Making Canadian Healthcare Systems “AI Ready”

What do we need to build AI-powered Trustworthy Primary Healthcare Solutions?

Sirisha Rambhatla, Ph.D.
Assistant Professor
Director, Critical ML Lab
University of Waterloo

www.sirisharambhatla.com
Future Healthcare Challenges of Canada and the World
“The number of older persons is projected to double to 1.5 billion by 2050.”
Future Healthcare Challenges of Canada and the World

World Population Ageing, 2019

“The number of older persons is projected to double to 1.5 billion by 2050.”

Action for Seniors report, Fall 2014

In 2014, about 15% of Canadians were above the age of 65, this percentage is set to rise to 25% by 2040.
World Population Ageing, 2019

“The number of older persons is projected to double to 1.5 billion by 2050.”

Action for Seniors report, Fall 2014

In 2014, about 15% of Canadians were above the age of 65, this percentage is set to rise to 25% by 2040.

Canada’s nursing shortage at a glance, 2022

The nursing shortage, pre-pandemic

Even as our population ages and our health needs become more acute, growth in the regulated health workforce has largely remained stagnant.

A 2018 analysis predicted a shortage of 117,600 nurses in Canada by 2030 (Scheffler & Arnold, 2018). According to 2020 data, a third of registered nurses who provide direct care are 50 or older and nearing retirement (Registered Nurses' Association of Ontario, 2021). A 2019 survey of nurses conducted by the CFNU with
AI-powered Healthcare Technologies can address Urgent Healthcare Needs.
AI-powered Healthcare Technologies can address Urgent Healthcare Needs

How can we leverage it for primary healthcare?
AI for Healthcare

- Nurse Robot
- Receptionist and Administrative Support
- Online Doctor
- Body Scanning
- Health Monitoring
- Managing Medical Records
- AI-Assisted Surgery
- Drugs Creation
- Data Based Clinical Judgement

- AI for Healthcare

- A large brain graphic with interconnected nodes representing various healthcare applications.
AI for Healthcare
My AI for Healthcare Research Efforts
My AI for Healthcare Research Efforts

AI for Hepatology

AI for Physiotherapy, Surgical Candidacy and Telemedicine

www.sirisharambhatla.com
My AI for Healthcare Research Efforts

- AI for Hepatology
- AI for Physiotherapy, Surgical Candidacy and Telemedicine
- Trustworthy AI for Healthcare
My AI for Healthcare Research Efforts

- AI for Hepatology
- AI for Physiotherapy, Surgical Candidacy and Telemedicine
- Trustworthy AI for Healthcare
- AI for Surgical Skill Assessment
My AI for Healthcare Research Efforts

- AI for Hepatology
- AI for Physiotherapy, Surgical Candidacy and Telemedicine
- Trustworthy AI for Healthcare
- AI for Surgical Skill Assessment
- AI for COVID

www.sirisharambhatla.com
My Research Efforts in Critical Applications
My Research Efforts in Critical Applications

AI for Intelligent Manufacturing

www.sirisharambhatla.com
My Research Efforts in Critical Applications

AI for Intelligent Manufacturing

AI for Aviation Operations

www.sirisharambhatla.com
My Research Efforts in Critical Applications

AI for Intelligent Manufacturing

AI for Aviation Operations

AI for Intelligent Manufacturing and Planning

www.sirisharambhatla.com
My Research Efforts in Critical Applications

- AI for Intelligent Manufacturing
- AI for Aviation Operations
- Time Series Representation Learning

Al for Intelligent Manufacturing and Planning
My Research Efforts in Critical Applications

AI for Intelligent Manufacturing
AI for Aviation Operations
Time Series Representation Learning
Transfer Learning

AI for Intelligent Manufacturing and Planning
My Research Efforts in Critical Applications

AI for Intelligent Manufacturing

AI for Aviation Operations

Time Series Representation Learning

Transfer Learning

Deep Learning Explainability

AI for Intelligent Manufacturing and Planning

www.sirisharambhatla.com
My Research Efforts in Critical Applications

- AI for Intelligent Manufacturing
- AI for Aviation Operations
- Time Series Representation Learning
- Transfer Learning
- Deep Learning Explainability
- Physics Informed Machine Learning

AI for Intelligent Manufacturing and Planning

www.sirisharambhatla.com
My Research Efforts in Critical Applications

- AI for Intelligent Manufacturing
- AI for Aviation Operations
- Time Series Representation Learning
- Transfer Learning
- Deep Learning Explainability
- Physics Informed Machine Learning
- Fundamental Research Threads in Deep Learning
I. AI for Forecasting Patient Outcomes in Primary Healthcare Applications
AI for Forecasting Liver Transplantation Waitlist Outcomes

Al for Healthcare
Deep Learning for Liver Transplantation
[Punchhi, Sun, Rambhatla, Bhat, American Association for the Study of Liver Diseases (AASLD), 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, Canadian Donation and Transplantation Research Program (CDTRP), 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, ILTS Annual Congress, 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, Ajmera Transplant Centre Research Day, 2022]
Al for Forecasting Liver Transplantation Waitlist Outcomes

Deep Learning for Liver Transplantation
[Punchhi, Sun, Rambhatla, Bhat, American Association for the Study of Liver Diseases (AASLD), 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, Canadian Donation and Transplantation Research Program (CDTRP), 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, ILTS Annual Congress, 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, Ajmera Transplant Centre Research Day, 2022]

![Image of liver with text: Predicting Future Trajectories of Waitlisted Patients Explaining Predicted Outcomes]

Al for Healthcare

www.sirisharambhatla.com
Deep Learning for Liver Transplantation

[Punchhi, Sun, Rambhatla, Bhat, American Association for the Study of Liver Diseases (AASLD), 2022] Selected for Oral Presentation

[Punchhi, Sun, Rambhatla, Bhat, Canadian Donation and Transplantation Research Program (CDTRP), 2022] Selected for Oral Presentation

[Punchhi, Sun, Rambhatla, Bhat, ILTS Annual Congress, 2022] Selected for Oral Presentation

[Punchhi, Sun, Rambhatla, Bhat, Ajmera Transplant Centre Research Day, 2022]

Predicting Future Trajectories of Waitlisted Patients

Using DeepNASH to Predict NASH patient trajectories on the Liver Transplant Waitlist

1. NASH Patient Variable Extraction

 - Gender
 - Age
 - MELD

 Patient(1)
 - Gender: F
 - Age: 65
 - MELD: 42

 Patient(2)
 - Gender: M
 - Age: 72
 - MELD: 36

 Patient(3)
 - Gender: F
 - Age: 48
 - MELD: 28

2. DeepNASH Neural Network

 - Death Event Sublayer
 - Transplant Event Sublayer

3. Prediction

 - Death Event Sublayer
 - Transplant Event Sublayer

4. Clinician Insights

 - High risk of death
 - Low risk of transplant

 - High risk of transplant
 - High risk of death

 - Low risk of death
 - Low risk of transplant

 Patient(1)
 - Likely to undergo transplant soon, measures must be taken to reduce mortality.
 - Can seek living donor options.

 Patient(2)
 - Unlikely to attract an organ offer soon, measures must be taken to reduce mortality.

 Patient(3)
 - Likely stable condition, may advise patient to seek living donor options.

DeepNASH Dashboard

Upload .csv file with patient data to DeepNASH Dashboard

DeepNASH forecasts the trajectory of the NASH patient after waitlisting by predicting monthly risks of death and transplant.

Clinical interpretation

Retrospective Model Performance: Computing Event Coherence Score

\[\mu = \frac{\mu_m \cdot \mu_n}{\mu_m + \mu_n} \]

M is the number of patient who have had the event by time t.

At actual event time, predicted risk of actual event is higher than the competing event.

Coherence \(\mu_m = 1 \)

Incoherence \(\mu_m = 0 \)

www.sirisharambhatla.com
Predicting Burn Surgical Candidacy to Assist Clinicians

First-degree burn
Second-degree burn
Third-degree burn

AI for Surgery
Predicting Burn Surgical Candidacy to Assist Clinicians

Burn Surgical Candidacy Prediction using Deep Learning
[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang*, Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award

Al for Surgery
Predicting Burn Surgical Candidacy to Assist Clinicians

Burn Surgical Candidacy Prediction using Deep Learning
[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang*, Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award

Multi-modal (Vision + Clinical Indicators)
Deep Learning for Surgical Candidacy

DL4Burn App for Wound Monitoring & Telemedicine

AI for Surgery
Predicting Burn Surgical Candidacy to Assist Clinicians

Burn Surgical Candidacy Prediction using Deep Learning
[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang*, Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award

Multi-modal (Vision + Clinical Indicators) Deep Learning for Surgical Candidacy

DL4Burn App for Wound Monitoring & Telemedicine

23 to 88% improvement over surgeons!

www.sirisharambhatla.com
Predicting Burn Surgical Candidacy to Assist Clinicians

Burn Surgical Candidacy Prediction using Deep Learning
[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang*, Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award

Multi-modal (Vision + Clinical Indicators) Deep Learning for Surgical Candidacy

DL4Burn App for Wound Monitoring & Telemedicine

23 to 88% improvement over surgeons!

DL4Burn App: Real-world Deployment for the Clinical Team

www.sirisharambhatla.com
II. AI for Medical Training and Skill Assessment
AI for Medical Training and Skill Assessment
AI for Medical Training and Skill Assessment

Al for Surgical Skill Assessment
AI for Medical Training and Skill Assessment

Robot Assisted Surgery Skill Assessment for Improving Surgical Outcomes

[Hung, Rambhatla, Pachauri, Sanford, Liu, American Urology Association, 2021]
[Hung, Rambhatla, Sanford, Pachauri, Vanstrum, Nguyen Liu, Journal of Surgery, 2021]
AI for Medical Training and Skill Assessment

Robot Assisted Surgery Skill Assessment for Improving Surgical Outcomes

[Hung, Rambhatla, Pachauri, Sanford, Liu, American Urology Association, 2021]
[Hung, Rambhatla, Sanford, Pachauri, Vanstrum, Nguyen Liu, Journal of Surgery, 2021]
Robot Assisted Surgery Skill Assessment for Improving Surgical Outcomes

[Hung, Rambhatla, Pachauri, Sanford, Liu, American Urology Association, 2021]
[Hung, Rambhatla, Sanford, Pachauri, Vanstrum, Nguyen Liu, Journal of Surgery, 2021]

Learning from limited labels using Transfer Learning

Label Uncertainty Detection

Al for Surgical Skill Assessment

www.sirisharambhatla.com
How Does ChatGPT Perform on the United States Medical Licensing Examination? The Implications of Large Language Models for Medical Education and Knowledge Assessment

Aidan Gilson ¹ ², Conrad W Safranek ¹, Thomas Huang ², Vimig Socrates ¹ ³, Ling Chi ¹, Richard Andrew Taylor # ¹ ², David Chartash # ¹ ⁴

Affiliations + expand

PMID: 36753318 PMCID: PMC9947764 DOI: 10.2196/45312
Large Language Models for Training and Patient Support

How Does ChatGPT Perform on the United States Medical Licensing Examination? The Implications of Large Language Models for Medical Education and Knowledge Assessment

Aidan Gilson 1 2, Conrad W Safranek 1, Thomas Huang 2, Vimig Socrates 1 3, Ling Chi 1, Richard Andrew Taylor 1 2, David Chartash 1 4

Affiliations + expand
PMID: 36753318 PMCID: PMC9947764 DOI: 10.2196/45312

Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models

Tiffany H Kung 1 2, Morgan Cheatham 3, Arielle Medenilla 1, Czarina Sillos 1, Lorie De Leon 1, Camille Elepaño 1, Maria Madriaga 1, Rimel Aggabao 1, Giezel Diaz-Candido 1, James Maningo 1, Victor Tseng 1 4

Affiliations + expand
PMID: 36812645 PMCID: PMC9931230 DOI: 10.1371/journal.pdig.0000198
Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum

John W. Ayers, PhD, MA; Adam Poliak, PhD; Mark Dredze, PhD; et al

Large Language Models for Training and Patient Support

How Does ChatGPT Perform on the United States Medical Licensing Examination? The Implications of Large Language Models for Medical Education and Knowledge Assessment

April 28, 2023

Aidan Gilson 1,2, Conrad W Safranek 1, Thomas Huang 2, Vinita Socrates 1,3, Lisa Cit 1, Richard Andrew Taylor 1,2, David Chartash 1

Affiliations + expand
PMID: 36753318 PMCID: PMC9947764 DOI: 10.2196/45312

Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum

John W. Ayers, PhD, MA 1,2; Adam Poliak, PhD 1; Mark Oredzi, PhD 1, et al.

Author Affiliations | Article Information
JAMA Intern Med. Published online April 28, 2023 DOI: 10.1001/jamainternmed.2023.1838

Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models

Tiffany H Kung 1,2, Morgan Cheatham 3, Arielle Medenilla 1, Czarina Sillos 1, Lorie De Leon 1, Camille Elepao 1, Maria Madriaga 1, Rimel Aggbao 1, Giezal Diaz-Candido 1, James Maningo 1, Victor Tseng 1, 4

Affiliations + expand
PMID: 36812645 PMCID: PMC9931230 DOI: 10.1001/jama.2023.4004
Are Large Language Models (LLMs) ready to be used for training and helping patients?
New wave of misinformation in the era of ChatGPT
New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnard, Sittert, Rambhatla, Under Review, 2023]

Critical Analysis of LLMs for Healthcare

www.sirisharambhatla.com
New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnard, Sittert, Rambhatla, Under Review, 2023]

Critical Analysis of LLMs for Healthcare

www.sirisharambhatla.com
New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnard, Sittert, Rambhatla, Under Review, 2023]

Putting Claims of LLMs passing Medical Exams to Test

Sensitivity Analysis

Asking ChatGPT to Assess its Own Answers

Critical Analysis of LLMs for Healthcare

www.sirisharambhatla.com
New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnard, Sittert, Rambhatla, Under Review, 2023]

Critical Analysis of LLMs for Healthcare

Putting Claims of LLMs passing Medical Exams to Test
Sensitivity Analysis
Asking ChatGPT to Assess its Own Answers

www.sirisharambhatla.com
Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation

[Barnard, Sittert, Rambhatla, Under Review, 2023]

Putting Claims of LLMs passing Medical Exams to Test

Sensitivity Analysis

Asking ChatGPT to Assess its Own Answers

Critical Analysis of LLMs for Healthcare

www.sirisharambhatla.com
New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnard, Sittert, Rambhatla, Under Review, 2023]

We find that ChatGPT is optimistic when there is higher risk, while it is more cautious in cases where that optimism is warranted!
III. Lessons from COVID-19 Pandemic
AI for COVID-19
AI for COVID-19

Predicting Spatiotemporal Risk Scores using High Resolution Mobility Data

AI for COVID-19

Predicting Spatiotemporal Risk Scores using High Resolution Mobility Data

[Sharma, Seo, Meng, Rambhatla, Liu, 2020]

Analyzing COVID-19 Misinformation in Twitter Conversations

[Sharma, Seo, Meng, Rambhatla, Liu, 2020]

Misinformation Spread

GOP blocking coronavirus bill — because it limits how much drugmakers can charge for a vaccine https://t.co/ekkvU7QquQ

political-clickbait
AI for COVID-19

Predicting Spatiotemporal Risk Scores using High Resolution Mobility Data

[Sharma, Seo, Meng, Rambhatla, Liu, 2020]

Analyzing COVID-19 Misinformation in Twitter Conversations

[Misinformation Spread

Modeling Epidemic Spread under Intervention Policies

Predicting the effect of interventions

California

Florida

Texas
Canada’s nursing shortage at a glance, 2022

Canada’s nursing shortage, pre-pandemic

Even as our population ages and our health needs become more acute, growth in the regulated health workforce has largely remained stagnant.

A 2018 analysis predicted a shortage of 117,600 nurses in Canada by 2030 (Scheffler & Arnold, 2018). According to 2020 data, a third of registered nurses who provide direct care are 50 or older and nearing retirement (Registered Nurses’ Association of Ontario, 2021). A 2019 survey of nurses conducted by the CFNU with...
Canada’s nursing shortage at a glance, 2022

"The number of older persons is projected to double to 1.5 billion by 2050."

Action for Seniors report, Fall 2014

In 2014, about 15% of Canadians were above the age of 65, this percentage is set to rise to 25% by 2040.

People 'dying unnecessarily' because of racial bias in Canada's health-care system, researcher says

N.W.T. Health Minister Glen Abernethy says department plans cultural sensitivity training

Emily Blake • CBC News • Posted: Jul 03, 2018 10:34 AM EDT | Last Updated: July 3, 2018

The nursing shortage, pre-pandemic

Even as our population ages and our health needs become more acute, growth in the regulated health workforce has largely remained stagnant.

A 2018 analysis predicted a shortage of 117,600 nurses in Canada by 2030 (Scheffler & Arnold, 2018). According to 2020 data, a third of registered nurses who provide direct care are 50 or older and nearing retirement (Registered Nurses’ Association of Ontario, 2021). A 2019 survey of nurses conducted by the CFNU with
In 2014, about 15% of Canadians were above the age of 65, this percentage is set to rise to 25% by 2040.
The number of older persons is projected to double to 1.5 billion by 2050.

In 2014, about 15% of Canadians were above the age of 65, this percentage is set to rise to 25% by 2040.

“… racism including systemic racism within the healthcare system is a significant contributor to Indigenous peoples’ lower health outcomes. Structural racism is evident throughout the Canadian health care system.”
People 'dying unnecessarily' because of racial bias in Canada's health-care system, researcher says

N.W.T. Health Minister Glen Abernethy says department plans cultural sensitivity

“The number of older persons is projected to double to 1.5 billion by 2050.”

“The number of older persons is projected to double to 1.5 billion by 2050.”

In 2014, about 15% of Canadians were above the age of 65, this percentage is set to rise to 25% by 2040.

In 2014, about 15% of Canadians were above the age of 65, this percentage is set to rise to 25% by 2040.

“... racism including systemic racism within the healthcare system is a significant contributor to Indigenous peoples' lower health outcomes. Structural racism is evident throughout the Canadian health care system.”
AI-powered Healthcare Technologies can address our Urgent Healthcare Needs
AI-powered Healthcare Technologies can address our Urgent Healthcare Needs

BUT

they can also Reinforce Existing Biases
AI-powered Healthcare Technologies can address our Urgent Healthcare Needs

BUT

they can also Reinforce Existing Biases
AI-powered Healthcare Technologies can address our Urgent Healthcare Needs

BUT
they can also Reinforce Existing Biases

AND
there is no way to know the impact of these protected attributes if we don’t adequately record them!
IV. Trustworthy and Fair AI Modelling in Healthcare
Trustworthy and Fair AI Modelling in Healthcare
Whose Health Matters in Healthcare Models? Understanding Data Bias for Healthcare Equity
Trustworthy and Fair AI Modelling in Healthcare

Whose Health Matters in Healthcare Models? Understanding Data Bias for Healthcare Equity

Closer look at the MIMIC III/IV Dataset: the most popular healthcare dataset

Trustworthy AI for Healthcare
Whose Health Matters in Healthcare Models? Understanding Data Bias for Healthcare Equity

Closer look at the MIMIC III/IV Dataset: the most popular healthcare dataset

Where does MIMIC Dataset come from?
Beth Israel Deaconess Medical Center Emergency Room
Boston, MA

www.sirisharambhatla.com
Whose Health Matters in Healthcare Models? Understanding Data Bias for Healthcare Equity

Closer look at the MIMIC III/IV Dataset: the most popular healthcare dataset

Where does MIMIC Dataset come from?

Beth Israel Deaconess Medical Center Emergency Room
Boston, MA

Where is MIMIC being used?

www.sirisharambhatla.com
Whose Health Matters in Healthcare Models? Understanding Data Bias for Healthcare Equity

Closer look at the MIMIC III/IV Dataset: the most popular healthcare dataset

Where does MIMIC Dataset come from?

Beth Israel Deaconess Medical Center Emergency Room
Boston, MA

Where is MIMIC being used?

Who gets Admitted in Emergency Department (ED)?

www.sirisharambhatla.com
Whose Health Matters in Healthcare Models? Understanding Data Bias for Healthcare Equity

Closer look at the MIMIC III/IV Dataset: the most popular healthcare dataset

Where does MIMIC Dataset come from?

Where is MIMIC being used?

Who gets Admitted in Emergency Department (ED)?

In-hospital Mortality

Beth Israel Deaconess Medical Center Emergency Room
Boston, MA

www.sirisharambhatla.com
Trustworthy and Fair AI Modelling in Healthcare

Whose Health Matters in Healthcare Models? Understanding Data Bias for Healthcare Equity

Closer look at the MIMIC III/IV Dataset: the most popular healthcare dataset

Where does MIMIC Dataset come from?

Beth Israel Deaconess Medical Center Emergency Room
Boston, MA

Where is MIMIC being used?

Data Matters: Models trained on data naively may not work well on all demographics or in new contexts!

Who gets Admitted in Emergency Department (ED)?

In-hospital Mortality

www.sirisharambhatla.com
So, what needs to happen to assist healthcare workers and make Canada “AI Ready”?
Steps to make Canada “AI Ready”
Steps to make Canada “AI Ready”

• **All data is not created equal.** Results on US data may not be directly transferable. We need to leverage Canadian data to make an impact.
Steps to make Canada “AI Ready”

- **All data is not created equal.** Results on US data may not be directly transferable. We need to leverage Canadian data to make an impact.

- **No data. No AI/ML.** Data is a the pre-requisite for any kind of Machine Learning. Need to collect, and know what to collect!
Steps to make Canada “AI Ready”

• **All data is not created equal.** Results on US data may not be directly transferable. We need to leverage Canadian data to make an impact.

• **No data. No AI/ML.** Data is a the pre-requisite for any kind of Machine Learning. Need to collect, and know what to collect!

• **Annotating healthcare data is expensive:** require doctor/surgeon’s time, need to identify what to annotate.
Steps to make Canada “AI Ready”

- **All data is not created equal.** Results on US data may not be directly transferable. We need to leverage Canadian data to make an impact.

- **No data. No AI/ML.** Data is a the pre-requisite for any kind of Machine Learning. Need to collect, and know what to collect!

- **Annotating healthcare data is expensive:** require doctor/surgeon’s time, need to identify what to annotate.

- **Reality is Often Nuanced.** Doctor/surgeon’s/medical professional’s opinion are subjective, and we have to live with this inherent ambiguity
Steps to make Canada “AI Ready”

- **All data is not created equal.** Results on US data may not be directly transferable. We need to leverage Canadian data to make an impact.

- **No data. No AI/ML.** Data is a the pre-requisite for any kind of Machine Learning. Need to collect, and know what to collect!

- **Annotating healthcare data is expensive:** require doctor/surgeon’s time, need to identify what to annotate.

- **Reality is Often Nuanced.** Doctor/surgeon’s/medical professional’s opinion are subjective, and we have to live with this inherent ambiguity

- **We are in fact never done model training.** The AI/ML model needs to be monitored and continuously trained on new data to be reliable.

Recommendations

www.sirisharambhatla.com
Steps to make Canada “AI Ready”

- **All data is not created equal.** Results on US data may not be directly transferable. We need to leverage Canadian data to make an impact.

- **No data. No AI/ML.** Data is a the pre-requisite for any kind of Machine Learning. Need to collect, and know what to collect!

- **Annotating healthcare data is expensive:** require doctor/surgeon’s time, need to identify what to annotate.

- **Reality is Often Nuanced.** Doctor/surgeon’s/medical professional’s opinion are subjective, and we have to live with this inherent ambiguity.

- **We are in fact never done model training.** The AI/ML model needs to be monitored and continuously trained on new data to be reliable.

- **Need to collect demographic information.** AI/ML models learn from historical data, and can reinforce any past biases. We need to collect demographic information to understand these biases, and use these to improve predictions while preserving privacy. We can’t fix what we don’t know!
Steps to make Canada “AI Ready”

Recommendations
Steps to make Canada “AI Ready”

- **ML infrastructure**: AI/ML model training requires specialized compute, and researchers and hospital need strategic support in this area; It is impractical that everyone builds this infrastructure independently.
Steps to make Canada “AI Ready”

• **ML infrastructure**: AI/ML model training requires specialized compute, and researchers and hospital need strategic support in this area; It is impractical that everyone builds this infrastructure independently.

• **It takes a village.** Moreover, in real-world, setting-up the infrastructure for ML requires coordination between a number of departments. Lack of knowledge leads to inaction.
Steps to make Canada “AI Ready”

• **ML infrastructure**: AI/ML model training requires specialized compute, and researchers and hospital need strategic support in this area; It is impractical that everyone builds this infrastructure independently.

• **It takes a village.** Moreover, in real-world, setting-up the infrastructure for ML requires coordination between a number of departments. Lack of knowledge leads to inaction.

• **Privacy and Cybersecurity.** Health data is extremely sensitive and needs to be protected. A lack of knowledge about how to effectively achieve these goals can be counterproductive.
Steps to make Canada “AI Ready”

- **ML infrastructure**: AI/ML model training requires specialized compute, and researchers and hospital need strategic support in this area; It is impractical that everyone builds this infrastructure independently.

- **It takes a village.** Moreover, in real-world, setting-up the infrastructure for ML requires coordination between a number of departments. Lack of knowledge leads to inaction.

- **Privacy and Cybersecurity.** Health data is extremely sensitive and needs to be protected. A lack of knowledge about how to effectively achieve these goals can be counterproductive.

- **Need for interoperable blueprint for hospitals and health systems.** A standard and unified way of recording various types of patient information is absolutely important. Hospitals need a clear path so that they can reduce their overhead.
Steps to make Canada “AI Ready”

- **ML infrastructure**: AI/ML model training requires specialized compute, and researchers and hospital need strategic support in this area; It is impractical that everyone builds this infrastructure independently.

- **It takes a village**: Moreover, in real-world, setting-up the infrastructure for ML requires coordination between a number of departments. Lack of knowledge leads to inaction.

- **Privacy and Cybersecurity**: Health data is extremely sensitive and needs to be protected. A lack of knowledge about how to effectively achieve these goals can be counterproductive.

- **Need for interoperable blueprint for hospitals and health systems**: A standard and unified way of recording various types of patient information is absolutely important. Hospitals need a clear path so that they can reduce their overhead.
Steps to make Canada “AI Ready”

- **ML infrastructure**: AI/ML model training requires specialized compute, and researchers and hospital need strategic support in this area; It is impractical that everyone builds this infrastructure independently.

- **It takes a village.** Moreover, in real-world, setting-up the infrastructure for ML requires coordination between a number of departments. Lack of knowledge leads to inaction.

- **Privacy and Cybersecurity.** Health data is extremely sensitive and needs to be protected. A lack of knowledge about how to effectively achieve these goals can be counterproductive.

- **Need for interoperable blueprint for hospitals and health systems.** A standard and unified way of recording various types of patient information is absolutely important. Hospitals need a clear path so that they can reduce their overhead.

- **Sharing is caring.** Likewise, hospitals will have to come together and share their data to power these models. Otherwise silos created by data inequity will lead to worse outcomes for our far-off communities who need these interventions the most!
IT'S NOT JUST ME!
Conversations in the context of managing health data have already set the stage!
Challenges outlined by the pan-Canadian Health Data Strategy EAG
Challenges outlined by the pan-Canadian Health Data Strategy EAG

The pan-Canadian Health Data Strategy: Expert Advisory Group Reports and summaries

Chair

▼ Dr. Vivek Goel

Health Data Champion, University of Waterloo

Reports

Expert Advisory Group Report 3: Toward a world-class health data system (PDF Version)
Expert Advisory Group Report 2: Building Canada’s Health Data Foundation (PDF Version)
Expert Advisory Group Report 1: Charting a Path toward Ambition (PDF Version)
Challenges outlined by the pan-Canadian Health Data Strategy EAG

THE PUBLIC are frustrated by their lack of access to their personal health information, requiring access to dozens of online portals to achieve only a partial view of their health records with no insight into how they can take action to improve their own health. They are also challenged to understand how well the health sector is working and how to hold decision-makers accountable for its improvement.

FIRST NATIONS, INUIT, AND MÉTIS suffer from health systems that perpetuate and contribute to existing structured social inequities and have difficulty exercising their right to self-determination. Also applies to many diverse communities across Canada.

PUBLIC HEALTH does not have ready access to all of the data it needs to provide timely, precise, and actionable insights, in particular during public health emergencies.
Challenges outlined by the pan-Canadian Health Data Strategy EAG

FIRST NATIONS, INUIT, AND MÉTIS suffer from health systems that perpetuate and contribute to existing structured social inequities and have difficulty exercising their right to self-determination. Also applies to many diverse communities across Canada.

PUBLIC HEALTH does not have ready access to all of the data it needs to provide timely, precise, and actionable insights, in particular during public health emergencies.

CLINICIANS are challenged to incorporate new requirements for data collection while receiving few or no benefits in reduced workload nor seeing better outcomes for their patients, contributing to burnout.

HEALTH SECTOR MANAGEMENT is frustrated and uncertain as to how to address data shortfalls despite serial attempts to do so, leading to below average results in health outcomes and above average costs compared to other G7 countries, to the extent these metrics can be reliably compared.

RESEARCHERS spend significant time obtaining data access and sharing approvals and are unable to complete...
Challenges outlined by the pan-Canadian Health Data Strategy EAG

PUBLIC HEALTH does not have ready access to all of the data it needs to provide timely, precise, and actionable insights, in particular during public health emergencies.

CLINICIANS are challenged to incorporate new requirements for data collection while receiving few or no benefits in reduced workload nor seeing better outcomes for their patients, contributing to burnout.

HEALTH SECTOR MANAGEMENT is frustrated and uncertain as to how to address data shortfalls despite serial attempts to do so, leading to below average results in health outcomes and above average costs compared to other G7 countries, to the extent these metrics can be reliably compared.

RESEARCHERS spend significant time obtaining data access and sharing approvals and are unable to complete timely and appropriately powered studies to improve the health of Canadians.

INNOVATORS have great ideas that cannot be implemented or scaled due to fragmentation in the health data ecosystem.
Challenges outlined by the pan-Canadian Health Data Strategy EAG

- THE PUBLIC are frustrated by their lack of access to their personal health information, requiring access to dozens of online portals to achieve only a partial view of their health records with no insight into how they can take action to improve their own health. They are also challenged to understand how well the health sector is working and how to hold decision-makers accountable for its improvement.

- FIRST NATIONS, INUIT, AND MÉTIS suffer from health systems that perpetuate and contribute to existing structured social inequalities and have difficulty exercising their right to self-determination. Also applies to many diverse communities across Canada.

- PUBLIC HEALTH does not have ready access to all of the data it needs to provide timely, precise, and actionable insights, in particular during public health emergencies.

- CLINICIANS are challenged to incorporate new requirements for data collection while receiving few or no benefits in reduced workload or seeing better outcomes for their patients, contributing to burnout.

- HEALTH SECTOR MANAGEMENT is frustrated and uncertain as to how to address data shortfalls despite serial attempts to do so, leading to below average results in health outcomes and above average costs compared to other G7 countries, to the extent these metrics can be reliably compared.

- RESEARCHERS spend significant time obtaining data access and sharing approvals and are unable to complete timely and appropriately powered studies to improve the health of Canadians.

- INNOVATORS have great ideas that cannot be implemented or scaled due to fragmentation in the health data ecosystem.

The pan-Canadian Health Data Strategy: Expert Advisory Group Reports and summaries

Chair

Dr. Vivek Goel
Health Data Champion, University of Waterloo

Reports

- Expert Advisory Group Report 3: Toward a world-class health data system (PDF Version)
- Expert Advisory Group Report 2: Building Canada’s Health Data Foundation (PDF Version)
- Expert Advisory Group Report 1: Charting a Path toward Ambition (PDF Version)

www.sirisharambhatla.com
Challenges outlined by the pan-Canadian Health Data Strategy EAG

- **The Public** are frustrated by their lack of access to their personal health information, requiring access to dozens of online portals to achieve only a partial view of their health records with no insight into how they can take action to improve their own health. They are also challenged to understand how well the health sector is working and how to hold decision-makers accountable for its improvement.

- **First Nations, Inuit, and Métis** suffer from health systems that perpetuate and contribute to existing structured social inequalities and have difficulty exercising their right to self-determination. Also applies to many diverse communities across Canada.

- **Public Health** does not have ready access to all of the data it needs to provide timely, precise, and actionable insights, in particular during public health emergencies.

- **Clinicians** are challenged to incorporate new requirements for data collection while receiving few or no benefits in reduced workload or seeing better outcomes for their patients, contributing to burnout.

- **Health Sector Management** is frustrated and uncertain as to how to address data shortfalls despite serial attempts to do so, leading to below average results in health outcomes and above average costs compared to other G7 countries, to the extent these metrics can be reliably compared.

- **Researchers** spend significant time obtaining data access and sharing approvals and are unable to complete timely and appropriately powered studies to improve the health of Canadians.

- **Innovators** have great ideas that cannot be implemented or scaled due to fragmentation in the health data ecosystem.

To learn more about this 2022 report and its recommendations:
Tackle urgent future challenges and make Canadian Healthcare “AI Ready”
Tackle urgent future challenges and make Canadian Healthcare “AI Ready”

Human-Centered AI
Tackle urgent future challenges and make Canadian Healthcare “AI Ready”

Human-Centered AI
Thank You!

www.sirisharambhatla.com