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AI-powered Healthcare Technologies can 
address Urgent Healthcare Needs

How can we leverage it for primary healthcare?
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1. NASH Patient Variable Extraction 2. DeepNASH Neural Network 3. Prediction 4. Clinician Insights

Using DeepNASH to Predict NASH patient trajectories on the Liver Transplant Waitlist
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At actual event

time , predicted
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Transplant
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We find that 
ChatGPT is 

optimistic when 
there is higher risk, 

while it is more 
cautious in cases 

where that 
optimism is 
warranted!
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World Population Ageing, 2019
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Canadian health care system.”

The Right to Health and Indigenous Peoples, with 
a Focus on Children and Youth: report, 2016

AI-powered Healthcare Technologies can 
address our Urgent Healthcare Needs

BUT 

they can also Reinforce Existing Biases

AND  
there is no way to know the impact of these protected 

attributes if we don’t adequately record them!
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Closer look at the MIMIC III/IV Dataset: the most popular healthcare dataset

Where does MIMIC Dataset come from? Where is MIMIC being used?

Who gets Admitted in Emergency Department (ED)? In-hospital Mortality

Boston, MA

Data Matters: Models 
trained on data naively may 

not work well on all 
demographics or in new 
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So, what needs to happen to assist healthcare 
workers and make Canada “AI Ready” ?
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• We are in fact never done model training. The AI/ML model needs to be monitored and 
continuously trained on new data to be reliable.

• Need to collect demographic information. AI/ML models learn from historical data, and can 
reinforce any past biases. We need to collect demographic information to understand these biases, 
and use these to improve predictions while preserving privacy. We can’t fix what we don’t know!
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• Need for interoperable blueprint for hospitals and health systems. A standard and 
unified way of recording various types of patient information is absolutely important. 
Hospitals need a clear path so that they can reduce their overhead.

• Sharing is caring. Likewise, hospitals will have to come together and share their data to 
power these models. Otherwise silos created by data inequity will lead to worse outcomes 
for our far-off communities who need these interventions the most!
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https://www.canada.ca/en/public-health/
corporate/mandate/about-agency/external-
advisory-bodies/list/pan-canadian-health-
data-strategy-reports-summaries.html

To learn more about this 2022 report and its 
recommendations: 

Challenges outlined by the pan-Canadian Health Data Strategy EAG
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