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United Department of

Economic and

Nations | social Affairs
World Population Ageing, 2019

“The number of older persons is projected
to double to 1.5 billion by 2050.”




Future Healthcare Challenges of Canada and the World

Government Gouvernement
of Canada du Canada

i

Action for Seniors report, Fall 2014

In 2014, about 15% of Canadians were
above the age of 65, this percentage is set
to rise to 25% by 2040.



Future Healthcare Challenges of Canada and the World

Canada’s nursing shortage at a glance, 2022

The nursing shortage, pre-pandemic

Even as our population ages and our health needs become more
acute, growth in the regulated health workforce has largely
remained stagnant.

A 2018 analysis predicted a shortage of 117,600 nurses in Canada
by 2030 (Scheffler & Arnold, 2018). According to 2020 data, a third
of registered nurses who provide direct care are 50 or older and
nearing retirement (Registered Nurses' Association of Ontario,
2021). A 2019 survey of nurses conducted by the CFNU with
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Al-powered Healthcare Technologies can
address Urgent Healthcare Needs

How can we leverage it for primary healthcare?
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Al for Forecasting Liver Transplantation Waitlist Outcomes

Al for Healthcare

Deep Learning for Liver Transplantation

[Punchhi, Sun, Rambhatla, Bhat, American Association for the Study of Liver Diseases (AASLD), 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, Canadian Donation and Transplantation Research Program (CDTRP), 2022] Selected for Oral Presentation
Punchhi, Sun, Rambhatla, Bhat, /LTS Annual Congress, 2022] Selected for Oral Presentation

Punchhi, Sun, Rambhatla, Bhat, Aimera Transplant Centre Research Day, 2022]
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Deep Learning for Liver Transplantation

[Punchhi, Sun, Rambhatla, Bhat, American Association for the Study of Liver Diseases (AASLD), 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, Canadian Donation and Transplantation Research Program (CDTRP), 2022] Selected for Oral Presentation
Punchhi, Sun, Rambhatla, Bhat, /LTS Annual Congress, 2022] Selected for Oral Presentation

Punchhi, Sun, Rambhatla, Bhat, Aimera Transplant Centre Research Day, 2022]

~ Predicting Future Trajectories of Waitlisted Patients Explaining Predicted Outcomes
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Al for Forecasting Liver Transplantation Waitlist Outcomes

Al for Healthcare

Deep Learning for Liver Transplantation

[Punchhi, Sun, Rambhatla, Bhat, American Association for the Study of Liver Diseases (AASLD), 2022] Selected for Oral Presentation
[Punchhi, Sun, Rambhatla, Bhat, Canadian Donation and Transplantation Research Program (CDTRP), 2022] Selected for Oral Presentation
Punchhi, Sun, Rambhatla, Bhat, /LTS Annual Congress, 2022] Selected for Oral Presentation

Punchhi, Sun, Rambhatla, Bhat, Aimera Transplant Centre Research Day, 2022]

~ Predicting Future Trajectories of Waitlisted Patients Explaining Predicted Outcomes

( Using DeepNASH to Predict NASH patient trajectories on the Liver Transplant Waitlist

1. NASH Patient Variable Extraction 2. DeepNASH Neural Network 3. Prediction 4. Clinician Insights

Clinical interpretation

Gender F

Age 65 _@_) Death Death o High risk of Unlikely to attract an organ offer
‘ MEz(iD 49 Event Event . (1) death soon, measures must be taken to
Patient Sublayer Sublayer —> Patient Low risk of reduce mortality, can seek living
a l.e o . transplant . donor options
: J : :
Gend M . .
aneer — Shared High risk .Of death Likely to undergo transplant
MELD 36 ~ Connected Outputy, 170, — > Patient (N=1)  High risk of soon, measures must be taken to
Patient ™V Sublayer Y transplant reduce mortality
A Gender l Transolant Transolant Low risk .Of death Likely stable condition, may
Age -— P P - Patient® Low risk of advise patient to seek living
JorpulT]) Dt Ll transplant -
Patient MELD &> Sublayer  Sublayer p donor options
F‘ Retrospective Model Performance:
DeenNASH Dashboard Competing Event Coherence Score
Upload .csv file with patient data to DeepNASH forecasts the trajectory perpredictons _ score — 1
. e S 48 /"l’ Zm:]_ /me
DeepNASH Dashboard of the NASH patient after waitlisting . . M
by predicting monthly risks of death o M is the number of patlept who have had
Step 1: Upload Data and transplant the event by time t

- At actual event

e - . Coherence
Download input template tlme t*, predlcted -

- : =1
Choose a file containing patient logs: 1 > DeepNASH | > & B I'lSk ()‘f aC‘tual ll,m
’/\/\/———‘/ event is higher Incoherence
: than the
: . tm =0

MMMMM competing event

You need to upload a csv file.

D d drop file h
! fag anc.crop e nere Browse files

i Limit 200MB per file
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Predicting Burn Surgical Candidacy to Assist Clinicians

Burn Surgical Candidacy Prediction using Deep Learning

[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang*, Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award
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Predicting Burn Surgical Candidacy to Assist Clinicians

Burn Surgical Candidacy Prediction using Deep Learning

[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang*, Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award
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Burn Surgical Candidacy Prediction using Deep Learning

[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang*, Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award
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Burn Surgical Candidacy Prediction using Deep Learning

[Rambhatla*, Huang*, Trinh, Zhang, Liu, Gillenwater, AMIA Symposium, 2021]
[Huang , Rambhatla*, Trinh, Zhang, Liu, Gillenwater, Plastic Surgery, 2021] Outstanding Presentation Award
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Robot Assisted Surgery Skill Assessment for Improving Surgical Outcomes

‘Hung, Rambhatla, Pachauri, Sanford, Liu, American Urology Association, 2021]
‘Hung, Rambhatla, Sanford, Pachauri, Vanstrum, Nguyen Liu, Journal gf Surgery, 2021]
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Robot Assisted Surgery Skill Assessment for Improving Surgical Outcomes

‘Hung, Rambhatla, Pachauri, Sanford, Liu, American Urology Association, 2021]
‘Hung, Rambhatla, Sanford, Pachauri, Vanstrum, Nguyen Liu, Journal gf Surgery, 2021]
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Robot Assisted Surgery Skill Assessment for Improving Surgical Outcomes
'Hung, Rambhatla, Pachauri, Sanford, Liu, American Urology Association, 2021]
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> JMIR Med Educ. 2023 Feb 8;9:e45312. doi: 10.2196/45312.

How Does ChatGPT Perform on the United States
Medical Licensing Examination? The Implications of
Large Language Models for Medical Education and
Knowledge Assessment

Aidan Gilson ' 2, Conrad W Safranek !, Thomas Huang 2, Vimig Socrates ' 3, Ling Chi ',
Richard Andrew Taylor # 1 2, David Chartash # 1 4

Affiliations + expand
PMID: 36753318 PMCID: PMC9947764 DOI: 10.2196/45312
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> PLOS Digit Health. 2023 Feb 9;2(2):e0000198. doi: 10.1371/journal.pdig.0000198.
eCollection 2023 Feb.

Performance of ChatGPT on USMLE: Potential for Al-
assisted medical education using large language
models

Tiffany H Kung 1 2, Morgan Cheatham 2, Arielle Medenilla 7, Czarina Sillos !, Lorie De Leon ',

Camille Elepafio 7, Maria Madriaga !, Rimel Aggabao ', Giezel Diaz-Candido !, James Maningo !,

Victor Tseng 1 4

Affiliations + expand
PMID: 36812645 PMCID: PMC9931230 DOI: 10.1371/journal.pdig.0000198
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Original Investigation ONLINE FIRST) (FREE)
April 28, 2023

Comparing Physician and Artificial Intelli-
gence Chatbot Responses to Patient Ques-
tions Posted to a Public Social Media Fo-
rum

John W. Ayers, PhD, MA:2; Adam Poliak, PhD3; Mark Dredze, PhD%; et al

» Author Affiliations | Article Information
JAMA Intern Med. Published online April 28, 2023. doi:10.1001/jamainternmed.2023.1838

www.Sslrisharambhatla.com


http://www.sirisharambhatla.com

| arge Language Models for Training and Patient Support

www.silirisharambhatla.com


http://www.sirisharambhatla.com

Are Large Language Models (LLMs) ready to
be used for training and helping patients?


http://www.sirisharambhatla.com

New wave of misinformation in the era of ChatGPT

Critical Analysis of
LLMs for Healthcare
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New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barn?rd, Sitte’lrt, Rambhatla, Undi Re_view, 2023]
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New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnarg, Sitte’lrt, Rambhatla, Undi Re_view, 2023]
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New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnarg, Sitte’lrt, Rambhatla, Undi Re_view, 2023]
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New wave of misinformation in the era of ChatGPT

Self-Diagnosis and Large Language Models (LLMs): A New Front for Medical Misinformation
[Barnard, Sitte(lrt, Rambhatla, Under Review, 2023]
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U People 'dying unnecessarily' because of racial bias
8 in Canada’s health-care system, researcher says

N.W.T. Health Minister Glen Abernethy says department plans cultural sensitivity

A
- training
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| ‘!' 'Emily Blake - CBC News - Posted: Jul 03, 2018 10:34 AM EDT | Last Updated: July 3, 2018



Revisiting the Future Healthcare Challenges of Canada and the World...

Ad CBJ I
O B s,
0 | mCai
fa) Canadian Journal of Cardiology
- E AR Volume 38, Issue 12, December 2022, Pages 1865-1880
ELSEVIER
Review

'Sex and Gender Bias as a Mechanistic
Determinant of Cardiovascular Disease Qutcomes |

Isabel Kim MD 2, Thalia S. Field MD, MHSc P, Darryl Wan MD €, Karin Humphries MBA, DSc ®
' Tara Sedlak MD, FRCPC, MBA? & X




Revisiting the Future Healthcare Challenges of Canada and the World...

2V United 7 NN\, UNITED NATIONS
%)’ Nati \\\Y/ HUMAN RIGHTS
N~ e~ ——~ - Ny B B NS B NG B A VA B ~F ad oD = a |Ons W” OFFICE OF THE HIGH COMMISSIONER

The Right to Health and Indigenous Peoples, with
a Focus on Children and Youth: report, 2016

“... racism including systemic racism within the
healthcare system is a significant contributor to
Indigenous peoples’ lower health outcomes.
Structural racism is evident throughout the
Canadian health care system.”
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Al-powered Healthcare Technologies can
address our Urgent Healthcare Needs

BUT

they can also Reinforce Existing Biases

AND
there is no way to know the impact of these protected
attributes iIf we don’t adequately record them!
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No data. No AlI/ML. Data is a the pre-requisite for any kind of Machine Learning. Need to collect,
and know what to collect!

Annotating healthcare data is expensive: require doctor/surgeon’s time, need to identify what to
annotate.

Reality is Often Nuanced. Doctor/surgeon’s/medical professional’s opinion are subjective, and we
have to live with this inherent ambiguity

We are in fact never done model training. The Al/ML model needs to be monitored and
continuously trained on new data to be reliable.

Need to collect demographic information. Al/ML models learn from historical data, and can
reinforce any past biases. We need to collect demographic information to understand these biases,
and use these to improve predictions while preserving privacy. We can’t fix what we don’t know!
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hospital need strategic support in this area; It is impractical that everyone builds this
infrastructure independently.

It takes a village. Moreover, in real-world, setting-up the infrastructure for ML requires
coordination between a number of departments. Lack of knowledge leads to inaction.

Privacy and Cybersecurity. Health data is extremely sensitive and needs to be protected.
A lack of knowledge about how to effectively achieve these goals can be counterproductive.

Need for interoperable blueprint for hospitals and health systems. A standard and
unified way of recording various types of patient information is absolutely important.
Hospitals need a clear path so that they can reduce their overhead.
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Steps to make Canada “Al Ready”

ML infrastructure: Al/ML model training requires specialized compute, and researchers and
hospital need strategic support in this area; It is impractical that everyone builds this
infrastructure independently.

* |t takes a village. Moreover, in real-world, setting-up the infrastructure for ML requires
coordination between a number of departments. Lack of knowledge leads to inaction.

Privacy and Cybersecurity. Health data is extremely sensitive and needs to be protected.
A lack of knowledge about how to effectively achieve these goals can be counterproductive.

* Need for interoperable blueprint for hospitals and health systems. A standard and
unified way of recording various types of patient information is absolutely important.
Hospitals need a clear path so that they can reduce their overhead.

Recommendations

 Sharing is caring. Likewise, hospitals will have to come together and share their data to
power these models. Otherwise silos created by data inequity will lead to worse outcomes
for our far-off communities who need these interventions the most!
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Conversations in the context of managing health
data have already set the stage!
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I * I Government Gouvernement
of Canada du Canada

The pan-Canadian Health Data Strategy:
Expert Advisory Group Reports and summaries

Chair

v Dr. Vivek Goel

Health Data Champion, University of Waterloo

Reports
Expert Advisory Group Report 3: Toward a world-class health data system (PDF Version)

Expert Advisory Group Report 2: Building Canada's Health Data Foundation (PDF Version)

Expert Advisory Group Report 1: Charting a Path toward Ambition (PDF Version)
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Challenges outlined by the pan-Canadian Health Data Strategy EAG

THE PUBLIC are frustrated by their lack of access to their personal health information, requiring access to dozens of online
portals to achieve only a partial view of their health records with no insight into how they can take action to improve their

own health. They are also challenged to understand how well the health sector is working and how to hold decision-makers
accountable for its improvement.

FIRST NATIONS, INUIT, AND METIS suffer from health systems that perpetuate and contribute to existing

structured social inequities and have difficulty exercising their right to self-determination. Also applies to many
diverse communities across Canada.

PUBLIC HEALTH does not have ready access to all of the data it needs to provide timely, precise, and
actionable insights, in particular during public health emergencies.
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own health. They are also challenged to understand how well the health sector is working and how to hold decision-makers

accountable for its improvement.

FIRST NATIONS, INUIT, AND METIS suffer from health systems that perpetuate and contribute to existing
structured social inequities and have difficulty exercising their right to self-determination. Also applies to many
diverse communities across Canada.

PUBLIC HEALTH does not have ready access to all of the data it needs to provide timely, precise, and
actionable insights, in particular during public health emergencies.

HEALTH SECTOR MANAGEMENT is frustrated and uncertain as to how to address data shortfalls despite
serial attempts to do so, leading to below average results in health outcomes and above average costs
compared to other G7 countries, to the extent these metrics can be reliably compared.

CLINICIANS are challenged to incorporate new requirements for data collection while receiving few or no
benefits in reduced workload nor seeing better outcomes for their patients, contributing to burnout.

RESEARCHERS spend significant time obtaining data access and sharing approvals and are unabie o complete rambhatla.com
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CLINICIANS are challenged to incorporate new requirements for data collection while receiving few or no
benefits in reduced workload nor seeing better outcomes for their patients, contributing to burnout.

HEALTH SECTOR MANAGEMENT is frustrated and uncertain as to how to address data shortfalls despite
serial attempts to do so, leading to below average results in health outcomes and above average costs
compared to other G7 countries, to the extent these metrics can be reliably compared.

RESEARCHERS spend significant time obtaining data access and sharing approvals and are unable to complete
timely and appropriately powered studies to improve the health of Canadians.

INNOVATORS have great ideas that cannot be implemented or scaled due to fragmentation in the health data ecosystem.
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To learn more about this 2022 report and its
recommendations:
https://www.canada.ca/en/public-health/
corporate/mandate/about-agency/external-
advisory-bodies/list/pan-canadian-health-
data-strategy-reports-summaries.html
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