𝑖) and 𝑃𝐿𝑁

𝐹 (𝑡, 𝐾, 𝜏,
𝜎𝑖) denote the European allowance and allowance futures option values
under the LN model in Proposition 1 calculated with volatility 𝜎𝑖.

roof. See Appendix.

Compared to other advanced models built on state-contingent price
rocesses, such as the Regime-switching Lognormal (RSLN) Model pro-
osed by Hardy (2001), the MLN allowance price model has the key
dvantage of having closed-form results, where model parameters can
e easily calibrated to market prices using error-minimizing criteria.
verall, the MLN model is more parsimonious and numerically efficient

n practice, while capturing both the volatility smile and heavy tails in
he allowance return.

.1. A two-component mixture lognormal model

For a practical implementation of the MLN model, the total number
f mixture components (which is 𝑁) must be specified. In principle,
ntroducing additional components is expected to lead to an improved
tatistical fitness of the model to market option prices but at the
ost of numerical efficiency. In this section, we examined the two-
omponent MLN model (abbreviated as an MLN-2 model), which is
he simplest instance of the MLN model to incorporate the crash-o-
hobia effect and volatility smiles.3 The model relies on a mixture
f two component variables with interesting interpretations that are
ot particularly transparent in a general MLN model. Under  , as-

sume that the spot allowance price follows a mixture of two diffusion
processes:

𝑆(𝑡) =
2
∑

𝑖=1
1𝐶=𝑖𝑆𝑖(𝑡), (17)

𝑑𝑆𝑖(𝑡) = 𝜇𝑖𝑆𝑖(𝑡)𝑑𝑡 + 𝜎𝑖𝑆𝑖(𝑡)𝑑𝑍(𝑡), 𝑆1(0) = 𝑆2(0) = 𝑆0, 𝑖 ∈ {1, 2}, (18)

where 𝑃𝑟(𝐶 = 1) = 𝜆 ∈ [0, 1] and 𝑍(𝑡) is a standard Brownian motion
under  . Following the option valuation approach discussed for the
MLN model, the allowance price under  is assumed to follow a mixture
of diffusion given by (17) and component process:

𝑑𝑆𝑖(𝑡) = 𝑟𝑆𝑖(𝑡)𝑑𝑡 + 𝜎𝑖𝑆𝑖(𝑡)𝑑𝑊 (𝑡), 𝑆1(0) = 𝑆2(0) = 𝑆0, 𝑖 ∈ {1, 2}, (19)

3 Fang (2012) demonstrates the appeal of the MLN-2 model in generating
he volatility smiles in stock index options under a semi-hypothetical set-
ing. Such capability is derived from the structural flexibility of the mixture
pecification and, hence, is market independent.
7

where 𝑊 (𝑡) is a standard Brownian motion under . The time-𝑡 risk-
neutral option prices follow

𝐶𝑀𝐿𝑁2(𝑡, 𝐾, 𝜏, 𝜎1, 𝜎2) = 𝜆𝐶𝐿𝑁 (𝑡, 𝐾, 𝜏, 𝜎1) + (1 − 𝜆)𝐶𝐿𝑁 (𝑡, 𝐾, 𝜏, 𝜎2) (20)
𝐶𝑀𝐿𝑁2
𝐹 (𝑡, 𝐾, 𝜏, 𝜎1, 𝜎2) = 𝜆𝐶𝐿𝑁

𝐹 (𝑡, 𝐾, 𝜏, 𝜏′, 𝜎1) + (1 − 𝜆)𝐶𝐿𝑁
𝐹 (𝑡, 𝐾, 𝜏, 𝜏′, 𝜎2)

(21)

The same results apply to put options.
The simplicity of the two-component mixture specification greatly

facilitates the study of the component prices directly, which is clumsy
to perform as the number of components increases. First, under  ,
consider the expected terminal price of the allowance given 𝑡 and a
time frame of interest [𝑡, 𝜏]:

𝐸[𝑆(𝜏) ∣ 𝑡] = 𝐸
[

𝐸
[

𝑆(𝜏) ∣ 𝑡, 𝐶
]]

= 𝜆𝐸[𝑆1(𝜏) ∣ 𝑡] + (1 − 𝜆)𝐸[𝑆2(𝜏) ∣ 𝑡]

(22)

It is easy to see that the expected terminal price is a linear interpo-
lations of the expected component prices. Without loss of generality,
assume that 𝐸[𝑆1(𝜏) ∣ 𝑡] < 𝐸[𝑆2(𝜏) ∣ 𝑡], which implies:

[𝑆1(𝜏) ∣ 𝑡] < 𝐸[𝑆(𝜏) ∣ 𝑡] < 𝐸[𝑆2(𝜏) ∣ 𝑡].

hen 𝜆 is the probability that the pessimistic market state dominates
i.e. 𝐶 = 1), under which the allowance price is expected to de-
rease. The associated component price variable 𝑆1(𝑡) is referred to as
downside component that captures the crash-o-phobia effect in the

llowance market. While the level of crash-o-phobia depends on 𝜆 and
[𝑆1(𝜏) ∣ 𝑡], the possibility of large price drops is reflected. Opposite
rguments apply to the upside component 𝑆2(𝑡) associated with the
ptimistic market state (i.e. 𝐶 = 2), which dominates with a probability
f 1 − 𝜆.

From an economics perspective, the MLN-2 specification is clearly
simplified discretization of the continuum of possible market sce-

arios into a dichotomy, i.e., a pessimistic state which is established
y bearish factors such as allowance surplus and production down-
urns, and an optimistic state which is established by bullish factors
ncluding allowance deficiency and tightening regulatory standards.
he corresponding downside and upside component dynamics aptly
escribe the market’s reactions to the random arrival of information
nder each state. This is consistent with the previous interpretation we
ave accorded to the MLN model and is also in alignment with the
mplications from modern finance theory where asset price movements
re explained by a set of fundamental factors and a random component.

However, the above interpretations of the downside and upside
omponents fail to apply to the model under , where both expected
erminal component prices are equal to the current price accumulated
t the risk-free rate as required by the martingale restriction. Upon
he calibration of the model to market option prices, the contrasting
mplications of the two components are reflected in their volatility pa-
ameter estimates. Therefore, to properly differentiate between the two
omponents under the risk-neutral measure, we identify the downside
omponent to be the one associated with a higher volatility parameter.
his follows from the fact that the component price process with a
igher volatility has a smaller drift term in the corresponding return
rocess based on the property of the GBM. Therefore, we define the
hare of Downside Return Risk (SDRR) over [𝑡, 𝜏], denoted by 𝛯(𝑡, 𝜏), as:

(𝑡, 𝜏) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑉 𝑎𝑟
(

ln
(

𝑆(𝜏)
𝑆𝑡

))

− 𝜆𝑉 𝑎𝑟
(

ln
(

𝑆(𝜏)
𝑆𝑡

)

∣ 𝐶 = 1
)

𝑉 𝑎𝑟
(

ln
(

𝑆(𝜏)
𝑆𝑡

)) , 𝜎1 < 𝜎2

𝑉 𝑎𝑟
(

ln
(

𝑆(𝜏)
𝑆𝑡

))

− (1 − 𝜆)𝑉 𝑎𝑟
(

ln
(

𝑆(𝜏)
𝑆𝑡

)

∣ 𝐶 = 2
)

𝑉 𝑎𝑟
(

ln
(

𝑆(𝜏)
𝑆𝑡

)) , 𝜎1 > 𝜎2

(23)
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By working out the expression for each term and simplifying the
result, we arrive at:

𝛯(𝑡, 𝜏) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − 𝜆)𝜎22 +
1
4
𝜆(1 − 𝜆)

(

𝜎21 − 𝜎22
)2

𝜆𝜎21 + (1 − 𝜆)𝜎22 +
1
4
𝜆(1 − 𝜆)

(

𝜎21 − 𝜎22
)2

, 𝜎1 < 𝜎2

𝜆𝜎21 +
1
4
𝜆(1 − 𝜆)

(

𝜎21 − 𝜎22
)2

𝜆𝜎21 + (1 − 𝜆)𝜎22 +
1
4
𝜆(1 − 𝜆)

(

𝜎21 − 𝜎22
)2

, 𝜎1 > 𝜎2

(24)

Specifically, the SDRR measures the contribution to the risk in
llowance return by the downside component implied by option prices.
onversely, it shows the impact of the downside component on option
alues, which is determined by both the downside variance and the
ifference between the two component variances.

In our analysis, we will implement the MLN-2 model as a stylized
epresentation of the MLN class due to its numerical simplicity and
ase of interpretation. The statistical fitness of the model for option
aluation will be comparatively analyzed. In theory, the MLN-2 model
s expected to outperform the benchmark model, since the latter is an
nstance of the former recoverable by pushing the parameter 𝜆 to either
f its boundaries. The degree of such outperformance in practice is of
nterest to us to investigate in this paper.

. Applications and numerical results

This section presents applications of the three open-phase
llowance-price models proposed in this paper, followed by a set
f numerical implementation of allowance option valuations of each
odel by using real market data.

.1. Model applications

In the contemporary global emission economy, the majority of
he established ETS are in open-trading phases where the markets
re relatively stable and liquid. As a result, it is reasonable to view
mission allowance as an alternative asset class contributing to the
iversification of investment portfolios. This view, if it is accepted,
ubstantially broadens the scope of application of the models, which
an be implemented for a set of tasks, such as:

(1) Pricing, valuation, and risk management of allowance options
and related derivatives.

(2) Generating allowance price scenarios by using calibrated param-
eters.

(3) Pricing, valuation, and hedging of guarantee riders in variable
annuities backed by allowance-based funds.

In addition to option valuation runs that the models are intended to
erve, the calibrated model of choice can also be used to price options
hat have limited active quotes. This often happens in the OTC market
here the strike-maturity combination of interest serves particular risk-
anagement purposes. Numerical efficiency is warranted by having

losed-form valuation expressions, from which the option Greeks are
asily derived for the design and implementation of proper hedging
trategies in order to manage the market risk exposures in option
ositions.

Moreover, the allowance price processes in the models can be
asily discretized to simulate price scenarios that serve a wide range
f actuarial calculations. Risk-neutral allowance price scenarios are
enerated using parameters calibrated to market option prices, which
an be subsequently used to price exotic contracts that lack a closed-
orm valuation expression. On the other hand, real-world allowance
rice scenarios are generated using parameters estimated from the spot
arket data, which is heuristically achieved using an estimation ap-
roach such as the conditional maximum likelihood estimation. These
cenarios can then be used by insurers exposed to the allowance market
8

or statutory capital calculations and risk-management purposes. The
xposure may reside in both the asset side (e.g. having allowances in
he asset portfolio) and the liability side (e.g. crediting a contractual
ate indexed to allowance prices).

Finally, the models can be used for the pricing and valuation of
enefit guarantee riders in variable annuity (VA) products backed
y allowance-based funds. Joint specifications of the allowance price
odel and other actuarial assumptions such as mortality, lapse, uti-

ization, and withdrawal rates are required. Under simplifications to
he decrement and policyholder behavior assumptions, the guarantee
alues can be expressed in closed form as functions of put option values
rom the selected allowance price model. By extension, this leads to
umerical efficiency in both liability hedging and valuation runs, where
ostly inner loop scenarios are otherwise required through a stochastic-
n-stochastic framework. Note that the actual degree of simplifications
equired vary by guarantee riders.

In the following subsections, we provide a numerical illustration of
llowance option valuation for the three reduced-form econometrics
odels proposed in this paper, which, to the best of our knowledge,
as so far not been reported in prior studies in the literature. Additional
iscussion on the other applications of the models is provided in the
ubsequent section.

.2. Data and methodologies

Due to data availability constraints, intra-day allowance option
uotes are not available for our study. As an alternative approach, we
anually collected and organized weekly closing option prices at Fri-
ay market closings from online databases reflecting ICE price quotes.
o ensure robustness of the conclusions reached in this analysis, the
ame implementation is performed for two samples covering distinct
eriods. Sample A consists of the EU ETS Phase 3 call option prices
or two allowance futures contracts settling in Decembers of 2018
nd 2019, tickered CKZ18 and CKZ19 respectively. The information is
athered and aggregated over five months from November 17, 2017 to
pril 6, 2018, with the exclusion of November 25, 2017 and December
2, 2017 due to missing data points. Sample B consists of EU ETS
hase 4 call option prices for 3 allowance futures contracts settling in
he Decembers of 2023 to 2025, tickered CKZ23, CKZ24, and CKZ25
espectively. The information is gathered over five weeks from October
3 to November 11, 2023. Compared to Sample A, the much wider
ange of traded strikes in Sample B ensures data sufficiency as well as
n exhibition of the effect of volatility smile on the results.

To construct our sample, for each option, we identify a reasonable
trike price range associated with the fewest number of noises, which
efines the option data selected for the implementation. The entries are
urther cross-validated to ensure accuracy and reliability. We do not
xclude any low-liquidity options from the sample set as their prices
till carry a fair amount of information from the market. The option
rices are then matched with the corresponding weekly closing futures
rice to create our final sample, where each row of data (a record)
s a combination of an allowance future option price, the underlying
llowance futures price, the option strike, and the option maturity.
he futures settlement date is omitted as it does not enter into the
ption valuation expressions for any of the three models presented in
ur study. The strike prices range from e3 to e16 and e40 to e105 in

increments of e0.5 for Sample A and B respectively. Finally, the risk-
free rate 𝑟 is specified to be 0%, which is the rate implied by the put–call
parity relationship.

There are two notable advantages to using allowance futures op-
tion data as our sample of choice. First, both options as well as the
underlying futures are standardized contracts actively traded in global
marketplaces including the European Climate Exchange (ECX) and the
Intercontinental Exchange (ICE), where the high liquidity guarantees
both the availability and quality of the price data for the purpose

of model calibration. Second, it minimizes the undue influence of
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Table 2
Summary statistics of the sample data for model implementation.

Sample set A training A testing B training B testing

Number of records 594 378 844 246

Option prices

Average 2.78 2.49 15.81 19.44
Min/Max 0.18/10.19 0.16/8.34 0.42/36.00 1.31/38.71

Moneyness

Average 0.073 0.046 0.109 0.191
Min/Max −0.797/1.472 −0.803/1.321 −0.213/0.542 −0.154/0.677

specifying the risk-free rate, which as one can verify only affects
the futures option values from a discounting perspective for all three
models. On the other hand, the disadvantage of this choice is that
it results in a limited number of strike-maturity combinations for a
comprehensive investigation. As an exchange-traded instrument, each
futures contract is associated with only one available option maturity
(i.e. 5 days before the futures settlement), precluding a static analysis
of model performance over the maturity dimension.

Each sample is divided into a training set and a testing set. For
Sample A, the training set consists of sample data two weeks apart
starting on November 17, 2017, while the testing set consists of the
remaining sample records. For Sample B, the training set consists of
consecutive weekly sample data from October 11 to November 3, 2023,
while the testing set is made up of the rest. This partition excels Sample
A in allowing out-of-sample testing under market conditions beyond
the training period. A summary statistic of the sample data is given in
Table 2, where the moneyness of an option is defined as the logarithm
of the ratio between the underlying allowance futures price and the
strike price:

𝑚𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 = ln
(

𝐹 (𝑡, 𝜏′)
𝐾

)

(25)

In our implementation, the models are calibrated to the training set
in the usual manner by minimizing sum of squared differences between
the options’ model prices and the corresponding market observations,
where the search of the optimal parameter set within the prescribed
domains are performed using a grid pattern search available in a
software such as Matlab. The parameter estimates obtained are then
used to calculate the model prices for the options in the testing set.
Both in-sample and out-of-sample statistical fitness are comparatively
analyzed across the models.

In addition, the estimates of the models-specific parameters and
metrics are also examined. For the SKM model, these include the
skewness and kurtosis coefficients (i.e. 𝜇3 and 𝜇4), the magnitudes
of which are indicative of the extent of deviations in option-implied
return distributions from the LN model specifications. Similarly, for
the MLN-2 model, we focus on the estimates of the mixture weight
𝜆, the differences between the component volatilities, and the Share
of Downside Return Risk. Unfortunately, the lack of intra-day data
precludes the analysis from achieving desirable statistical significance
for these results.

Note that, in theory, both the SKM and MLN-2 models should
perform at least as well as the benchmark model, which is essentially a
special instance of the two. This numerical exercise aims at developing
a better understanding of the level of outperformance in model fitness
(if any) for an allowance option valuation.

7.3. Implementation and analysis

The models are calibrated to the training set by solving for the
parameter values that minimize the Sum Square Errors (SSE) between
the model and the actual market prices in the set, utilizing the option
value expressions from Proposition 1, (10), and (21). The LN model is
9

o

Table 3
Parameter estimates from futures option prices, Sample A.

Model Parameter estimates

LN 𝜎

0.5094

SKM 𝜎 𝜇3 𝜇4

0.5057 −0.0804 3.4564

MLN-2 𝜆 𝜎1 𝜎2
0.7278 0.3848 0.8261

clearly the simplest one to calibrate, since it is associated with only
one unknown parameter, making the search uni-dimensional. Both the
SKM and MLN-2 models have three parameters that must be calibrated
to the training data.

We first present the analysis for Sample A, where the parameter
estimates are summarized in Table 3. The volatility estimate from
the LN model is 0.5094, indicating a relatively high level of risk in
allowance returns implied by the option price. For the SKM model, the
volatility parameter estimate is very close to that under the LN model,
which is expected since the SKM model adjusts for excess skewness
and kurtosis only. The skewness parameter is close to 0, while the
kurtosis parameter is above 3, pointing to respectively a lack of return
asymmetry and moderately thick tail implied by option prices. Finally,
for the MLN-2 model, the two component volatilities differ drastically,
characterizing a distinct pair of return regimes that the allowance price
may follow. 𝜆 is estimated to be 0.7282, which is far from either of
its boundary value to support the validity of the mixture model spec-
ification. The corresponding Share of Downside Return Risk (SDRR)
is 0.6498, indicating that over the calibration period, the downside
component contributes to about 65% of the return variance on average
as implied by the option prices. Accordingly, the crash-o-phobia effect
is found to be material.4

The in-sample performances of the models are summarized in the
first three columns of Table 4, where three discrepancy metrics are
calculated, namely the Mean Square Error (MSE), the Mean Absolute
Error (MAE), and the Mean Absolute Percentage Error (MAPE). The
results show an overall satisfactory in-sample fit for all three models.
As expected, both the SKM and the MLN-2 model outperform the LN
model. At the same time, the MLN-2 model delivers recognizably more
accurate prices than the SKM model across the three performance
metrics, which can be attributed to the ability of the MLN-2 model to
explicitly capture the crash-o-phobia effect in the option market in the
absence of option-implied skewness. Fig. 4 shows the relative errors of
the model prices against the option moneyness for the calibration set.
Observe that the LN and SKM models show some tendency to under-
price the out-of-money options, while a mild tendency of overpricing
toward the out-of-money region can be observed for the MLN-2 model
At-the-money and in-the-money options are quite accurately priced by
all of the three models.

The out-of-sample performance of the models is assessed using the
testing set, where the results are summarized in the last three columns
of Table 4. All three models show good out-of-sample performance.
The rankings in model fitness is overall consistent with the in-sample
results except for the MAPE metrics based on which the MLN-2 model
underperforms its rivals. This is apparently caused by the model’s
overpricing of a series of deeply out-of-money options on January 8,
2018, where the relative errors are inflated by extremely low market
option prices. Fig. 5 shows the relative errors of the model prices

4 Note that ideally, the model is best calibrated to the intra-day high-
requency price data to obtain a time series of parameter estimates and the
DRR metric, which will deliver a more comprehensive insight on how the
ption market’s view varied over the study period.
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Fig. 4. In-sample relative error vs. moneyness, Sample A.
Fig. 5. Out-of-sample relative error vs. moneyness, Sample A.
Table 4
Performance metrics, Sample A.

Model In-sample Out-of-sample

LN SKM MLN-2 LN SKM MLN2

MSE 0.0062 0.0053 0.0046 0.0052 0.0044 0.0040
MAE 0.0676 0.0612 0.0577 0.0577 0.0511 0.0479
MAPE 4.56% 4.24% 3.79% 3.90% 3.68% 4.28%

against the option moneyness for the testing set. There is a more
saturating dispersion in the relative errors for the out-of-money region,
while the overall patterns observed are consistent with the in-sample
results, reinforcing our previous argument made based on the in-sample
information.

The analysis for Sample B reveals some further insights in the
model fitness, primarily due to the different market conditions the
sample period represents. Parameters estimates obtained by calibration
to Sample B is shown in Table 5. The volatility estimates under the
LN and SKM models are both around 0.33, much lower than those
from sample A. However, the option-implied skewness under the SKM
model is much more significant, which is consistent with the volatility
skew illustrated in Section 5.1 for the calibration period. This may lead
to enhanced SKM model fitness where return skewness is explicitly
captured. The parameter estimates for the MLN-2 model still depict a
distinct pair of volatility regimes that the price process may follow.
𝜆 is estimated to be 0.3303, which is not only far from its boundary
values to support the mixture model specification, but also points to a
high probability for the downside regime. The corresponding Share of
Downside Return Risk (SDRR) is 0.8533, indicating that the downside
component contributes to over 85% of the return variance on average
as implied by the option prices over the calibration period.

Model performance metrics for Sample B are summarized in Table 6.
While all 3 models showed reasonably satisfactory fitness, interesting
10
Table 5
Parameter estimates from futures option prices, Sample B.

Model Parameter estimates

LN 𝜎

0.3304

SKM 𝜎 𝜇3 𝜇4

0.3394 −0.5043 3.4617

MLN-2 𝜆 𝜎1 𝜎2
0.3303 0.1836 0.6148

Table 6
Performance metrics, Sample B.

Model In-sample Out-of-sample

LN SKM MLN-2 LN SKM MLN2

MSE 0.1515 0.0281 0.0561 0.5995 0.3021 0.3298
MAE 0.3190 0.1136 0.1735 0.6395 0.4852 0.4696
MAPE 2.63% 1.26% 3.13% 4.31% 4.29% 3.51%

insights can be drawn from the observations for each model. For the
in-sample metrics, both the SKM and MLN-2 models present material
fitness improvement over LN as expected. SKM clearly delivers the
best in-sample fitness potentially from capturing the volatility skew
mentioned above. However, for the out-of-sample metrics, the MLN-2
model appears to deliver the best overall results by slightly outperform-
ing the SKM model. This is due to SKM’s underpricing of a series of
deeply out-of-money near-maturity options, consistent with its behavior
identified from Sample A. In fact, the rank correlation between the out-
of-sample relative errors from the SKM model and option moneyness
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is approximately 0.94, indicating a high degree of association. On the
other hand, the reduced fitness for the SKM model out-of-sample could
also be caused by shifts in the volatility skew toward the testing period,
which is deliberately set to avoid temporal overlap with the calibration
period.

We conclude this section with a few remarks on the models in
connection with the insights obtained from this study. First, using
the three selected performance metrics over the two different sample
periods, the MLN-2 model showed the best overall fitness. However,
for periods associated with consistently significant return and volatil-
ity skewness, the SKM model may deliver the most accurate results
especially for applications such as intraday price extrapolations. In
addition, the selection of the model should be based on a particular
application it is intended to serve. Though the MLN-2 model has the
best overall fitness, it exhibits some tendency to overprice the out-of-
money options. This is undesirable if the valuation results are used
to set transaction prices in establishing long positions in the options.
However, it may be an acceptable solution for an insurer in calculating
the required capital of an allowance-indexed liability with option-like
payoff to the counterparty.5 Opposite arguments can be made for the
SKM model.

As expected, there is clearly not a perfect-for-all choice. However
the conclusions drawn from this study should offer useful insights
to possible stakeholders, such as insurers and pension funds, on the
tradeoffs involved. Finally, for insurance regulators, the theoretical
and numerical findings on the models should hopefully shed light
on the development of guidelines for allowance-linked insurance and
annuity products, which is not explicitly covered in scope by existing
policies.

8. Conclusion

In this paper, we have discussed the valuation of emission allowance
options under an open trading phase, characterized by the possibility of
inter-phase banking of allowances. We have performed a set of empir-
ical exercises on historical allowance prices under EU ETS Phase 3 and
EU ETS Phase 4. They represent the best example of open-phase mar-
kets among the in-force emission trading schemes, where the allowance
returns exhibit similar stylized facts as the stock market including
excess return kurtosis and volatility smiles. Three reduced-form econo-
metrics models were introduced and analyzed systematically. These
were the LN model, the SKM model, and the MLN-2 model respectively.
Closed-form option price expressions were derived under each of these
models, which share a common feature of being analytically-tractable.
Numerical illustration was provided by calibrating the models to two
samples of allowance futures call option prices collected for EU ETS
Phase 3 and Phase 4. The MLN-2 model appears to deliver the most
accurate fitness overall across the two sample periods. While all of the
three models tend to misprice the out-of-money options, the SKM and
MLN-2 models outperform the LN model in the in-sample and out-of-
sample model fitness, i.e., based on performance/discrepancy metrics
of the models calculated on the training set and the testing set. For
periods of significant volatility skew, the SKM model appears to deliver
the most accurate in-sample prices and could be best used for intra-day
allowance option price extrapolations. Most interestingly, the MLN-2
model showed some tendency to overprice the out-of-money options,
which are prone to be underpriced by the SKM model. These findings
are important factors to consider in a model selection process for differ-
ent applications, which may include the design, pricing, and valuation
of allowance-linked annuity products. These additional applications of
the models are likely to lead to a fruitful avenue for future research.

5 This may include, for example, rate credited to policyholders of
llowance-indexed fixed annuities.
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Appendix. Proof of Proposition 2

Without loss of generality, it suffices to show the proof for a call
option. Under a risk-neutral valuation:

𝐶𝑀𝐿𝑁 (𝑡, 𝐾, 𝜏) = 𝐸
[

𝑒−𝑟(𝜏−𝑡) (𝑆(𝜏) −𝐾)+ ∣ 𝑡
]

. (A.1)

ased on the model specification in Eqs. (11) and (13):

(𝑡) =
𝑁
∑

𝑖=1
1𝐶=𝑖𝑆𝑖(𝑡), 𝑖 ∈ 1, 2...𝑁, (A.2)

here

𝑆𝑖(𝑡) = 𝑆𝑖(𝑡)𝑟𝑑𝑡 + 𝜎𝑖𝑆𝑖(𝑡)𝑑𝑍(𝑡). (A.3)

Therefore, we have:
𝑀𝐿𝑁 (𝑡, 𝐾, 𝜏) = 𝐸

[

𝐸
[

𝑒−𝑟(𝜏−𝑡) (𝑆(𝜏) −𝐾)+ ∣ 𝑡, 𝐶
]]

(A.4)

=
𝑁
∑

𝑖=1
𝜆𝑖𝐸

[

𝑒−𝑟(𝜏−𝑡)
(

𝑆𝑖(𝜏) −𝐾
)+ ∣ 𝑡

]

=
𝑁
∑

𝑖=1
𝜆𝑖𝐶

𝐿𝑁 (𝑡, 𝐾, 𝜏, 𝜎𝑖). (A.5)
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where the last line follows from that each component price process
being a GBM as specified in Eq. (A.3), coinciding with the specification
for the LN model in Section 5.
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