
Action Respecting Embedding

Michael Bowling BOWLING@UALBERTA .CA

Department of Computing Science, University of Alberta, Edmonton AB, Canada

Ali Ghodsi AGHODSIB@CS.UWATERLOO.CA

School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Dana Wilkinson D3WILKIN @CS.UWATERLOO.CA

School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Abstract
Dimensionality reduction is the problem of find-
ing a low-dimensional representation of high-
dimensional input data. This paper examines
the case where additional information is known
about the data. In particular, we assume the data
are given in a sequence with action labels asso-
ciated with adjacent data points, such as might
come from a mobile robot. The goal is a variation
on dimensionality reduction, where the output
should be a representation of the input data that
is both low-dimensional and respects the actions
(i.e., actions correspond to simple transforma-
tions in the output representation). We show how
this variation on dimensionality reduction can be
solved with a semidefinite program. We evaluate
the technique in a synthetic, robot-inspired do-
main, demonstrating both qualitatively superior
representations, and quantitative improvements
on a data prediction task.

1. Introduction

Dimensionality reduction and manifold learning are pop-
ular topics in machine learning. Traditionally, lin-
ear dimensionality-reduction techniques, such as princi-
ple components analysis, have been used to find low-
dimensional linear subspaces in high-dimensional data.
Manifolds in natural data are rarely linear, however, leading
to a variety of research in discovering non-linear manifolds.

Historically, the two main ideas for discovering low-
dimensional manifolds in high-dimensional data have been
to find a mapping from the original space to a lower-

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

dimensional space that: (i) preserves pairwise distances,
e.g., multidimensional scaling (Cox & Cox, 2001); or
(ii) preserves mutual linear reconstruction ability,e.g.,
principle components analysis (Jolliffe, 1986). In each
case, globally optimal solutions are linear manifolds.
The more recent techniques for manifold discovery,e.g.,
Isomap (Tenenbaum et al., 2000), LLE (Saul & Roweis,
2003), and SDE (Weinberger & Saul, 2004b), are based on
these same two principles, with the generalization that the
new methods only seek low-dimensional representations
that locally preserve distances or linear reconstructions. In
this way, they avoid recovering globally linear solutions.

Although these techniques produce non-linear manifolds
in different ways, they all share one feature. All knowl-
edge about the input data, and therefore the desired low-
dimensional manifold, must be encoded in the similarity
function. Not all such knowledge can be so easily encoded.
Consider sensor readings, such as images, taken from a mo-
bile robot. The most natural representation of the robot’s
observations would be the robot’s pose (e.g., for a wheeled
robot:x, y andθ describing the robot’s position and orien-
tation), which allows the high-dimensional image data to
be described with only a few dimensions. This representa-
tion is desirable not only because it is low-dimensional, but
because within it the robot’s actions (e.g., forward and ro-
tation) can be described as simple transformations. This is
why the robot’s objective pose is such an ideal representa-
tion for robot planning and localization. There is no natural
way, though, to encode either the robot’s actions nor the de-
sire that the representation respect these actions through a
simple similarity function.

In this paper, we introduce a new algorithm called Action
Respecting Embedding (ARE) to address our variation on
traditional manifold learning. Specifically, we examine sit-
uations where the input data are given in sequence, along



with uninterpreted1 action labels that are associated with
adjacent pairs of data points. ARE finds a low-dimensional
representation of the input data where the actions are sim-
ple transformations in the learned representation. For ARE
to extract such a representation it exploits the knowledge of
action labels in two key ways:

1. It uses the action-labeled pairs of data points to build
a non-uniform neighborhood graph. The graph is
constructed using the assumption that pairs of data
points that can be reached in a small number of ac-
tions should be nearby in the learned representation.
Other non-linear manifold-learning techniques use a
k-nearest neighbor graph with a globally uniformk
which can create overly dense neighborhood graphs.

2. The action labels themselves individually have no im-
plied meaning. However, every time an action is re-
peated it provides more implicit information about the
data. From these repetitions we can buildaction re-
specting constraintsthat ensure that each action cor-
responds to a simple transformation in the learned rep-
resentation.

Using non-uniform neighborhoods and action respecting
constraints, ARE constructs a semidefinite program to learn
a kernel that describes the desired low-dimensional repre-
sentation. The result is a very natural representation of the
original high-dimensional data, with a strong correspon-
dence to the actual low-dimensional process that generated
the data. Although manifold learning techniques often rely
on qualitative evaluation, our knowledge of the actions in-
volved in generating the data allow for a more objective
evaluation. Therefore, along with traditional qualitative
comparisons we also introduce the task of data prediction
as a quantitative measure of the success of our learned rep-
resentations.

In Section 2 of this paper, we review previous relevant
manifold learning techniques. The focus is on Semidefi-
nite Embedding, which is the foundation for our new al-
gorithm. The Action Respecting Embedding algorithm is
introduced in Section 3. We extract a non-uniform neigh-
borhood graph based on the fact that the data are connected
by actions, and we create additional manifold constraints
which respect the action labeling. We also introduce the
task of data prediction and show how ARE can solve this
problem. Experimental results of the proposed algorithm
are presented in Section 4 before we conclude in Section 5.

1By uninterpreted we mean that the action labels themselves
have no implied meaning. We may refer to actions as being ‘move
left’ or ‘move right’ while the algorithm sees the actions as simply
‘Action 1’ and ‘Action 2’.

2. Background

Dimensionality reduction or manifold learning can be seen
as the process of deriving a set of degrees of freedom which
can be used to reproduce most of the variability of a data
set. For example, consider a set of images produced by
rotating a camera through different angles. Clearly only
one degree of freedom is being altered, and thus the images
lie along a continuous curve through image space.

Many algorithms for dimensionality reduction have been
developed, beginning with PCA. Principal components
analysis (PCA) (Jolliffe, 1986) is a classical method which
provides a sequence of best linear approximations to a
given high-dimensional observation. It is one of the most
popular techniques for dimensionality reduction, but its
effectiveness is limited by its global linearity. Multidi-
mensional scaling (MDS) (Cox & Cox, 2001), which is
closely related to PCA, suffers from the same drawback.
In order to resolve the problem of dimensionality reduc-
tion in non-linear cases, many techniques including kernel
PCA (Mika et al., 1999; Scholkopf & Smola, 2002), lo-
cally linear embedding (LLE) (Roweis & Saul, 2000; Saul
& Roweis, 2003), Isomap (Tenenbaum, 1998; Tenenbaum
et al., 2000), and Semidefinite Embedding (Weinberger &
Saul, 2004b) have been proposed. In order to motivate our
algorithm, we provide a brief overview of Kernel PCA and
SDE.

Kernel PCA is a non-linear generalization of PCA. In Ker-
nel PCA, through the use of kernels, principle components
can be computed efficiently in high-dimensional feature
spaces that are related to the input space by some non-linear
mapping. PCA finds an orthogonal transformation of the
coordinate system in which we describe our data. Kernel
PCA finds principal components which are non-linearly re-
lated to the input space. The key observation is that PCA
can be formulated entirely in terms of dot products between
data points. In kernel PCA, this dot product is replaced
by the inner product of a Hilbert space. This is equiva-
lent to performing PCA in the space produced by the non-
linear mapping, where the low-dimensional latent structure
is, hopefully, easier to discover.

Consider a feature spaceH such thatΦ : X → H. Let∑n
i=1 Φ(xi) = 0 (since a simple transformation onX can

center the data). The solution for PCA could be found by
taking the singular value decomposition:

Φ(X) = UΣV T (1)

whereU contains the eigenvectors ofΦ(X)Φ(X)T , Σ is
a diagonal matrix containing the square roots of the eigen-
values ofΦ(X)Φ(X)T andΦ(X)T Φ(X), andV contains
the eigenvectors ofΦ(X)T Φ(X). The primal PCA solu-
tion for encoding the data isY = UT Φ(X). SinceΦ(X)
might be very high-dimensional, simply applying PCA



might be impractical. From equation 1,UT Φ(X) = ΣV T .
This is the dual form of PCA which allows us to employ
the kernel functionk(·, ·) to compute the kernel matrix
K = Φ(X)T Φ(X) whereKij = k(xi, xj). Note that
this matrix does not depend on the dimensionality of the
feature space. The kernel PCA procedure is summarized
in Table 1. The choice of kernel plays an important role
in kernel PCA. Linear, polynomial and Gaussian kernels
are widely used kernels which reveal different types of low
dimensional structure.

Algorithm: Kernel PCA

Recover basis: CalculateΦ(X)>Φ(X) = K and let
V be the eigenvectors ofK corresponding to the topd
eigenvalues. LetΣ = diagonal matrix ofsquare rootsof
the topd eigenvalues.

Encode training data: Y = U>Φ(X) = ΣV > where
Y is ad× n matrix of encodings of the original data.

Table 1. Kernel PCA Algorithm.

In 2004 Weinberger and Saul introduced SDE (Weinberger
& Saul, 2004b; Weinberger & Saul, 2004a), which learns
a kernel matrix instead of choosing a kernel function a pri-
ori. They formulated the problem of learning the kernel
matrix as an instance of semidefinite programming. Since
the kernel matrixK represents inner products of vectors
in a Hilbert space it must be positive semidefinite. Also
the kernel should be centered,i.e.,

∑
ij Kij = 0. Lastly,

SDE imposes constraints on the kernel matrix to ensure that
the distances and angles between points and their neighbors
are preserved under the neighborhood graphη. That is, if
bothxi andxj are neighbors (i.e., ηij = 1) or are common
neighbors of another input (i.e., [ηT η]ij > 0), then:

||Φ(xi)− Φ(xj)||2 = ||xi − xj ||2.

In terms of the kernel matrix, this can be written as:

Kij − 2Kij + Kjj = ||xi − xj ||2.

By adding an objective function to maximize Tr(K) which
represents the variance of the data points in the learned
feature space, SDE constructs a semidefinite program for
learning the kernel matrixK. The last detail of SDE is the
construction of the neighborhood graphηij . This graph is
constructed by connecting thek nearest neighbors using a
similarity function over the data,||xi−xj ||. The algorithm
is summarized in Table 2.

SDE’s strength is not only that its manifolds are compara-
ble to other non-linear dimensionality reduction methods,
but at its core is a simple semidefinite optimization. We
will see in the next section that variants on dimensionality
reduction, such as ours, can be solved by adding appropri-
ate constraints into this optimization.

Algorithm: SDE

Construct neighbors,η, usingk-nearest neighbors.

Maximize Tr(K) subject toK � 0,
∑

ij Kij = 0, and
∀ij ηij > 0 ∨ [ηT η]ij > 0 ⇒

Kii − 2Kij + Kjj = ||xi − xj ||2

Run Kernel PCA with learned kernel, K.

Table 2. SDE Algorithm.

3. Action Respecting Embedding

Action respecting embedding takes a sequence of high-
dimensional datax1, . . . , xn, along with associated dis-
crete actionsa1, . . . , an−1. The data are assumed to be
in some order, where actionai was taken between data
pointsxi andxi+1. The final piece of input is a similar-
ity function, ||xi − xj ||, defining a distance over the high-
dimensional data points. For vector data, Euclidean dis-
tance is often sufficient, but other data-specific similarities
can be employed.

The overall structure of the algorithm follows the same
three steps of SDE: (i) construct a neighborhood graph, (ii)
solve a semidefinite program to find the maximum vari-
ance embedding subject to constraints, (iii) extract a low-
dimensional embedding from the dominant eigenvectors of
the learned kernel matrix. ARE, though, seeks to exploit
the additional information provided by the action labels
of the data. We exploit this information through two key
modifications. The first modifies step (i) by constructing
non-uniform neighborhoods based on action-labeled pairs
of data points. The second modifies step (ii) by adding
action-respecting constraints into the semidefinite program.

3.1. Non-Uniform Neighborhoods

Many of the current non-linear manifold-finding tech-
niques seek to preserve local properties of the original data.
They often require a neighborhood graph over the original
data points to define a notion of locality. As we’ve seen,
SDE creates this graph by connecting each data point to its
k-nearest neighbors for some chosen value ofk. Since the
neighborhood graph must be fully connected for SDE to
have a bounded solution, this choice ofk can be forced to
be quite large and may over-constrain the learned manifold.
Another possibility would be to choose a distance thresh-
old δ and connect any two data points within that threshold
as neighbors. Again, this may result in an over-constrained
manifold asδ must be set large enough to make the graph
fully connected. The key drawback in these techniques is
that they require a globally uniformk or δ.

Since we are given additional information relating the



a

b

Figure 1. An example of the use of action labels to find non-
uniform neighborhoods. The arrows show the points that are con-
nected by an action. The circles show the resulting neighborhood
for the points labeled ‘a’ and ‘b’ withT = 1. Black points are in
both neighborhoods. White points in neither. Shaded points are
in one but not the other.

points in our set,i.e., that certain pairs of data points are
connected by an action, we can build a more intuitive, non-
uniform neighborhood graph. The idea is based on the as-
sumption that data points connected by an action are nearby
and should be considered neighbors. We use these assumed
neighbors to define a neighborhood ball around each data
point, whose radius is large enough to encompass all data
points connected by an action. We then include an edge
in the neighborhood graph between two images if they are
both in each other’s neighborhood ball. We can increase the
connectivity of the neighborhood graph by increasing the
action window,i.e., requiring data points withinT actions
of each other to be neighbors. Since our data is generated
from a sequence of actions, we can define the neighbor-
hood graph as follows. Letηij be the adjacency matrix of
the neighborhood graph. Given an action window ofT ,

ηij = 1 ⇔ ∃k, l such that

|k − i| < T, |l − j| < T,

||xi − xk|| > ||xi − xj || and

||xj − xl|| > ||xi − xj ||. (2)

Figure 1 shows an example of two-dimensional data points
connected by actions, and the resulting neighborhood balls
whenT = 1.

Notice that since our data points come from a sequence of
actions, the resulting neighborhood graph (T ≥ 1) must
be fully connected. This satisfies the critical requirement
that the semidefinite optimization be bounded (otherwise a
solution would not exist).

3.2. Action Respecting Constraints

The second, and most important, contribution of ARE is
the addition of action respecting constraints. The evalu-

ation of learned manifolds is often subjective and usually
amounts to demonstrating that the manifold corresponds to
the known data generator’s own underlying degrees of free-
dom. Action labels, even with no interpretation or implied
meaning, provide more information about the underlying
generation of the data. It is natural to expect that the ac-
tions correspond to some simple operator on the generator’s
own degrees of freedom. For example, a camera that is be-
ing panned left and then right, has actions that correspond
to a simple translation in the camera’s actuator space. We
therefore want to constrain the learned representation so
that the labeled actions correspond to simple transforma-
tions in that space. In particular, we require all actions to
be a simple rotation plus translation in the resulting low-
dimensional representation.2

We can formalize this constraint by first observing rotation
plus translation is exactly the space ofdistance preserving
transformations. The transformationf is distance preserv-
ing and thus a rotation plus translation if and only if:

∀x, x′ ||f(x)− f(x′)|| = ||x− x′||.

Let’s consider this in the context of an action-labeled data
sequence. All actions must be distance preserving transfor-
mations in the learned representation. Therefore, for any
two data points,xi andxj , the same action taken at those
data points must preserve their distance. LettingΦ(xi) de-
note data pointxi in the the learned space, we know action
a’s transformation,fa, must satisfy:

∀i, j ||fa(Φ(xi))− fa(Φ(xj))|| =
||Φ(xi)− Φ(xj)||. (3)

Now, if we leta = ai and consider the case whereaj = ai.
Then,fa(Φ(xi)) = Φ(xi+1) andfa(Φ(xj)) = Φ(xj+1),
and Constraint 3 becomes:

||Φ(xi+1)− Φ(xj+1)|| = ||Φ(xi)− Φ(xj)||. (4)

We want to pose this not as a constraint on distances, but
rather as a constraint on inner products,i.e., on the learned
kernel matrix,K. We can square both sides of the equation
and rewrite it in terms ofK resulting in the following set
of constraints:

∀i, j ai = aj ⇒
K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj (5)

We can add Constraint 5 into SDE’s usual constraints to
arrive at the optimization and algorithm shown in Table 3.

2These are the subset of linear transformations that don’t in-
volve any scaling component.



Algorithm: ARE

Construct neighbors,η, according to Equation 2.

Maximize Tr(K) subject toK � 0:
∑

ij Kij = 0,
∀ij ηij > 0 ∨ [ηT η]ij > 0 ⇒

Kii − 2Kij + Kjj ≤ ||xi − xj ||2 , and
∀ij ai = aj ⇒

K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj

Run Kernel PCA with learned kernel, K.

Table 3. ARE Algorithm.

There is a slight modification to SDE’s usual neighbor con-
straint, changing strict equality into an upper bound. This
modification insures that the constraints are feasible by al-
lowing the zero matrix to be a feasible solution. Notice that
the additional action respecting constraints are still linear
in the optimization variables,Kij , and so the optimization
remains a semidefinite program. Since the neighborhood
graphηij is fully connected, the optimization is bounded,
convex, and feasible, and therefore can be solved efficiently
with various general-purpose toolboxes. The results in this
paper were obtained using CSDP (Borchers, 1999) in MAT-
LAB. Our results also used highly penalized slack variables
in SDE’s neighborhood constraint to help improve the sta-
bility of the solution. This was recommended by Wein-
berger and colleagues in their original SDE work (Wein-
berger & Saul, 2004b).

3.3. Data Prediction

As manifold learning is an unsupervised learning problem,
evaluation of algorithms is usually qualitative. Data pre-
diction, though, is a task we introduce, which (i) can be
measured quantitatively and (ii) seeks to evaluate how well
a low-dimensional representation has captured the actions.
The problem of data prediction is: given a data point and
an action, predict the resulting data point. In general, this is
a very challenging task. Manifolds learned with ARE can
be used to tackle a partial version of this task: given a data
point and action from the training set,xi anda (wherea is
not necessarilyai), predict the next data point assuming it
is also a data point from the training set. Here we describe
how ARE can be used to solve this task, and in Section 4
we present the results of this quantitative evaluation of the
accuracy of ARE’s predictions.

ARE learns an embedding where actions correspond to dis-
tance preserving operators. Recalling Constraint 3, this im-
plies:

∀i, j ||fa(Φ(xi))− fa(Φ(xj))|| = ||Φ(xi)− Φ(xj)||.

Considering onlyj’s such thataj = a, results in the follow-

ing constraint on the result of the action’s transformation:

∀j aj = a ⇒ ||fa(Φ(xi))− Φ(xj+1)|| =
||Φ(xi)− Φ(xj)||. (6)

If action a appeared in our training setm times, then this
gives usm constraints onfa(Φ(xi))’s distance to other
known points,Φ(xj+1). In fact, if the learned manifold has
dimensionalityd, d + 1 independent distance constraints
uniquely determinesfa(Φ(xi)). In this case, it is a simple
matter to find the pointΦ(xp) nearest to the constrained
point fa(Φ(xi)), and usexp as our prediction. If the point
is under-constrained (m <= d), then we select the indexp
according to:

p = argmax
k=1...n

∑
j:aj=a

(
||fa(Φ(xi))− Φ(xj+1)||−
||Φ(xk)− Φ(xj+1)||

)2

. (7)

In other words,Φ(xp) is the embedded point whose dis-
tances to other points most closely agrees withfa(Φ(xi))’s
distance constraints. We then usexp as our prediction.

4. Results

We now examine the effect of ARE’s non-uniform neigh-
borhoods and action respecting constraints on learning low-
dimensional action-respecting representations. Our results
are in a synthetic, robot-inspired, image manipulation do-
main called IMAGEBOT. We first present this domain. We
then show manifolds produced by ARE and SDE from data
generated in this domain. In addition to the compelling
qualitative comparisons, we also present quantitative evalu-
ation using the data prediction task described in Section 3.3

4.1. IMAGEBOT Domain

Given an image, one can imagine a virtual robot that can
observe a small patch on that image and also take actions
to move the observable patch around the larger image. This
“image robot” provides us with an excellent domain in
which we can test ARE, while having obvious connections
to robotic applications.

For these experiments, IMAGEBOT is always viewing a100
by 100 patch of a2048 by 1536 image. IMAGEBOT is re-
stricted to eight distinct actions: four translation actions,
two rotation actions and two zoom actions. The transla-
tions are ‘forward’, ‘backward’, ‘left’ and ‘right’, each by
25 pixels. The rotation actions are ‘turn left’ and ‘turn
right’, each by22 1

2

◦
. The zoom actions are ‘zoom in’ and

‘zoom out’, each changing the scale by a factor of8
√

2 (i.e.,
eight zoom actions double the image scale).

Figure 2 shows the image used for the experiments, while
Figure 3 shows an example trajectory from IMAGEBOT



Figure 3. A sample 60-action trajectory from IMAGEBOT.

Figure 2. IMAGEBOT’s world.

(Figure 3 is an enlargement of the long, thin highlighted
rectangular section in Figure 2.) The trajectory starts on
the far left with IMAGEBOT facing right. IMAGEBOT then
takes40 steps forward (to the right) and then20 steps back-
ward. Figure 4 shows a more complicated ‘A’-shaped tra-
jectory that IMAGEBOT followed (Figure 4 is a blow up of
the other highlighted rectangular section in Figure 2.)

IMAGEBOT’s observations as it follows these paths, along
with the actions associated with the paths, gives a per-
fect domain for testing ARE— ordered high-dimensional
data, with each consecutive pair related by an action. Note
that while IMAGEBOT knows what action it takes at every
step there is no semantic information associated with that
knowledge,i.e., the labels are uninterpreted.

4.2. Manifold Learning

Both SDE and ARE were applied to the IMAGEBOT data
from the trajectory in Figure 3. As might be expected, the
resulting manifold for both algorithms is not surprising—
essentially one-dimensional as the first eigenvalue of the re-
sulting kernel dominates the others. Of interest, however, is
a plot of the trajectory on this manifold over time, which is
shown in Figure 5. Note that the result from SDE indicates
that IMAGEBOT doubled back on itself seven times. The
result from ARE is markedly smoother and corresponds
almost exactly to IMAGEBOT’s actual manifold. Despite
not having any meaning attached to the actions, ARE has

Figure 4. A more complicated 45-action trajectory from IMAGE-
BOT

clearly managed to learn a representation which captures
the essential properties of the actual actions. Namely, that
the two different actions are opposites of each other in
terms of direction and have the same magnitude.

We can subtly change the actions which generate the data,
making the backward action move twice as far as the for-
ward one. Figure 6 demonstrates that ARE is capable of
learning a manifold that can capture this property as well.

ARE can correctly handle periodic actions, such as rota-
tion, as well. Figure 7 shows the first two dimensions of
the manifold corresponding to the trajectory consisting of
sixteen ‘turn right’ and eight ‘turn left’ actions. ARE again
captures that the two actions are opposites, and that they
are periodic.

ARE continues to yield good results in the face of more
complicated collections of transformations. ARE and SDE
were run with the more complex example shown in Fig-
ure 4, and the resulting manifolds are displayed in Figure 8.
SDE, as with the previous example, fails to generate a man-
ifold in which the actions have a simple interpretation. No-
tice that again, ARE’s manifold has a strong correspon-
dence with IMAGEBOT’s actual trajectory. It again cap-
tures the expected relationships between the actions corre-
sponding to forward and back, as well as the actions cor-
responding to right and left. Even more impressive, the
manifold has captured that the forward/back actions are in-



time

po
si

tio
n 

on
 m

an
ifo

ld

SDE
ARE

Figure 5. Manifolds from trajectory shown in Figure 3. Lines
show the distance along the manifold over time.

time

po
si

tio
n 

on
 m

an
ifo

ld

SDE
ARE

Figure 6. Manifolds from a trajectory similar to that from Figure 3
but with slightly different actions. Lines show the distance along
the manifold over time.

1st dimension of manifold

2n
d 

di
m

en
si

on
 o

f m
an

ifo
ld

SDE
ARE

Figure 7. Manifolds learned on data generated with rotation ac-
tions.

1st dimension of manifold

2n
d 

di
m

en
si

on
 o

f m
an

ifo
ld

SDE
ARE

Figure 8. Manifolds corresponding to Figure 4

1st dimension of manifold

2n
d 

di
m

en
si

on
 o

f m
an

ifo
ld

SDE
ARE

Figure 9. Manifolds learned on data generated with zoom actions.

dependent and orthogonal to the right/left actions—despite
the fact that none of this meaning was explicitly coded in
the problem input.

In the final example, IMAGEBOT follows a variation of
the ‘A’ trajectory. Instead of the actions ‘left’, ‘right’,
‘forward’ and ‘backward’ IMAGEBOT uses the actions
‘zoom in’, ‘zoom out’, ‘forward’ and ‘backward’. In this
case it is no longer true that the two pairs of actions—
‘forward’/‘backward’ and ‘zoom in’/‘zoom out’—are in-
dependent, as the distance IMAGEBOT moves when imple-
menting the first pair is dependent on IMAGEBOT’s zoom
level. Nonetheless, as Figure 9 demonstrates, ARE again
learns a manifold that captures this relationship. The left
leg of the ‘A’ corresponds to images gathered when IM-
AGEBOT was zoomed in, the right leg corresponds to im-
ages gathered when IMAGEBOT was zoomed out. Note that
distance between consecutive points is less on the left leg
than on the right. With this example ARE has successfully
learned the radial relationship between the two sets of ac-
tions without requiring that the relationship be explicitly
known ahead of time.



Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9
ARE 100.0% 100.0% 100.0% 100.0% 97.2%
SDE-d 10.2% 14.0% 28.0% 41.7% 25.0%
SDE-l 11.9% 29.8% 20.0% 39.6% 27.8%

Table 4. Prediction accuracy across the four trajectories.

Finally, ARE is flexible in the choice of image similarity
function. All though not shown here, similar results can be
obtained using other distance metrics instead of Euclidean
distance.

4.3. Data Prediction

In Section 3.3 we introduced the task of data prediction,
and described how ARE could be used to solve this prob-
lem. We applied our data prediction algorithm to the four
trajectories from the previous section. As data prediction
is a form of supervised learning, we want to be careful
to measure accuracy only on queries outside of the train-
ing data. Queries of the form, “what training image would
result from taking actiona1 from imagex1?”, can be an-
swered (x2) easily from ARE’s input data. Other queries,
such as, “in Figure 4, what training image would result
from taking actiona11 from imagex28?”, are not so eas-
ily answered. This query can only be answered by under-
standing that some actions are inverses of each other,i.e.,
that the manifold extracts a representation that appropri-
ately respects the action labels.

We generated all possible image-action pairs whose result
is an image in the training data. We then excluded all pairs
of the form(xi, ai), as these are queries answered directly
in the training data. The remaining queries were used to
evaluate ARE’s data prediction algorithm. For a compar-
ison baseline, we also performed the same evaluation us-
ing manifolds extracted with SDE. To be as accommodat-
ing as possible, we examined two prediction techniques for
SDE. First, we used ARE’s data prediction algorithm with
SDE’s learned manifold. Second, we used regression on
SDE’s representation to find the best linear transformation
for each action, with the nearest training point to the trans-
formed query point being the prediction.

Table 4 shows the prediction accuracy for all three meth-
ods across the five trajectories. In the table, “SDE-d”
refers to SDE using ARE’s data prediction, and “SDE-l”
refers to using a linear transformation. ARE achieves near-
perfect accuracy, quantitatively demonstrating ARE’s abil-
ity to learn better manifolds.

5. Conclusion

In summary, we described a variant of standard dimension-
ality reduction where we are given action labels in addi-

tion to data points. Assuming that these labels correspond
to particular movements of a camera or other actuator, the
goal becomes learning a manifold in which the actions have
a meaningful representation.

Although traditional dimensionality reduction methods can
be applied to this problem, none of them make effective
use of the action labels. We therefore developed ARE—a
semidefinite optimization for solving this problem inspired
by SDE. ARE introduces two new critical components.
First, ARE uses the action labels to build a non-uniform
neighborhood graph. Second, and more important, we can
use these action labels to build constraints which force the
learned manifold to be one in which the actions can be rep-
resented as simple transformations.

We demonstrated the effectiveness of ARE in learning
manifolds from the IMAGEBOT domain. We evaluated the
results qualitatively and quantitatively. ARE was able to
capture properties of the actions underlying the original
data, despite the fact that none of these properties were
explicitly coded in the input. Additionally, ARE greatly
out-performed SDE in the provided data-prediction task.

As mentioned in the introduction, low-dimensional repre-
sentations where actions can be defined as simple transfor-
mations are the foundation for many AI applications. Find-
ing a sequence of actions to achieve a particular outcome
(i.e., planning) and maintaining a representation of one’s
location (i.e., localization) are two such tasks. We have
demonstrated that ARE canautomaticallyextract represen-
tations especially suited to these tasks from only a stream
of experience. Although beyond the scope of this paper,
we have successfully implemented planning and localiza-
tion with ARE on small problems. We expect that other
standard AI tasks may be able to benefit from ARE’s abil-
ity to automatically extract good representations.

Acknowledgments

We would like to thank Michael Littman, Dan Lizotte, Dale
Schuurmans, Finnegan Southey, and Tao Wang for their
discussions and insight. We also acknowledge Alberta In-
genuity Fund for their support of this research through the
Alberta Ingenuity Centre for Machine Learning.

References
Borchers, B. (1999). CSDP, a C library for semidefinite program-

ming. Optimization Methods and Software, 11, 613–623.

Cox, T., & Cox, M. (2001).Multidimensional scaling. Chapman
Hall. 2nd edition.

Jolliffe, I. (1986). Principal component analysis. Springer-
Verlag.

Mika, S., Scḧolkopf, B., Smola, A., M̈uller, K.-R., Scholz, M.,



& Rätsch, G. (1999). Kernel PCA and de-noising in feature
spaces.Advances in Neural Information Processing Systems
11 (pp. 536–542).

Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduc-
tion by locally linear embedding.Science, 290, 2323–2326.

Saul, L., & Roweis, S. (2003). Think globally, fit locally: Unsu-
pervised learning of nonlinear manifolds.Journal of Machine
Learning Research, 4, 119–155.

Scholkopf, B., & Smola, A. (2002).Learning with kernels. MIT
Press.

Tenenbaum, J. (1998). Mapping a manifold of perceptual obser-
vations. Advances in Neural Information Processing Systems
10 (pp. 682–687).

Tenenbaum, J., de Silva, V., & Langford, J. (2000). A global
geometric framework for nonlinear dimensionality reduction.
Science, 290, 2319–2323.

Weinberger, K., & Saul, L. (2004a). Learning a kernel matrix for
nonlinear dimensionality reduction.Proceedings of the Inter-
national Conference on Machine Learning(pp. 839–846).

Weinberger, K., & Saul, L. (2004b). Unsupervised learning of im-
age manifolds by semidefinite programing.Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(pp. 988–995).


