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Abstract

Kernel supervised principal component analysis (KSPCA) is a computationally efficient
supervised feature extraction method that can learn non-linear transformations. We start
the study of the statistical properties of KSPCA, providing the first bound on its sample
complexity. This bound is dimension-independent, which justifies the good performance of
KSPCA on high-dimensional data. Another observation is that in the kernelized version,
the number of parameters of KSPCA grows linearly with the sample size. While this
potentially increases the risk of over-fitting, KSPCA works well in practice. In this work,
we justify this compelling characteristic of KSPCA by providing a guarantee indicating
that KSPCA generalizes well even when the number of parameters is large, as long as they
have small norms.
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1. Introduction

Kernel supervised principal component analysis (KSPCA) (Barshan et al., 2011) is a dimen-
sionality reduction and feature extraction method that has found many applications in data
visualization, regression and classification (Fewzee and Karray, 2012; Parsaei et al., 2012;
Samadani et al., 2013; Wu et al., 2013; Adamiak et al., 2015; Wu et al., 2014). Building on
the idea of Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005), KSPCA
provides a supervised extension of principal component analysis (PCA) and kernel PCA
(Schölkopf et al., 1997).

KSPCA has a number of desirable characteristics that makes it both theoretically and
practically interesting. First of all, the algorithm is intuitive and easy to understand and
implement. In fact, it finds a linear mapping of the instances to a new space so that
the cross-correlation between the instances and their labels (in the classification setting)
is maximized. The algorithm can also be “kernelized” to allow non-linear mappings as
well. Furthermore, it can be shown that the optimization problem boils down to singular
value decomposition for which efficient solvers exist. These qualities along with the fact
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that—unlike many other counterparts—KSPCA is a supervised method make it especially
attractive for feature extraction.

However, KSPCA has not been analyzed from a statistical point of view. Particularly,
we are not aware of any generalization bound that assists us in knowing the number of
required training samples for learning a good mapping. This becomes more crucial when
we observe that in the kernelized version, the number of parameters can grow linearly with
the number of instances. Hence, one may expect that KSPCA is prone to over-fitting.
However, quite surprisingly, KSPCA still works well in practice. It is therefore important
to understand this compelling feature of KSPCA.

In this paper, we study KSPCA from a statistical perspective and prove a generalization
bound for it. The bound suggests that KSPCA generalizes well—even when the number
of parameters is very large—as long the parameters are “small in size”. In order to prove
such a result, we will establish a dimension-independent generalization bound that can
work in infinite dimensional Hilbert spaces. In this regard, we see our results in line with
dimension-independent generalization bounds for different algorithms in Hilbert spaces,
including SVMs (Vapnik and Kotz, 1982), k-means clustering (Biau et al., 2008) and PCA
(Shawe-Taylor et al., 2005; Blanchard et al., 2007; Rosasco et al., 2010). Moreover, a related
bound for neural networks suggests that “it is the size of the weights that matters, not the
size of the network.” (Bartlett, 1998). Nevertheless, proving such results for KSPCA is still
a challenge, which we will address by using a different proof technique.

In the next section, we will review the Hilbert-Schmidt independence criterion. Building
on that, we will define KSPCA in Section 3. We present the main result in Section 4 and
provide its proof in Section 5, which will be followed by the conclusions in Section 6.

2. Hilbert-Schmidt Independence Criterion

Hilbert-Schmidt Independence Criterion (HSIC), proposed by Gretton et al. (Gretton et al.,
2005), measures the dependence between two random variables based on the norm of the co-
variance operator defined over the associated Reproducing Kernel Hilbert Spaces (RKHSs).
HSIC, when equipped with appropriate kernels, is an effective tool for “measuring” (non-
linear) dependence between two random variables.

Notations. Let X ⊆ Rd and Y ⊆ Rq be two domain sets, with F and G being their
corresponding (separable) RKHSs. Denote by φ : X 7→ F and ψ : Y 7→ G two feature
maps with their associated kernels being k(., .) and l(., .) respectively. Let Dxy be a Borel
probability measure over X × Y.

Definition 1 (Hilbert-Schmidt Independence Criterion (HSIC))

HSIC is defined as follows.

HSIC(Dxy,F ,G) :=

∥∥∥∥∥ E
(x,y)∼Dxy

[(φ(x)− µx)⊗ (ψ(y)− µy)]

∥∥∥∥∥
2

HS

(1)

where µx and µy are the mean values of φ(x) and ψ(x) respectively, ⊗ stands for the
tensor product, and HS-norm is the Hilbert-Schmidt norm1.

1. I.e., the generalization of Frobenius norm to Hilbert Spaces.
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Working directly with—possibly infinite dimensional—RKHSs is not practical. The
following lemma (Gretton et al., 2005) gives an equivalent formulation of HSIC in terms of
the kernel functions.

Lemma 2 (HSIC in terms of kernels)

HSIC(Dxy,F ,G) = E
x,y,x′,y′

[k(x, x′)l(y, y′)] + E
x,x′

[k(x, x′)] E
y,y′

[l(y, y′)]

− 2 E
x,y

[
E
x′

[k(x, x′)]E
y′

[l(y, y′)]
]

(2)

where the (x, y) and (x′, y′) are generated iid from Dxy.

The connection between HSIC and dependence of two random variables is established
in the following lemma (Gretton et al., 2005). We do not provide the definition of universal
kernels (Steinwart, 2002), but note that many natural kernels (e.g., Gaussian) are universal.

Theorem 3 (HSIC and Independence)
Assume k and l are universal kernels on compact domains X and Y. Assume ‖f‖∞ ≤ 1

and ‖g‖∞ ≤ 1 for all f ∈ F and g ∈ G. Then x and y are independent if and only if
HSIC(Dxy,F ,G) = 0.

As it can be seen, computing HSIC requires having access to the joint distribution.
However, in practice, we only have a set of samples generated from the distribution. The
following method gives an empirical estimation of HSIC based on the data.

Definition 4 (Empirical HSIC)
Let S = {(x1, y1), (x2, y2), ..., (xm, ym)} ⊆ X × Y be a sample set independently drawn

from Dxy. Then, empirical HSIC is defined by

HSIC(S,F ,G) =
tr(KHLH)

(m− 1)2
(3)

where Ki,j := k(xi, xj), Li,j := l(yi, yj) and H is the centering matrix H = I − 1
m11T ,

where 1 is a vector of all 1s of size m.

Finally, one needs to show that the empirical HSIC is a good estimator of HSIC. The
following large deviation bound is also due to Gretton et al. (2005).

Theorem 5 (Large Deviation Bound for Empirical HSIC)
Assume that k and l are non-negative and bounded almost everywhere by 1. Then for

all Dxy, if S is a sample of size m generated iid from Dxy, then with probability at least
1− δ we have

|HSIC(S,F ,G)−HSIC(Dxy,F ,G)| = O

√ log
(
1
δ

)
m

 (4)

Therefore, HSIC is a useful tool to measure the dependence between two random vari-
ables. As we will see in the next section, it is the basis of the KSPCA algorithm.
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3. Kernel Supervised Principal Component Analysis

Kernel supervised principal component analysis (KSPCA) (Barshan et al., 2011) is a feature
extraction method that gives a representation of data under which the dependence between
the input variable x and the response variables y is maximized.

Consider a binary classification problem2 where we are given a training sample set
S = {(xi, yi)}mi=1. Now for fixed kernel functions k and l over the input and the labels
respectively, the kernel matrices over the sample are defined by Ki,j = k(xi, xj) and Li,j =
l(yi, yj). Using the empirical HSIC criterion (3), we can measure the dependence between
the two random variables x and y. For the simplest case where the kernel functions are just
the inner products in the original spaces, we can measure the dependence by

tr(KHLH)

(m− 1)2
=

tr(XTXHY Y TH)

(m− 1)2
(5)

where X:,i = xi is the input matrix and Yi = yi is the label vector.
Assume that the input data lies in Rd. In the non-kernelized version, supervised PCA

tries to find a linear transformation from Rd to Rq (represented by the matrix Ud×q), such
that the dependence between the new representation UTX and the response matrix Y is
maximized. More specifically, it solves the following optimization problem.

maximize
U

tr((UTX)T (UTX)HY Y TH)

s.t. UTU = I
(6)

This method can be readily generalized to the kernelized version, where the goal is to find
a linear mapping over a RKHS. A representer theorem makes sure that the transformation
U can be written in terms of data points (i.e., U = φ(X)B for some B of size d×m). The
optimization problem then boils down to

maximize
B

tr(BTKHLHKB)

s.t. BTKB = I
(7)

where the new representation of the data is found by computing Xnew = BTK.
A key advantage of KSPCA is that this optimization problem can be solved efficiently.

In fact, solving KSPCA boils down to generalized singular value decomposition (Barshan
et al., 2011).

It is important to observe that for supervised PCA, the number of parameters (i.e.,
elements of U) is dq, which depends on the dimensionality of the input. This can be
potentially problematic, espesially for the kernelzed version where the dimension of the
Hilbert space is infinite. Note that based on the representer theorem, the number of required
parameters is not actually infinite. In other words, the number of parameters is the size of
B (i.e., mq) which grows linearly with the size of the training set. Nevertheless, KSPCA
seems to be prone to over-fitting. In the next section, we will establish a generalization
bound for KSPCA that can work even for infinite dimensional Hilbert spaces.

2. In principle, KSPCA can be applied to regression problems as well, but we limit our discussion to binary
classification.
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4. A Dimension-Independent Generalization Bound of KSPCA

In this section, our goal is to show that, under certain conditions, KSPCA will not over-fit.
In particular, we will prove a uniform convergence result for supervised PCA. Since our
bound is dimension-independent, it can be readily applied to the kernelized version (i.e,
KSPCA) as well.

In order to provide a generalization bound, we need to show that the solution which is
learned based on the training data (denoted by Û) works well over the whole (unknown)
distribution—almost as good as the best possible solution U∗.

When we are talking about the optimal solution, we need to be clear about the objective
function. For a distribution Dxy and a transformation U , the objective is the limit of HSIC
criterion when the number of training points goes to infinity. In other word, the objective
function f is defined by

f(U,Dxy) = lim
m→∞

tr(XT
mUU

TXmHYmY
T
mH)

(m− 1)2
(8)

where Xm and Ym are data matrices of m examples, generated iid from Dxy.3

Theorem 6 (Main Result)

Let R = {x ∈ Rd : ‖x‖22 ≤ 1}, and Dxy be any probability measure over R× [−1, 1]. Let
(Xm, Ym) be an iid sample set of size m generated from Dxy. Denote by Û = A(Xm, Ym) the
output of SPCA algorithm on the training data. Then there is a constant C (independent
of Dxy) such that with probability at least 1− δ we have

f(U∗,Dxy)− f(Û ,Dxy) ≤ C

√
log 1

δ

m
(9)

where U∗ is optimal solution with respect to Dxy. In other words, max
U

s.t. UTU=I

f(U,Dxy)

− f(A(Xm, Ym),Dxy) = O

√ log 1
δ

m

 (10)

Note that the result is presented as a one-sided inequality, because the goal is to maxi-
mize the objective function. A nice property of this result is that it does not depend on the
dimension d. Therefore, it can be used for infinite dimensional Hilbert spaces as well. In
other words, it also holds for the kernelized SPCA, as long as the kernels are bounded4. The
assumption that enables us to prove this dimension-independent bound is the boundedness
of (i) the size of the input, i.e., ‖x‖22 ≤ 1 and (ii) the size of the parameters, i.e., UTU = I.
In the next section, we provide the proof of this result.

3. Note that a good solution should also satisfy the constraint UTU = I. However, we consider this as a
necessary requirement for any solution, as it is the case for KSPCA algorithm.

4. Note that even for unbounded kernels like Gaussian kernel, if the inputs are bounded, then the output
of the kernel is still bounded on the working domain
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5. Proofs

In order to prove Theorem 6, we will establish a uniform convergence result. For standard
loss functions (e.g., 0-1 loss for classification), this is usually done through bounding the
covering number5 (Vapnik and Chervonenkis, 1971). However, for other scenarios (e.g.,
other loss functions), it is sometimes easier to bound the Rademacher complexity (Bartlett
and Mendelson, 2003) directly (e.g., Maurer and Pontil (2010); Biau et al. (2008))6.

While bounding the Rademacher complexity seems to be a plausible approach, we em-
ploy a different proof technique which is more direct. In the next section, we will provide a
useful statistical tool which paves the way for the final proof.

5.1 A Concentration Inequality for Hilbert Spaces

Hoeffding’s inequality (Hoeffding, 1963) is a useful concentration inequity which can be
used to bound the deviation of the empirical mean of a random variable from its true mean.
This result is based on the assumption that the random variable is real-valued and bounded.
However, in our analysis we need a more general result—one that would work for random
vectors. In order to prove such a result, we start by providing some background about
U-Statistics (Hoeffding, 1963).

Definition 7 (U-Statistic)
A one-sample degree r U-statistic is defined as

u :=
(m− n)!

m!

∑
imr

g(xi1 , xi2 , ..., xir) (11)

where imr is the set of all permutations of r elements from {1, 2, ..,m} and g is called the
kernel of U-statistic. The following theorem gives a concentration inequality for U-statistics
(Hoeffding, 1963).

Theorem 8 (Deviation Bound for U-statistic)
Let u be a degree r U-statistic with 0 ≤ g ≤ 1 being the associated kernel. Then with

probability at least 1− δ

|u− E[u]| = O

√r log 1
δ

m

 (12)

Now we are ready to prove the concentration inequality for random variables taking
values in Hilbert spaces.

5. Growth function in the case of binary classification
6. Also, Rademacher complexity has the advantage of being distribution-dependent, which can be tighter

in practice (Mohri and Rostamizadeh, 2009; Cortes et al., 2010).
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Theorem 9 (Generalized Hoeffding’s Inequality)

Let x1, x2, ..., xn be a set of independent and identically distributed random vectors, tak-
ing values in the unit ball of the Hilbert space7 with their mean being x̄. Then with probability
at least 1− δ we have ∥∥∥∥∥x̄− 1

n

n∑
i=1

xi

∥∥∥∥∥
2

2

= O

√ log 1
δ

n

 (13)

Proof

∥∥∥∥∥x̄− 1

n

n∑
i=1

xi

∥∥∥∥∥
2

= ‖x̄‖22 +
<
∑n

i=1 xi,
∑n

i=1 xi >

n2
−

2 < x̄,
∑n

i=1 xi >

n

= ‖x̄‖22−2

(
1

n

n∑
i=1

< x̄, xi >

)
︸ ︷︷ ︸

degree one U-statistic

+
1

n2

n∑
i=1

‖xi‖22+
(
n− 1

n

) 1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

< xi, xj >


︸ ︷︷ ︸

degree two U-statistic

= ‖x̄‖22 − 2

‖x̄‖22 ±O
√ log 1

δ

n

+O

(
1

n

)
+

(
n− 1

n

)‖x̄‖22 ±O
√ log 1

δ

n


= ‖x̄‖22 − 2‖x̄‖22 + ‖x̄‖22 ±O

√ log 1
δ

n

±O( 1

n

)
= O

√ log 1
δ

n

 (14)

Note that the kernels of the U-statistics, g1(xi) =< xi, x̄ > and g2(xi, xj) =< xi, xj >,
are bounded in [−1, 1], rather than [0, 1]. But by a normalization argument, it can only
introduce a factor of 2 to our analysis. Also, we used two deviation bounds simultaneously
for two dependent random variables. This is also fine, because having union bound in mind,
this can only introduce a constant factor to our computations.

5.2 Proof of the Main Result

As it was discussed before, the special form of the objective function f (see Eq. 8) makes it
difficult to reuse the conventional uniform convergence results in our proof. One important
characteristic of f is that it cannot be reformulated as the average of an objective over
the training points. In other words, f is not a degree-1 U-statistic8. Therefore, we use a
different proof technique.

The following lemma gives an equivalent form of the objective function which is easier
to analyse.

7. That is {x : x ∈ H, ‖x‖2 ≤ 1}
8. It is actually a degree-2 U-statistic. Note that 0-1 loss for classification or mean squared loss for regression

are degree-1 U-statistic.
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Lemma 10 Let Dxy be a distribution over X × Y where X ⊆ Rd and Y ⊆ R.9 Then

f(U,Dxy) =
∥∥UT (E[xy]− E[x]E[y])

∥∥2
2

(15)

Proof

f(U,Dxy) = lim
m→∞

tr(XT
mUU

TXmHYmY
T
mH)

(m− 1)2
= lim

m→∞

tr(UTXmHYmY
T
mHX

T
mU)

(m− 1)2

= lim
m→∞

∥∥UTXmHYm
∥∥2
HS

(m− 1)2
= lim

m→∞

∥∥∑m
i=1 U

T (xi − E[x]) yi
∥∥2
HS

(m− 1)2

= lim
m→∞

∥∥UT (
∑m

i=1 (xi − E[x]) yi)
∥∥2
HS

(m− 1)2
= lim

m→∞

(
m

m− 1

)2 ∥∥UT (E[xy]− E[x]E[y])
∥∥2
2

(16)

Finally, we are ready to prove Theorem 6.

Proof

Let E denote the true mean w.r.t the distribution Dxy, and Ê denote the empirical mean

w.r.t. the sample. Define ε1 := E[xy] − Ê[xy], ε2 := E[x] − Ê[x] and ε3 := E[y] − Ê[y]. In
the following, we start by using Lemma 10, and continue by exploiting the fact that ÛT is
the maximizer of the empirical objective.

f(U∗,Dxy)− f(Û ,Dxy) =
∥∥∥U∗T (E[xy]− E[x]E[y])

∥∥∥2
2
−
∥∥∥ÛT (E[xy]− E[x]E[y])

∥∥∥2
2

=
∥∥∥U∗T ((̂E[xy] + ε1)− (Ê[x] + ε2)(Ê[y] + ε3)

)∥∥∥2
2
−
∥∥∥ÛT ((̂E[xy] + ε1)− (Ê[x] + ε2)(Ê[y] + ε3)

)∥∥∥2
2

≤
(∥∥∥U∗T (Ê[xy]− Ê[x]Ê[y]

)∥∥∥2
2
−
∥∥∥ÛT (Ê[xy]− Ê[x]Ê[y]

)∥∥∥2
2

)
︸ ︷︷ ︸

≤0

+‖ÛT ε1‖22 + ‖U∗T ε1‖22+

+ ‖ÛT ε2ε3‖22 + ‖U∗T ε2ε3‖22 + ‖ÛT ε2‖22 + ‖U∗T ε2‖22 + ‖ÛT ε3‖22 + ‖U∗T ε3‖22

≤ 2‖ε1‖21 + 2‖ε2‖22 + 4‖ε3‖22 ≤ C

√
log 1

δ

m
(17)

The last step follows from Theorem 9, which states that the empirical means of bounded
vectors in Hilbert spaces are close to their true means10.

9. For the binary classification task, Y = {−1, 1}
10. Having union bound in mind, using this Theorem for multiple dependent random vectors is fine, as it

can introduce only a constant factor to the deviation bound.
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6. Conclusions

In this work we analysed the sample complexity of supervised principal component analysis
(Barshan et al., 2011), providing a novel dimension-independent upper bound for it. This
result explains why SPCA works well even on high-dimensional data. More importantly,
it justifies the use of the kernelized version of SPCA (i.e., KSPCA), where the number
of parameters grows linearly with the size of the training set. The key observation that
enabled us to prove such a result was the fact that although the number of parameters is
large, their “norms” are small.

On a different note, it was pointed out by Barshan et al. (2011) that Kernel PCA
(Schölkopf et al., 1997) can be regarded as a special case of KSPCA, which can be obtained
by substituting the kernel label by the identity matrix. Moreover, it was shown by Ham et al.
(2004) that a number of important dimensionality reduction methods (including Isomap
(Tenenbaum et al., 2000), graph Laplacian eigenmap (Belkin and Niyogi, 2003), and locally
linear embedding (Roweis and Saul, 2000)) are special cases of Kernel PCA for appropriate
choices of the kernel. Therefore, all of these methods can be regarded as special cases of
KSPCA. However, our bound does not apply to them directly. The reason is that although
we considered an arbitrary “input kernel” K over the data, we fixed the “label kernel” based
on the labels, i.e., L = Y TY . Therefore, an interesting follow up question is to prove an
upper bound for the sample complexity of KSPCA for arbitrary “label kernels”.
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