
How practical zkSNARK enabled blockchain privacy?

Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo

CANADA
https://uwaterloo.ca/scholar/ggong

CPI Annual Conference
University of Waterloo, October 6-7, 2022

G. Gong Practical zkSNARK 1 / 22

Target: Blockchain privacy

Blockchains, a decentralized peer-to-peer (P2P) ledger system, is gaining interest

as a possible solution to many applications:

I decentralized finance (DeFi)
I decentralized identity
I supply chain management, healthcare, · · ·

Blockchains can provide trusted consensus, computation, and immutable data
between untrusted entities.

G. Gong Practical zkSNARK 2 / 22

A close look at blocks and blockchain

Block structure

Blockchain structure: a blockchain is a singly linked list of blocks by a hash chain.

G. Gong Practical zkSNARK 3 / 22

How to achieve blockchain privacy?

Or how to shade sender/receiver and transaction privacy?

Tool: zero-knowledge proof systems

G. Gong Practical zkSNARK 4 / 22

Zero-Knowledge Proofs

Loosely speaking, zero-knowledge proofs are proofs that yields nothing
beyond the validity of the assertion.

G. Gong Practical zkSNARK 5 / 22

Zero-Knowledge Proofs (cont.)

Prover
Alice

X = “I have one BTC
or I upload data for

product (organic salmon)”

Verifier
Bob

I believe X is true.
But I do not know why!

- Completeness: P can convince V if X is true

- Soundness: No malicious P∗ cannot convince V if X is not true

- Zero Knowledge: V∗ learns nothing except for the validity of X

G. Gong Practical zkSNARK 6 / 22

Zero-Knowledge Proofs (cont.)

Prover
Alice

X = “I have one BTC
or I upload data for

product (organic salmon)”

Verifier
Bob

I believe X is true.
But I do not know why!

- Completeness: P can convince V if X is true

- Soundness: No malicious P∗ cannot convince V if X is not true

- Zero Knowledge: V∗ learns nothing except for the validity of X

G. Gong Practical zkSNARK 6 / 22

Zero-Knowledge Proofs (cont.)

Prover
Alice

X = “I have one BTC
or I upload data for

product (organic salmon)”

Verifier
Bob

I believe X is true.
But I do not know why!

- Completeness: P can convince V if X is true

- Soundness: No malicious P∗ cannot convince V if X is not true

- Zero Knowledge: V∗ learns nothing except for the validity of X

G. Gong Practical zkSNARK 6 / 22

Zero-Knowledge Proofs (cont.)

Prover
Alice

X = “I have one BTC
or I upload data for

product (organic salmon)”

Verifier
Bob

I believe X is true.
But I do not know why!

- Completeness: P can convince V if X is true

- Soundness: No malicious P∗ cannot convince V if X is not true

- Zero Knowledge: V∗ learns nothing except for the validity of X

G. Gong Practical zkSNARK 6 / 22

ZKP efficiency

Prover complexity: Computational cost for the prover to run the protocol.

Round complexity: Number of transmissions between prover and verifier.

Proof length (or communication: Total size of communication between prover
and verifier.

Verifier complexity: Computational cost for the verifier.

Setup cost: Size of setup parameters, e.g. a common reference string (CRS),
and computational cost of creating the setup.

G. Gong Practical zkSNARK 7 / 22

How about integrity of computation?

Prover
Alice

y

Verifier
Bob

How can a Alice to prove to Bob that a hash value y = h(x) is correctly evaluated
without sending Bob the pre-image x?

Verifiable computation
The integrity of computation is achieved by verifiable computation. It can be done
through representing an algorithm/program as a circuit.

G. Gong Practical zkSNARK 8 / 22

zkSNARK

zkSNARK

zero-knowledge Succinct Non-interactive ARgument of Knowledge.

Properties of zkSNARK

Zero-Knowledge: does not leak any information about witness

Succinct: Proof size is independent of NP witness sizes, i.e., the
computing complexity of the prover/verifier and communication (i.e.,
the proof length) are computationally bounded.

Non-interactive: only one message is sent by prover.

ARgument of Knowledge.

G. Gong Practical zkSNARK 9 / 22

Some recent zkSNARKs

α1 α2 α3

1

2

β1

β2

ga
te
s

input

(α1 + α2)α3

Properties of different zkSNARK schemes
scheme setup security implementation

QAP/QSP based private KOE libsnark (BCTV14)
(GGPR13, Groth16) Pinocchio, Zcach
(BCTV14a) Hawk

Bullet proof (BCCGP16) public DLOG experiments
Marlin (CHMMVW20) private Strong DH experiments
SpartanDL (Setty20) public DLOG experiments

Ligero (AHIV17) public CRH, PRG Ligero cryptocurrency
Stark (BBHR18) public CRH, PRG libstark
Aurora (BCRSVW19) public CRH, PRG libiop
Polaris (HG2022) public CRH, PRG partial tests

G. Gong Practical zkSNARK 10 / 22

R1CS Relation

From now on, we assume that we have obtained R1CS relation from a circuit converted
from a given algorithm/program.

R1CS instance
x = (F, A,B,C, v,m, n) and corresponding witness w

• A,B,C are m×m matrices over a large finite field F representing the
computation circuit

• v is the public input and output vector of the instance

• w is the private input vector of the instance

• there are at most n non-zero entries in each matrix

G. Gong Practical zkSNARK 11 / 22

R1CS relation

There exists a witness w ∈ Fm−|v|−1 such that

(A · z) ◦ (B · z)− (C · z) = ~0,

where z := (1, v, w) ∈ Fm, “·” is the matrix-vector product, and “◦” denotes the
entry-wise product.

The goal of a zkSNARK scheme is to prove the above relation.

R1CS relation generalizes the problem of arithmetic circuit satisfiability.

For the three matrices A, B, C, the vectors Az, Bz and Cz represent the left
input, right input and output vectors of the multiplicative gates in the circuit
respectively. The witness w consists of the circuit’s private input and wire values.

For example, if we would like to prove any transaction (i.e., UTXO) in Zcash, it
suffices to show the miners that SHA256 circuit y = SHA256(x) without giving
the values in x = UTXO. Zcash implemented Groth16 to achieve this goal.

G. Gong Practical zkSNARK 12 / 22

Polaris: a new zkSNARK

Polaris is a new zkSNARK for R1CS computational circuits with polylogarithmic
for both proof size and verification time.

By instantiating with different polynomial commitment schemes, it can obtain
several zkSNARKs where the verifier’s costs and the proof size range from
polylogarithmic to sublinear depending on the underlying commitment scheme.

PolarisRO is public set-up, with prover complexity O(N logN), proof size
O(log2 N), and verifier complexity O(log2 N).

Prover efficiency is improved using a new efficient sparse encoding, and verifier
cost is reduced from linear to logarithmic by embedding the GKR protocol into
low degree test (LDT) with a new explicit computation circuit as its input.

G. Gong Practical zkSNARK 13 / 22

Encoding R1CS relation in Polaris

There are two different methods to
encode R1CS, one is to interpret the
matrices into multi-variate
polynomials (e.g., Spartan), and the
other univariate polynomials (e.g.,
Groth16, Aurora). Polaris uses this
method.

Then to prove the relation is true
only at a random point.

Product checking polynomial Fw(X) := Ā(X) · B̄(X)− C̄(X) is
converted to Poly-SAT

Fw(X) = ZH (X) ·G(X)

⇓ ⇓soundness

Fw(rx) = ZH (rx) ·G(rx) for a random rx ∈ F \H

Univariate sum check This is to check whether the validity of three evaluations:
vA = Ā(rx), vB = B̄(rx), vC = C̄(rx) through a random combination:

c = rAvA + rBvB + rCvC

G. Gong Practical zkSNARK 14 / 22

Polaris in a nutshell

Polaris composes two protocols: the product check and univariate sum check protocols.

Polaris product check protocol
Prover:

Run the sparse encoding to get three polynomials
Ā(X), B̄(X), C̄(X) and product check polynomial
Fw(X). Then compute division to get G(X).

Run polynomial commitment (PC) to commit G(X)
(PC can be any, so the complexity depends on a
specific PC).

Generate a proof, called π1, with 5 elements in the
field F.

Verifier:

Verify an identity with one commitment, and two
multiplications.

If it is true, then continue to run Polaris univariate
sum-check protocol. Otherwise, abort.

Polaris univariate sum check
protocol

Prover and Verifier together run LDT initial phase.

Prover runs Merkle tree commitment to commit two
Read-Solomon (RS) codewords.

Prover and Verifier together run GKR protocol three
times paralelly.

Prover runs LDT final phase: generate the proof,
called π2, with logarithmic size.

Verifier verifies π2 with logarithmic complexity.

G. Gong Practical zkSNARK 15 / 22

Prover Running Time

210 211 212 213 214 215 216 217 218 219 220

10−1

100

101

102

number of constraints

p
ro
ve
r
ti
m
e
(s
)

Ligero

Aurora

Fractal

Marlin

Spartan

Polaris

G. Gong Practical zkSNARK 16 / 22

Argument Size

210 211 212 213 214 215 216 217 218 219 220

102

103

104

number of constraints

p
ro
of

si
ze

(K
B
)

Ligero

Aurora

Fractal

Spartan

Polaris

G. Gong Practical zkSNARK 17 / 22

Verifier Running Time

210 211 212 213 214 215 216 217 218 219 220

101

102

103

104

number of constraints

ve
ri
fi
er

ti
m
e
(m

s)
Ligero

Aurora

Fractal

Marlin

Spartan

Polaris

G. Gong Practical zkSNARK 18 / 22

Concluding remarks

For SHA256 circuit, Polaris for verifying a SHA-256 preimage (about 23k AND
gates) in zero-knowledge with 128 bits security, the proof size is less than 150kB
and the verification time is less than 11ms, both competitive to existing systems
with better concrete verifiers’ complexity.

Polaris has improved verifier’s performance compared with Ligero/Ligero++,
Aurora for R1CS circuits, and the underlying cryptographic schemes involved are
only symmetric cryptography, i.e., collision-resistant hash functions and random
number generators.

G. Gong Practical zkSNARK 19 / 22

Concluding remarks (cont.)

For blockchain privacy, a zkSNARK scheme deployed in the real-world systems is
the QAP/QSP-based zkSNARK (GGPR13) in 2013. It has constant proof size and
verifier complexity. However, it needs a large CRS.

A vulnerability has been found in 2019 in their earlier implementation of GGPR13.
Zcash advised not to use that implementation, and it is currently updated to
implement Groth16.

Contrastively, Polaris is one of the choices for zkSNARKs which do not need any
trusted setup and perform heavy pairing cryptographic operations, and possess
plausible post-quantum security, and can eliminate vulnerabilities in
implementations of those heavy pairing operations as well as memory attacks on
single point failure for accessing CRSs.

G. Gong Practical zkSNARK 20 / 22

Concluding remarks (cont.)

The dominant computations in any zkSNARKs are Lagrange interpolation in order
to get uni/multi-variate polynomials (corresponding to IFFT), and polynomial
evaluations or RS codeword generation (FFT).

From coding theory, any practical codes are implemented by linear feedback shift
register (LFSR)s through FFT and IFFT. So, it may be another way to speed up
those computations for efficient zkSNARKs.

Currently, we are investigating to implement Polaris for privacy of supply chain
management. A bottleneck for the implementation lies in our second subprotocal
which uses the GKR protocol.

G. Gong Practical zkSNARK 21 / 22

Reference

The content of Polaris is taken from

Shihui Fu and Guang Gong, Polaris: Transparent Succinct Zero-Knowledge
Arguments for R1CS with Efficient Verifier, the Proceedings on Privacy Enhancing
Technologies, 2022 (1), pp. 544 - 564.

G. Gong Practical zkSNARK 22 / 22

