Statistical Learning - Classification

STAT 441/841
CM 763
Ali Ghodsi
Department of Statistics
and
Actuarial Science
University of Waterloo
aghodsib@uwaterloo.ca
Two Paradigms

Classical Statistics
• Infer information from small data sets (Not enough data)

Machine Learning
• Infer information from large data sets (Too many data)
We are drowning in information and starving for knowledge.

Rutherford D. Roger
Fundamental problems

• Classification

• Regression

• Clustering

• Representation Learning (Feature extraction, Manifold learning, Density estimation)
Applications

Machine Learning is most useful when the structure of the task is not well understood but can be characterized by a dataset with strong statistical regularity.

- Search and recommendation (e.g. Google, Amazon)
- Automatic speech recognition and speaker verification
- Text parsing
- Face identification
- Tracking objects in video
- Financial prediction, fraud detection (e.g. credit cards)
- Medical diagnosis
Applications

Machine Learning is most useful when the structure of the task is not well understood but can be characterized by a dataset with strong statistical regularity.

• Search and recommendation (e.g. Google, Amazon)
• Automatic speech recognition and speaker verification
• Text parsing
• Face identification
• Tracking objects in video
• Financial prediction, fraud detection (e.g. credit cards)
• Medical diagnosis
More Applications

More science and technology applications:

- handwritten identification
- drug discovery
 (to identify the biological activity of chemical compounds using features describing the chemical structures)
- Gene expression analysis (thousands of features with only dozens of observations)
Tasks

• Supervised Learning: given examples of inputs and corresponding desired outputs, predict outputs on future inputs.
 e.g.: classification, regression

• Unsupervised Learning: given only inputs, automatically discover representations, features, structure, etc.
 e.g.: clustering, dimensionality reduction, feature extraction
Classification:
Predicting a discrete random variable Y from another random variable X.
Classification

Consider data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where

\[
X_i = (X_{i1}, \ldots, X_{id}) \in \mathcal{X} \subset \mathbb{R}^d
\]

is a \(d\)-dimensional vector and \(Y_i\) takes values in some finite set \(\mathcal{Y}\). A classification rule is a function \(h : \mathcal{X} \rightarrow \mathcal{Y}\). When we observe a new \(X\), we predict \(Y\) to be \(h(X)\).
Data
Features (X)

(6, 4, 4.5)
(7, 4.5, 5)
(6, 3, 3.5)
(4.5, 4, 4.5)
(1.5, 8, 2)
(1.5, 7, 2.5)
Data Representation
Data Representation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>`</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>`</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Representation

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Features and labels

<table>
<thead>
<tr>
<th>Features</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6, 4, 4.5)</td>
<td>Green Pepper</td>
</tr>
<tr>
<td>(7, 4.5, 5)</td>
<td>Green Pepper</td>
</tr>
<tr>
<td>(6, 3, 3.5)</td>
<td>Red Pepper</td>
</tr>
<tr>
<td>(4.5, 4, 4.5)</td>
<td>Red Pepper</td>
</tr>
<tr>
<td>(1.5, 8, 2)</td>
<td>Hot Pepper</td>
</tr>
<tr>
<td>(1.5, 7, 2.5)</td>
<td>Hot Pepper</td>
</tr>
</tbody>
</table>
Features and labels

<table>
<thead>
<tr>
<th>Objects</th>
<th>Features (X)</th>
<th>Labels (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Peppers</td>
<td>(6, 4, 4.5)</td>
<td>Green Pepper</td>
</tr>
<tr>
<td>Green Peppers</td>
<td>(7, 4.5, 5)</td>
<td>Green Pepper</td>
</tr>
<tr>
<td>Red Peppers</td>
<td>(6, 3, 3.5)</td>
<td>Red Pepper</td>
</tr>
<tr>
<td>Red Peppers</td>
<td>(4.5, 4, 4.5)</td>
<td>Red Pepper</td>
</tr>
<tr>
<td>Hot Peppers</td>
<td>(1.5, 8, 2)</td>
<td>Hot Pepper</td>
</tr>
<tr>
<td>Hot Peppers</td>
<td>(1.5, 7, 2.5)</td>
<td>Hot Pepper</td>
</tr>
</tbody>
</table>
Classification (New point)

(7, 4, 4.5) → h(7, 4, 4.5) → ?
Classification (New point)

\[(5, 3, 4.5)\]
Classification (New point)

(6, 4, 4.5)

h(6, 4, 4.5) → ?
Classification (New point)
General Procedure

1. Model (Hypothesis class)
 \[f(x) \in \mathcal{F} \text{ (Hypothesis class)} \]

2. Score Criterion
 Population: \[S(f) = E_{x,y} L(\mathbf{y}, f(x)) \]
 Sample: \[\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) \]

3. Search Strategy
 \[\hat{f} = \arg \min_{f \in \mathcal{F}} S(f) \]
Model
(Hypothesis class)

- Linear (Perceptron, SVM, Logistic regression)
- Matrices
- Vectors
- Feedforward Deep Networks
- Convolutional Networks
- Sequence Modeling: Recurrent and Recursive Nets
- Restricted Boltzmann Machines
- Deep Generative Models
- Auto-Encoders
Score criterion

Cost for error: $L(y, F)$

$L(y, F) = |y - F|, (y - F)^2, \quad y \in \mathbb{R}$

$y \in \{-1, 1\}$:

$L(y, F) = \log(1 + e^{-yF})$ \text{ logistic reg.}$

$L(y, F) = \max(0, 1 - yF)$ \text{ SVM}$

Many many more
Face Identification
Face Identification
Classification
Classification
Classification
Classification
Digit Recognition

The Matlab data file 2_3.mat contains 200 handwritten 2’s and 3’s images scanned from postal envelopes, like the ones shown below.

![Digit Recognition Images](image)

Figure 1:

These images are stored as a 64×400 matrix. Each column of the matrix is an 8×8 greyscale image (the pixel intensities are between 0 and 1).
A canonical dimensionality reduction problem from visual perception. The input consists of a sequence of 64-dimensional vectors, representing the brightness values of 8 pixel by 8 pixel images of digits 2 and 3. Applied to \(n = 400 \) raw images. A two-dimensional projection is shown, with the original input images.
t-SNE: most images of faces were clustered in the bottom. Most images of airplanes were clustered on the right.
Images of faces mapped into the embedding space described by the first two coordinates of LLE, using $K = 12$ nearest neighbors. Representative faces are shown next to circled points at different points of the space. The bottom images correspond to points along the top-right path, illustrating one particular mode of variability in pose and expression. The data set had a total of $N = 1965$ grayscale images at 20×28 resolution ($D = 560$).
Different Features
Glasses vs. No Glasses
Beard vs. No Beard
Beard Distinction

MDS and Equivalence-Informed MDS with bearded/unbearded distinction (all class-equivalent pairs)
MDS and Equivalence-Informed MDS with glasses/no glasses distinction (all class-equivalent pairs)
Multiple-Attribute Metric
AlchemyVision’s Face Detection and Recognition service is able to distinguish between look-alikes such as actor Will Ferrell and Red Hot Chili Peppers’ drummer, Chad Smith.
Fraud Detection

PayPal is using deep learning via H2O, an open source predictive analytics platform, to help prevent fraudulent purchases and payment transactions.
Diagnose Diseases

New startup Enlitic is using deep learning to process X-rays, MRIs, and other medical images to help doctors diagnose and treat complicated diseases. Enlitic uses deep learning algorithms that “are suited to discovering the subtle patterns that characterize disease profiles.”
There is no required textbook for the class. Some classic papers will be assigned as readings.
• Three recommended books that cover the similar material are:
 Hastie, Tibshirani, Friedman
 Elements of Statistical Learning.
 Bishop
 Pattern Recognition and Machine Learning.
 Murphy
 Machine Learning: a Probabilistic Perspective
Course Evaluation (tentative)

- Four assignment 40%
- Two data challenges 20%
- Group Project (up to 4)
 - Presentation 10%
 - Final report and ranking 30%
Project

• Final group project (presentation and reports up to 7 pages of PDF) are worth 40% of your final grade.
The basic types of projects

• A Kaggle completion. You may choose a competition from featured or research categories. Kaggle Competitions in other categories (in class, getting start or playground) are not eligible for the final project.
• Develop a new algorithm. In this case, you will need to demonstrate (theoretically and/or empirically) why your technique is better (or worse) than other algorithms.

Note: A negative result does not lose marks, as long as you followed proper theoretical and/or experimental techniques.
• Application of classification to some domain. This could either be your own research problem, or you could try reproducing results of someone else's paper.
The project is a chance to learn more about some sub-area of classification that you might be most interested in.

You may benefit more from implementing an algorithm and doing some simulations rather than trying to read and summarize some state-of-the-art papers.
• Final project reports will be checked by Turnitin (Plagiarism detection software).
Communication

• All communication should take place using the *Piazza* discussion board.

• Piazza is a good way to discuss and ask questions about the course materials, including assignments, in a public forum.
Communication

• It enables you to learn from the questions of others, and to avoid asking questions that have already been asked and answered.

• Students are expected to read Piazza on a regular basis.
Enrolling in Piazza

• You will be sent an invitation to your UW email address. It will include a link to a web page where you may complete the enrollment process.
Piazza Guidelines

• In any posts you make, do not give away any details on how to do any of the assignments. This could be construed as cheating, and you will be responsible as the poster.
Course Website

- We will mostly use Piazza for communication.

- Assignments and grades will be handled through Learn.

- Please log on frequently. You are responsible for being aware of all material, information and email messages found on Piazza and Learn.
Reading

• Journals: Neural Computation, JMLR, ML, IEEE PAMI
• Conferences: NIPS, UAI, ICML, AI-STATS, IJCAI, IJCNN
• Vision: CVPR, ECCV, SIGGRAPH
• Speech: EuroSpeech, ICSLP, ICASSP
• Online: citesser, google
• Books:
 – Elements of Statistical Learning, Hastie, Tibshirani, Friedman
 – Pattern Recognition and Machine Learning, Bishop
 – Pattern Classification, Duda, Hart, Strok
 – Machine Learning an Algorithmic Perspective, Marsland
Prerequisite

• Grads: none for STATS/CS/ECE/SYDE grad students, instructor permission otherwise

• Undergrads: CM 361/STAT 341 or (STAT 330 and 340)
Tentative topics

- Feature extraction
- Error rates and the Bayes classifier
- Gaussian and linear classifier
- Linear regression and logistic regression
- Neural networks
- Deep Learning
- Radial basis function networks
- Density estimation and Naive Bayes
- Trees
Tentative topics

- Assessing error rates and model selection
- Support vector machines
- Kernel methods
- k-nearest neighbors
- Bagging
- Boosting
- Semi-supervised learning for classification
- Metric learning for classification