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Abstract

Nonlinear dimensionality reduction is the problem of retrieving a low-dimensional

representation of a manifold that is embedded in a high-dimensional observation

space. Locally Linear Embedding (LLE), a prominent dimensionality reduction

technique is an unsupervised algorithm; as such, it is not possible to guide it to-

ward modes of variability that may be of particular interest. This paper proposes a

supervised variation of LLE. Similar to LLE, it retrieves a low-dimensional global

coordinate system that faithfully represents the embedded manifold. Unlike LLE,

however, it produces an embedding in which predefined modes of variation are

preserved. This can improve several supervised learning tasks including pattern

recognition, regression, and data visualization.

Keywords: Supervised dimensionality reduction, Locally linear embedding,

Classification, Pattern recognition.

Preprint submitted to Pattern Recognition Letters January 24, 2011



1. Introduction

Conventional classification and pattern recognition methods fail to produce

satisfactory results when applied to high-dimensional data sets. This is partially

due to the problem of the “curse of dimensionality”. One approach to this prob-

lem is to reduce the dimensionality of the data by projecting it onto a subspace or

submanifold. There exist many different methods to retrieve a low-dimensional

global coordinate set that faithfully represents the embedded manifold of the high-

dimensional observation space. One of the limitations of most prominent dimen-

sionality reduction techniques, however, is that they are unsupervised. Therefore,

it is not possible to guide them towards modes of variability that may be of par-

ticular interest. For example, consider a set of several images of men and women,

with and without glasses. One mode of variation in this data set is gender; another

is the presence or absence of glasses. However, there is no way to guide Locally

Linear Embedding (LLE) (Roweis and Saul, 2000; Saul and Roweis, 2003)toward

one of these modes of variation. LLE captures the dominant mode of variation,

which could be neither of these two characteristics. This problem can be mitigated

by the proper exploitation of “side-information” about the data set. For example,

one could apply labels to a subset of the data to indicate the type of variability

that is of interest. Then the algorithm could be encouraged to reflect this kind of

variability.

In some existing methods, side-information about the manifold can be pro-

vided in the very restrictive form of equivalence constraints which indicate data

points that belong together in the low-dimensional embedding. Alternatively,

the proposed approach can employ a much wider range of constraints and side-

information including one-dimensional or even multi-dimensional qualitative and
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quantitative target variables. This extends the use of this method to the large class

of regression and function estimation problems.

There have been several attempts to develop a supervised version of LLE (de Rid-

der et al., 2003; Kouropteva et al., 2003; Li et al., 2008; Zhang, 2009; Zhang and

Zhao, 2007; Zhao et al., 2005). Most of these methods rely on class labels for the

data, in order to modify the within and between class distances. In α-Supervised

LLE (α-SLLE) (de Ridder et al., 2003; Kouropteva et al., 2003), the between-class

distances are increased by a constant value, but within-class distances remain un-

changed. Enhanced SLLE (Zhang, 2009) applies a nonlinear function to pairwise

distances which limits within-class distances to 1, but increases the between-class

distances. The method proposed in (Zhao et al., 2005) set the between-class dis-

tances to infinity. As a result, each point chooses all neighbors from the same

class.

We propose a different approach, inspired by the newly introduced indepen-

dence measure called the Hilbert-Schmidt Independence Criterion (HSIC) (Gret-

ton et al., 2005, 2008). We will show that conventional LLE can be viewed as a

dependence maximization method. That is, we show that LLE will find a low-

dimensional representation of the data that has a maximum dependence to the

high-dimensional observation space. We then modify the LLE objective function

in order to find a low-dimensional representation that simultaneously depends on

both the observed data as well as a set of target variables.

The rest of this paper is organized as follows: in Section 2, LLE is briefly

reviewed and its connection with kernel PCA is described. The Hilbert-Schmidt

Independence Criterion is described in Section 3. The proposed method, which we

call Guided LLE (GLLE), is presented in Section 4. Section 5 illustrates the uses
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of the proposed algorithm when applied to real data sets. Finally, we conclude in

Section 6.

1.1. Notation

We use Rp and Mp×q to denote the space of real p-dimensional vectors and

real p×q matrices, respectively. Scalars, vectors, and matrices are shown in small,

small bold, and capital letters, respectively. We use ‖x‖ to denote the Euclidean

norm (`2-norm) of vector x. For a square matrix A ∈ Mp×p, Tr(A) is the sum

of its diagonal elements. For a matrix A, Aij denotes its (i, j)-th entry. Ip, 1p,

and 0p, denote identity matrix, all-one, and all-zero vector, respectively. For any

matrix A, A> and A† denote its transpose and pseudo-inverse, respectively.

2. Locally Linear Embedding

Locally Linear Embedding (LLE) computes a low-dimensional neighborhood-

preserving embedding of a high-dimensional dataset (Roweis and Saul, 2000). A

dataset of dimensionality p, which is assumed to lie on or near a smooth nonlinear

manifold of dimensionality d � p, is mapped onto a single global coordinate

system of lower dimensionality, d. The global nonlinear structure is recovered by

locally linear fits.

Consider n real-valued vectors {xi ∈ Rp}ni=1 sampled from some underlying

manifold. We can assume each data point and its neighbors lie on, or are close

to, a locally linear patch of the manifold. By a linear mapping, consisting of a

translation, rotation, and scaling, the high-dimensional coordinates of each neigh-

borhood can be mapped to the global internal coordinates along the manifold.

Therefore, the nonlinear structure of the data can be identified through two linear
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steps: first, by computing the locally linear patches, and secondly, by computing

the linear mapping to the coordinate system of the manifold.

The main goal here is to map the high-dimensional data points to the sin-

gle global coordinate system of the manifold such that the relationships between

neighboring points are preserved. This proceeds in three steps:

1. Identify the neighbors of each data point xi. This can be done by finding

the k nearest neighbors, or by choosing all points within some fixed radius,

ε.

2. Compute the weights that best linearly reconstruct xi from its neighbors.

3. Find the low-dimensional embedding vector {yi ∈ Rd}ni=1, which is best

reconstructed by the weights determined in the previous step.

After finding the nearest neighbors in the first step, the second step must com-

pute a local geometry for each locally linear patch. This geometry is characterized

by linear coefficients that reconstruct each data point from its neighbors:

min
W

n∑
i=1

‖xi −
∑k

j=1Wiηi(j)xηi(j)‖2, (1)

where ηi(j) is the index of the j-th neighbor of xi, and W ∈ Mn×n is the weight

matrix. It then selects code vectors so as to preserve the reconstruction weights

by solving:

min
Y

n∑
i=1

‖yi −
∑k

j=1Wiηi(j)yηi(j)‖2 (2)

This objective can be reformulated as:

min
Y

Tr(YMY >) (3)
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where Y = [y1, . . . ,yn] and M = (I −W )>(I −W ).

The solution for Y can have an arbitrary origin and orientation. In order to

make the problem well-posed, these two degrees of freedom must be removed.

Requiring the coordinates to be centered on the origin (
∑

i yi = 0), and con-

straining the embedding data points to have unit covariance (Y Y > = I), removes

the first and second degrees of freedom, respectively.

The cost function can be optimized initially by the second of these two con-

straints. Under this constraint, the cost is minimized when the columns of Y >

(rows of Y ) are the eigenvectors associated with the lowest eigenvalues of M .

Discarding the eigenvector associated with eigenvalue 0 satisfies the first con-

straint.

2.1. Connection with Kernel PCA

A straightforward connection between LLE and Kernel PCA has been shown

in (Schölkopf and Smola, 2002) and (Y. Bengio and Paiement, 2003). Let λmax be

the largest eigenvalue of M = (I −W )>(I −W ). Then define the LLE kernel to

be:

K := (λI −M) (4)

This kernel is, in fact, a similarity measure based on the similarity of the

weights required to reconstruct two patterns in terms of k neighboring patterns.

The leading eigenvector of K is 1n, and the eigenvectors 2, . . . , d+ 1 provide the

LLE embedding.

An alternative interpretation of LLE as a specific form of Kernel PCA has been

discussed in (Ham et al., 2004) in detail. Based on this discussion, performing

Kernel PCA on the pseudo-inverse of M is equivalent to LLE. Therefore, the
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LLE kernel can also be defined as:

K† := M †. (5)

3. Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt norm of the cross-covariance operator (Gretton et al.,

2005, 2008) in reproducing kernel Hilbert spaces (RKHS) (Schölkopf and Smola,

2002) has been proposed as an independence criterion. This measure will be re-

ferred to as the Hilbert-Schmidt Independence Criterion, or HSIC. HSIC uses the

fact that two random variables x and y are independent if and only if any bounded

continuous function of the two random variables is uncorrelated. Consider two

multivariate random variables x and y. Define a RKHS F from X to R contain-

ing all continuous bounded real-valued functions of x, and a RKHS G from Y to

R containing all continuous bounded real-valued functions of y. Here, X and Y

denote the support (the set of possible values) of the random variables x and y,

respectively. We are interested in the cross-covariance between elements ofF and

G:

Cov(f(x), g(y)) =

Ex,y[f(x)g(y)]− Ex[f(x)]Ey[g(y)]. (6)

It can be shown that there exists a unique operator1 Cx,y : G → F , mapping

elements of G to elements ofF such that: 〈f, Cx,y(g)〉F = Cov(f, g) for all f ∈ F

and g ∈ G. This operator is called the cross-covariance operator.

1In the terminology of functional analysis, an operator is a mapping which maps elements from

one Hilbert space to elements of another Hilbert space.
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The measure of dependence between two random variables can be defined as

the Hilbert-Schmidt norm2 of the cross-covariance operator:

HSIC(px,y,F ,G) := ‖Cxy‖2HS. (7)

Note that if ‖Cxy‖2HS is zero, then the value of 〈f, Cx,y(g)〉, i.e., Cov(f, g),

will always be zero for any f ∈ F and g ∈ G, and thus the random variables x

and y are independent.

3.1. Empirical HSIC

To compute the HSIC we need to express it in terms of kernel functions. This

can be achieved via the following identity:

HSIC(px,y,F ,G) =Ex,x′,y,y′ [kx(x,x′)ky(y,y′)] (8)

+Ex,x′ [kx(x,x′)]Ey,y′ [ky(y,y′)]

−2Ex,y [Ex′ [kx(x,x′)]Ey′ [ky(y,y′)]]

Now letZ := {(xi,yi)}ni=1 ⊆ X×Y be a series of n independent observations

drawn from px,y. An estimator of HSIC is given by:

HSIC(Z,F ,G) := (n− 1)−2 Tr(KxHKyH), (9)

2We may define the concept of the norm of an operator. For example, consider an operator

in the form of a matrix Cn×m mapping vectors of Rm to vectors of Rn. Then the Frobenius

norm of this matrix may be defined as the norm of the corresponding operator. There are different

norms defined for operators. One of them is called the Hilbert-Schmidt (HS) norm and is defined

as follows: ‖C‖2HS :=
∑

i,j〈Cvi,uj〉2F where uj and vi are the orthogonal bases of F and G,

respectively. It is easy to see that the Frobenius norm on matrices may be considered a special

case of this norm.
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where H , Kx, and Ky are n × n positive semi-definite matrices, (Kx)ij :=

kx(xi,xj), (Ky)ij := ky(yi,yj), kx(·, ·) and ky(·, ·) are positive semi-definite

kernel functions (see (Schölkopf and Smola, 2002) for details on kernel func-

tions), and H = (I − 1
n
11>)(I − 1

n
11>) is the centering matrix. Based on this

result, in order to maximize the dependence between two random variables x and

y, we need to increase the value of the empirical estimate, i.e., Tr(KxHKyH).

4. Guided LLE

Many unsupervised dimensionality reduction algorithms including LLE can

be interpreted as dependence maximization. Here, kernel Ky in equation (9) de-

notes the kernel of the low-dimensional representation of the data, while Kx rep-

resents the kernel of the data in high-dimension. More precisely, if we assume

the original data points xi and embedded data points yi are multi-variate random

variables, and Z := {(xi,yi)}ni=1 ⊆ X ×Y are independently sampled from px,y,

then the empirical HSIC between x and y is calculated as:

HSIC(Z,F ,G) = Tr (KyHKxH). (10)

In the case that Kx = K†, the LLE kernel, and Ky = Y >Y is the linear

kernel, then maximizing (10) subject to the constraint that Y Y > = I resembles

the formulation of LLE in (3):

Tr (KyHKxH) = Tr (Y HK†HY
>) (11)

It is important to note that the kernel K† suggested for LLE is already double-

centered and the application of the centering matrix H in equation (11) leaves
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it unchanged3. Therefore, equation (11) can be written as Tr(Y K†Y
>) and the

optimization can be formulated as:

max
Y

Tr (Y K†Y
>) (12)

s.t. Y Y > = I

which is equivalent to:

min
Y

Tr (YMY >) (13)

s.t. Y Y > = I

since K† is the pseudo-inverse of M . This means that LLE can be seen entirely

as a dependence maximization problem in which the algorithm searches for a d-

dimensional representation with maximum dependence to the p-dimensional (d�

p) observation space.

Now consider a supervised problem (e.g. pattern recognition or function es-

timation), where each data point xi is associated with a corresponding target ti.

The targets may be discrete (i.e., class labels in classification), or continuous (as

in regression). If Kt is a kernel of target variables ti, then a d-dimensional repre-

sentation y with maximum dependence to t can be retrieved from the following

optimization problem:

3Also, the centering effect of H on the kernel K := (λI −M) does not affect the result. This

is because multiplication by H , from both the left and the right, only removes the eigenvector 1

and leaves the remaining eigenvectors unchanged.
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max
Y

Tr (Y HKtHY
>), (14)

s.t. Y Y > = I,

or equivalently,

min
Y

Tr (Y HK†tHY
>), (15)

s.t. Y Y > = I.

We will now propose a new cost function that can combine the two differ-

ent d-dimensional representations in (12) and (15) into a single cost function.

The first similarity measure (kernel K†) is derived from LLE and constructed

as
(
(I −Wx)>(I −Wx)

)†, where Wx is the matrix of reconstruction weights of

{xi}ni=1. A similarity measure of target values ti, expressed in a matrix Kt, can

be derived from LLE as
(
(I −Wt)

>(I −Wt)
)† in the same manner where Wt is

the matrix of reconstruction weights of {ti}ni=1. This can also be derived from any

arbitrary kernel function. We can now form our combined embedding objective

as:

min
Y

(1− γ) Tr(Y (K†)
†Y >) + γ Tr(Y (Kt)

†Y >),

s.t. Y Y > = I (16)

where Y is a matrix of code vectors and 0 ≤ γ ≤ 1. The first trace term in this ob-

jective is essentially the LLE objective, trying to preserve the structure of {xi}ni=1.

The second trace term is again the cost function of a locality-preserving embed-

ding; but unlike the first term, it attempts to preserve the target value information

in the embedded space. The parameter γ mixes the objectives; it embeds on the
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basis of only {xi}ni=1 as γ tends to zero, and on the target value {ti}ni=1 as γ tends

to 1. This problem is an instance of the Rayleigh-Ritz theorem and can be solved

in closed form. If we combine the two trace terms together and form Mψ as

Mψ = (1− γ)M + γK†t , (17)

then the optimal Y , is the bottom d eigenvectors of Mψ, with a corresponding

nonzero eigenvalue. Algorithm 1 illustrates details of the Guided Locally Linear

Embedding algorithm.

4.1. A short note on α-SLLE

Most of the existing variations of supervised LLE arbitrarily modify the dis-

tances between data points based on their label information. Among existing su-

pervised LLE methods, the most cited and widely-used approach is α-SLLE (de Rid-

der et al., 2003). In α-SLLE, the n×n distance matrix between all points, denoted

by ∆, is modified as follows:

∆′ = ∆ + αmax(∆)Λ, α ∈ [0, 1] (18)

where ∆′ is the new distance matrix, max(∆) is the maximum entry in ∆, and

Λij = 1 if xi and xj share the same label, and 0 otherwise. The 0-SLLE is

identical to the original LLE. However, in 1-SLLE, neighbors of xi are selected

only from the same class. This could be problematic as it leads to a disconnected

neighborhood graph; one should note that LLE needs to work with a connected

graph by construction. Recall that the solution of LLE is derived from the eigen-

decomposition of matrix M = (I−W )>(I−W ). Here (I−W ) is the Laplacian

of the neighborhood graph, and therefore the number of eigenvalues that are equal

to zero indicates the number of connected subgraphs. For a data set with c classes,
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Alg. 1 Guided Locally Linear Embedding

Input: {(xi ∈ Rp, ti)}n1 , k, γ

Output: {yi ∈ Rd}n1

1: Identify the k-nearest neighbors of each data point xi.

2: Define ηi(j) as the index of the j-th neighbor of xi,

3: For each data point xi, find the k × k local Gram matrix G(i) such that

G
(i)
``′ = (xi − xηi(`))

>(xi − xηi(`′)).

4: Find the reconstruction weights wi by solving G(i)wi = 1.

5: Normalize weights by wi ← wi/
∑

wi.

6: Form the sparse reconstruction weight matrix W as

Wij =

 wi(`) ∃ ` : j = ηi(`)

0 otherwise

(This is the W that minimize (1)).

7: Construct matrix M from W as:

M = (I −W )>(I −W ).

8: Construct a kernel matrix for targets and find its pseudo-inverse (Kt)
†.

(This can be done for example from (22)).

9: Find Y as the d bottom eigenvectors of Mψ with a corresponding nonzero

eigenvalue where

Mψ = γM + (1− γ)K†t

10: Set yi as the i-th row of matrix Y .

13



the bottom c eigenvalues of M in 1-SLLE will all be equal to zero. This will pro-

duce a low-dimensional mapping completely independent from the observation

space, in which all the points within each class are collapsed to a single point. As

far as a supervised task such as classification or regression is concerned, such an

embedding will perform poorly at generalization. This may sound like a worst-

case scenario. However, since max(∆) can be much larger than the local distances

between close neighboring points, even for very small values of α, this algorithm

does not ensure a connected graph.

5. Experimental results

There are many different approaches in supervised dimensionality reduction

algorithms. This includes classical Fisher’s Discriminant Analysis (Fisher (1936)),

the large family of methods known as Metric Learning (Xing et al., 2002; Bilenko

et al., 2004; Chang and Yeung, 2004, 2006; Yeung and Chang, 2006; Basu et al.,

2004; Weinberger et al., 2006; Globerson and Roweis, 2006; Alipanahi et al.,

2008)), the family of Sufficient Dimension Reduction (SDR) (Li, 1991; Cook and

Weisberg, 1991; Li, 1992; Samarov, 1993; Cook and Yin, 2001; Hristache et al.,

2001; Torkkola, 2003; Fukumizu et al., 2004)), algorithms and supervised version

of LLE (de Ridder et al., 2003; Kouropteva et al., 2003; Li et al., 2008; Zhang,

2009; Zhang and Zhao, 2007; Zhao et al., 2005)). Due to the vast variety of these

techniques, we restrict our attention to the family of supervised LLE methods and

compare the proposed algorithm with α-SLLE in this family because to the best

of our knowledge α-SLLE is the most cited and the most popular method among

existing supervised LLE.
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5.1. The Kernel on Targets

In order to compute Mψ in eq. (17), we need the pseudo-inverse of the kernel

on labels, K†t . The kernel can be constructed in various forms. Without loss

of generality, we assume that there are c classes or unique labels, and ∀i, ti ∈

{1, . . . , c}. We choose a kernel of the form Kt = H(BB>)H , where H is the

centering matrix and B is defined as:

B = [b1, . . . ,bc], (19)

where bq(j) is one if tj = q, and zero otherwise. For example if there are 5 data

points such that the first 3 data points belong to class 1 and the forth and the fifth

data points are from class 2, Kt can be formed as follows:

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 1 1

0 0 0 1 1


(20)

Computing (Kt)
† is very easy, becauseH is idempotent andH† = H , we have

(Kt)
† = H(BB>)†H . It is easy to show thatBB> has c eigenvalues of n1, . . . , nc

associated with b1/
√
n1, . . . ,bc/

√
nc eigenvectors, respectively, where nq de-

notes the number of samples in class q. Therefore, we have:

(BB>)† =
c∑

q=1

bqb
>
q

n2
q

. (21)

Consequently, (Kt)
† is given by:

(Kt)
† = H

(
c∑

q=1

bqb
>
q

n2
q

)
H. (22)
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5.2. Classification

In order to test the performance of GLLE compared to LLE and α-SLLE, we

ran a set of classification experiments on several UCI datasets. For each dataset,

the data points are first normalized to have zero mean and unit standard deviation

in each dimension. Since each algorithm relies on a number of input parameters

(number of nearest neighbors k, α in α-SLLE, and γ in GLLE), 5-fold cross-

validation is performed on the data to determine the optimal parameter settings.

We used the algorithms on the normalized data to produce 2-dimensional em-

beddings of each dataset. Finally, a linear SVM classifier was trained on a train-

ing set, and a test dataset was used to evaluate the classification performance.

Note that LLE and GLLE do not provide any direct way to handle out-of-sample

(test) examples. A common approach to resolve this problem is to learn a non-

parametric model between the low and high-dimensional spaces. In this approach,

a high-dimensional test data point x is mapped to the low-dimensional space in

three steps: (i) the k nearest neighbors of x among the training inputs (in the

original space) are identified; (ii) the linear weights that best reconstruct x from

its neighbors, subject to a sum-to-one constraint, are computed; (iii) the low-

dimensional representation of x is computed as the weighted sum (with weights

computed in the previous step) of the embedded points corresponding to those k

neighbors of x in the original space. In all of the examples in this paper, the test

set embedding is conducted using this non-parametric model.

We chose the linear SVM classifier to highlight the linear separability of the

different groups in the low-dimensional embeddings. The accuracy results are

listed in Table 1.

It is interesting that by using only two dimensions, the performance figures

16



Dataset num. dim. classes GLLE k γ α-SLLE k α LLE k

Protein 116 20 6 64.5 5 0.75 56.2 5 0.1 47.6 90

Housing 506 13 2 93.1 5 0.0 93.1 5 0.0 93.1 5

Wine 178 13 3 99.1 30 0.1 96.6 100 0.01 96.6 100

Balance 625 5 3 94.4 15 0.05 91.7 30 1 69.2 100

Ion 351 34 2 92.8 50 0.25 92.2 50 0.25 79.1 5

Soybean 47 35 4 100 30 0.05 98.3 35 0.01 98.3 35

Table 1: Classification results of GLLE, α-SLLE, and LLE on a number of datasets; algorithm

accuracy is given as a percentile. “num.” is the number of points in the dataset, and “dim.” is

the dimensionality. A SVM classifier with a linear kernel is used for classification. The optimal

parameter(s) of different algorithms are shown, as determined by 5-fold cross-validation.

are appealing, except for the Protein dataset which has six classes and 20 dimen-

sions. Furthermore, the optimal number of nearest neighbors k is usually smaller

for GLLE, which results in faster computation times. An interesting dataset is

Balance, for which applying the SVM on the original data results in 20% bet-

ter accuracy compared to LLE. As can be seen in Figure 5.2 (a), LLE’s embed-

ding points of different classes severely overlap, while for GLLE the samples are

clearly separated (see Figure 5.2 (b)).

5.3. Visualization

In this section, we compare the embeddings that are generated by LLE and

GLLE for data visualization. GLLE uses target variables to guide the embeddings

about some characteristic of interest in each dataset. The embeddings can then be

examined to see whether they capture that characteristic. To show that the target

variable truly guides the embedding, three data sets are examined.

Figure 1 demonstrates results on the UCI Balance data set, which consists
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Figure 1: Comparison of LLE (k=100) with 0.05-GLLE (k=15) for the UCI Balance dataset. Data

points of different classes are shown with different symbols. Training data points are hollow and

test data points are filled.
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of 3 classes of categorical data in 5 dimensions. The 2-dimensional embedding

computed by LLE scatters data from each class across the entire manifold. Alter-

natively, GLLE yields an embedding where two of the classes are mostly polar-

ized, with one class in-between. This visualization qualitatively demonstrates the

effectiveness of GLLE and the impact of the target variable information.

The next two experiments are conducted on very high-dimensional image

datasets. One of these experiments is performed on 200 examples of 4096-dimensi-

onal Olivetti Faces and the other one on 1000 examples of 256-dimensional USPS

handwritten digits.

The results of the Olivetti Faces, shown in Figure 2, demonstrate the benefit

of GLLE on a high-dimensional image dataset. There are 200 images of faces and

one distinction is identified by labels: faces with glasses vs. faces without glasses.

In this case, again, a two-dimensional embedding is shown. The two classes

are marked with different markers. Additionally, a subset of the images are dis-

played on the plot (including all images renders the plot unreadable).

Note that, in general, GLLE manages to separate the data based on the target

property, whereas the original LLE is typically chaotic.

Finally, Figure 3 compares LLE and GLLE on a randomized subset of the

USPS handwritten digits dataset. All ten groups of the digits are visualized, with

GLLE separating the classes into disjoint groups. Furthermore, classes that are

visually similar located closer together in the 2-dimensional embedding.

6. Conclusion

We have proposed a novel, supervised extension to Locally Linear Embedding

(LLE). The proposed method, Guided LLE (GLLE), is inspired by the Hilber-
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Figure 2: Comparison of Visualizations acquired by LLE and 0.5-GLLE (k=50). There are two

groups: persons with and without glasses.
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Figure 3: Comparison of visualizations of the embeddings acquired by LLE and 0.75-GLLE

(k=50). The figures are generated by randomly sampling 1000 points from the USPS handwritten

digits dataset, and using each algorithm to compute the low-dimensional embedding.
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Schmidt Independence Criterion and can make use of many types of side-information

represented in the form of target variables. The algorithm has some interesting ad-

vantages vs. other supervised extensions of LLE, and we have demonstrated its

effectiveness in classification and data visualization tasks.
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