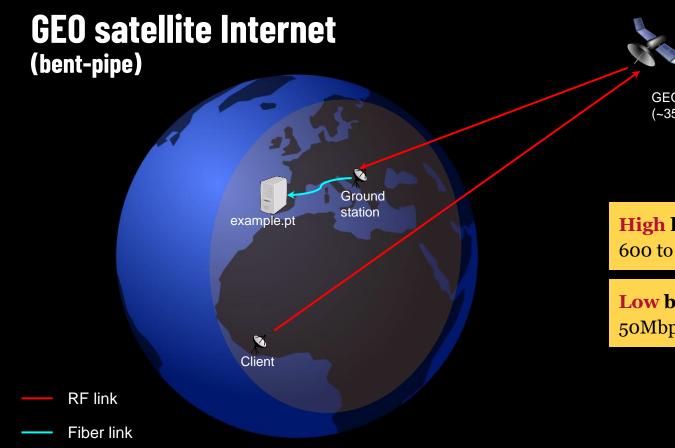
Are we safe in the "Internet from Space"?

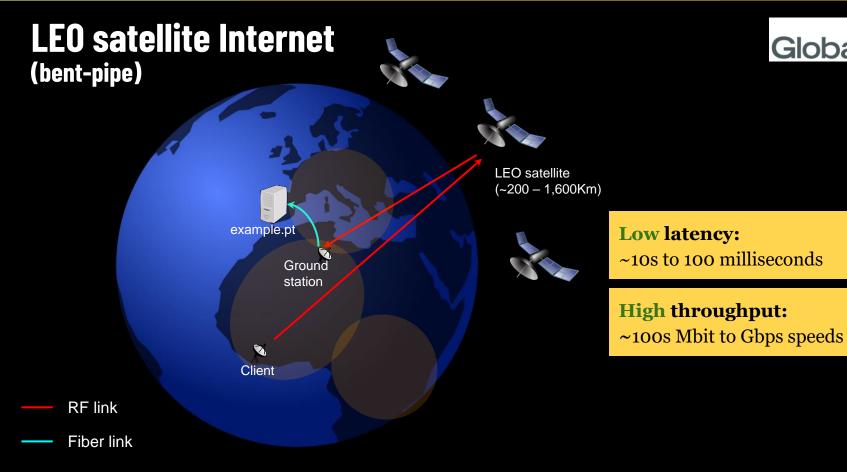
Diogo Barradas

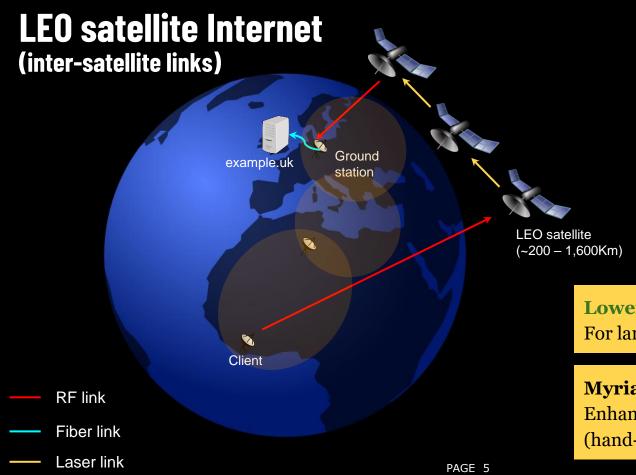
David R. Cheriton School of Computer Science University of Waterloo


What is satellite Internet and how does it work?

- Internet access provided through communication satellites in space
- Clients use a dish antenna to send and receive information from a satellite
 - No need for fiber or cabled connections
- Able to connect rural, remote, or indigenous communities in a cost-effective way
 - Helps bridge the digital divide

Do all satellite broadband connections work the same?




GEO satellite (~35,000Km)

High latency: 600 to 1200 milliseconds

Low bandwidth: 50Mbps download / 6Mbps upload

···· iridium[•]

Lower latency than fiber: For large terrestrial routes

Myriad opportunities: Enhanced routing, other optimizations

(hand-off, service placement, etc.)

"Right, but this sounds a bit like science fiction"

However, it is very much real!

- Many companies are launching their own constellations
 - Low-cost satellite launches & COTS components
- Opportunities for new services and applications
 - Civilian & military usage (e.g., DARPA Blackjack)
 - Also fostering new research avenues

Imagination is the limit

- High-speed satellite Internet
 - no more sluggish connections
- Geospatial data analysis
 - AI-powered data analytics for tracking and monitoring
- Edge computing & micro datacenters
 - offload data and analytics, minimize bandwidth requirements

SpaceX hits a milestone as Starlink arrives in Antarctica, high-speed internet now available on all seven continents

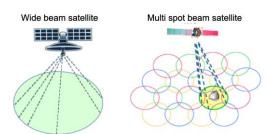
The Starlink dish can withstand extreme temperatures as low as -22 degrees Fahrenheit.

Bring clarity, accuracy, and speed to mission-critical operations.

Never miss a location when every second counts. Edgybees provides visual context in real time, highlighting roads, buildings, and other important location data on top of your satellite and motion imagery.

Data Centers in Orbit? Space-Based Edge Computing Gets a Boost

BY RICH MILLER - AUGUST 17, 2022 - LEAVE A COMMENT



This all sounds pretty cool! But how safe is my data?

There are three important **security concerns**:

- Large beaming radius
- Easy to intercept
- (Often) no encryption

How can we secure our satellite Internet links?

TBS-6983/6903 ~\$200-\$300 (or comparable PCIE DVB-S tuner, ideally with APSK support)

Crew Passport Data Transmitted to Port Authorities

CID Number	Rank: COFF Name: S	N	
Passport: Z:	Issued: 05	Expiry: 04	
Seaman book:	Issued: 04,	Expiry: 03 (br>	
Nationality:	Date of birth:	Place of birth: .	Kbr>
CID Number	Rank: 2OFF Name:	UL	
Passport: R	Issued: 14.	Expiry: 13 Kbr>	
Seaman book:	Issued: 24	Expiry: 23. br>	
Nationality:	Date of birth:	Place of birth:	<pr> </pr>

[Whispers Among the Stars, James Pavur, Oxford University, BlackHat 2020]

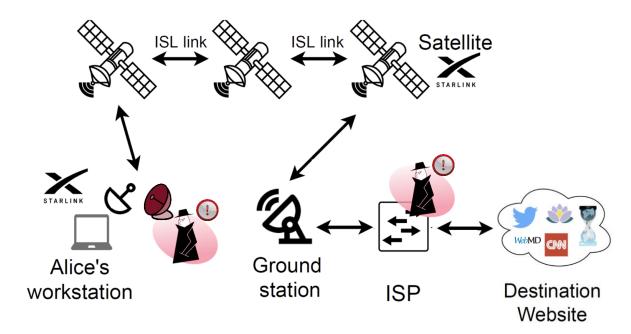
Satellite Internet is still the Internet

- Transport Layer Security (TLS) can be used to encrypt the content of communications
 - Widely adopted
 - Your browser can even do it for you

https://grandriverhealth.org						
grandriverhealth.org						
	Connection is secure	►				
٩	Cookies 4 in use	Z				
۵	Site settings					

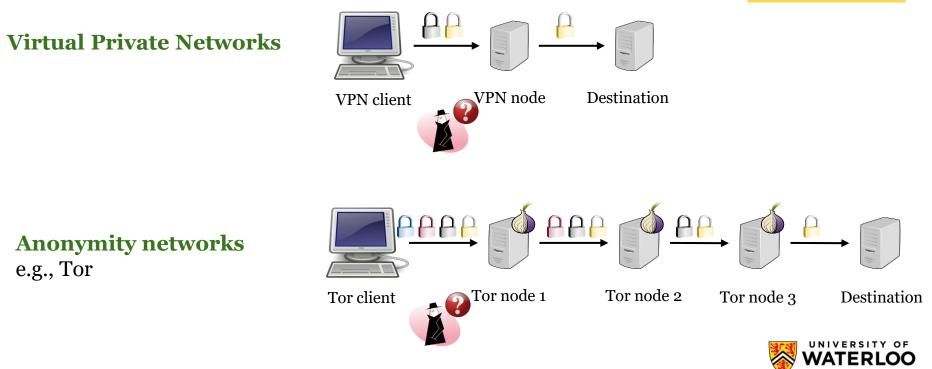
tls.h	nandshake				+
No.	Time	Source	Destination	Protocol Length Info	
	215 2.355279	2620:101:f000:700:	grandriverhealth.org	TLSv1 591 Client Hello	1
1					

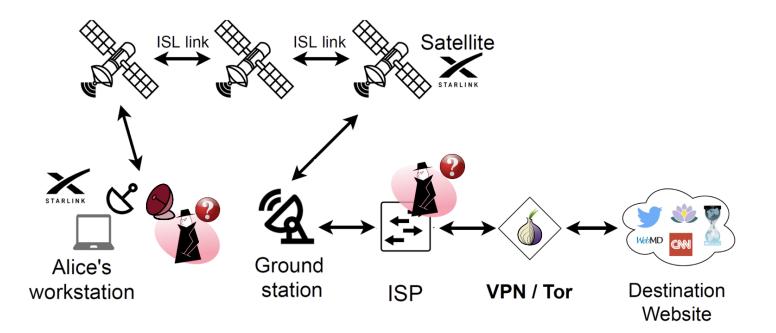
- > Frame 215: 591 bytes on wire (4728 bits), 591 bytes captured (4728 bits) on interface en0, id 0
- > Ethernet II, Src: Apple_31:71:62 (b0:be:83:31:71:62), Dst: Cisco_f3:e1:54 (d4:2c:44:f3:e1:54)
- > Internet Protocol Version 6, Src: 2620:101:f000:700::51:757c (2620:101:f000:700::51:757c), Dst: grandriverhealth.org (2606:4700:130:4
- > Transmission Control Protocol, Src Port: 55177, Dst Port: 443, Seq: 1, Ack: 1, Len: 517
- Transport Layer Security


•

- v TLSv1.3 Record Layer: Handshake Protocol: Client Hello
 - Content Type: Handshake (22) Version: TLS 1.0 (0x0301)
 - Length: 512
 - > Handshake Protocol: Client Hello

TLS does not hide everything! e.g., destination, connection duration


Where is the adversary?



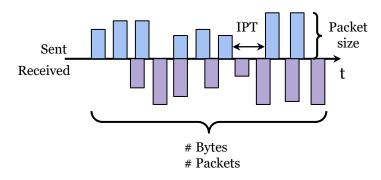
So what can I do to protect this information?

Key idea: Hop around!

Satellite Internet users can also apply these mechanisms

Game over for eavesdroppers, right?

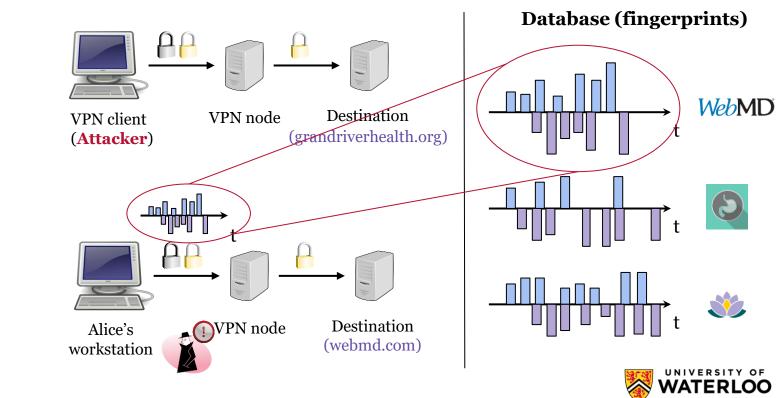
There's actually more than meets the eye...


VPN node

Observation:

VPNs and Tor **leak metadata** like the volume, direction, and timing information that characterize a given website

Packet flow:


Website Fingerprinting attack:

Create a database of website traces and try to match Alice's traffic patterns

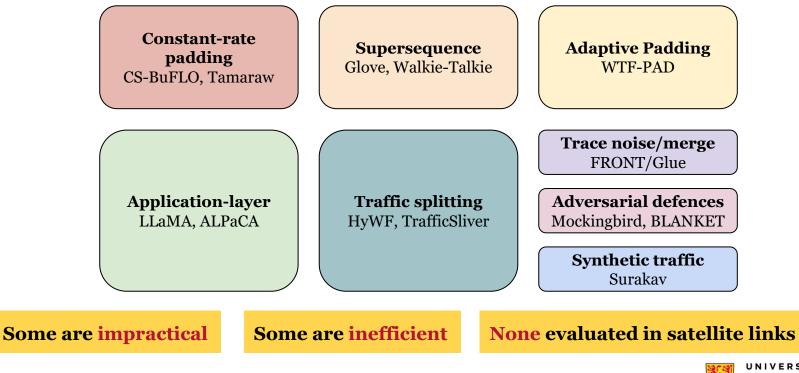
How does website fingerprinting work?

Step 1: Build database

Step 2: Match Alice's traffic

In practice, matching fingerprints is more difficult than that...

- No two website accesses are the same!
 - Users have **different** machines, browser configurations, etc.
 - Network conditions are not static
- This causes **uncertainty** when matching fingerprints



Raw representation (Packet capture) Trace representation (Packet sequences) Feature representation (Manually-crafted or learned through DL)

Defences against website fingerprinting

(and prototyped over Tor)

Challenges and Opportunities

- **How difficult is it** to fingerprint traffic over satellite links?
 - Different link properties than terrestrial links
 - Added latency, jitter, packet drops
 - Different transport protocol behaviour
- Can we **lower bound** an adversary's capabilities?
 - Different interception settings
 - At the backhaul, antenna placed close to clients, downlink only
- Can we build enhanced defences?
 - Existing WF defences impose severe performance overheads
 - A big issue assuming limited traffic plans

Takeaways

- We are facing a **rise in the adoption** of satellite Internet solutions
 - And a wealth of networked space-based services being designed
- Satellite Internet links are **susceptible** to traffic analysis
 - Just like the regular/terrestrial Internet
- We are working towards **assessing the security** of satellite Internet users
 - Against the analysis of communication metadata

Thank you! Questions?

