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Abstract. All practical contemporary protein NMR structure deter-
mination methods use molecular dynamics coupled with a simulated an-
nealing schedule. The objective of these methods is to minimize the error
of deviating from the NOE distance constraints. However, this objective
function is highly nonconvex and, consequently, difficult to optimize. Eu-
clidean distance geometry methods based on semidefinite programming
(SDP) provide a natural formulation for this problem. However, com-
plexity of SDP solvers and ambiguous distance constraints are major
challenges to this approach. The contribution of this paper is to provide
a new SDP formulation of this problem that overcomes these two issues
for the first time. We model the protein as a set of intersecting two- and
three-dimensional cliques, then we adapt and extend a technique called
semidefinite facial reduction to reduce the SDP problem size to approxi-
mately one quarter of the size of the original problem. The reduced SDP
problem can not only be solved approximately 100 times faster, but is
also resistant to numerical problems from having erroneous and inexact
distance bounds.
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1 Introduction

Computing three-dimensional protein structures from their amino acid
sequences has been one of the most widely studied problems in bioinfor-
matics because knowing the structure of protein structure is key to under-
standing its physical, chemical, and biological properties. The protein nu-
clear magnetic resonance (NMR) method is fundamentally different from
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the X-ray method: It is not a “microscope with atomic resolution”; rather
it provides a network of distance measurements between spatially prox-
imate hydrogen atoms [12]. As a result, the NMR method relies heavily
on complex computational algorithms. The existing methods for protein
NMR can be categorized into four major groups: (i) methods based on
Euclidean distance matrix completion (EDMC) [6, 15, 5, 20], (ii) meth-
ods based on molecular dynamics and simulated annealing [24, 8, 28, 14,
13], (iii) methods based on local/global optimization [7, 23, 34], and (iv)
methods originating from sequence-based protein structure prediction al-
gorithms [29, 25, 2].

1.1 Gram Matrix Methods

Using the Gram matrix, or the matrix of inner products, has many ad-
vantages: (i) The Gram matrix and Euclidean distance matrix (EDM) are
linearly related to each other. (ii) Instead of enforcing all of the triangle
inequality constraints, it is sufficient to enforce that the Gram matrix is
positive semidefinite. (iii) The embedding dimension and the rank of the
Gram matrix are directly related. Semidefinite programming (SDP) is a
natural choice for formulating the problem using the Gram matrix. How-
ever, the major obstacle is the computational complexity of SDP solvers.

1.2 Contributions of the Proposed SPROS Method

Most of the existing methods make some of the following assumptions: (i)
assuming to know the (nearly) exact distances between atoms, (ii) assum-
ing to have the distances between any type of nuclei (not just hydrogens),
(iii) ignoring the fact that not all hydrogens can be uniquely assigned,
and (iv) overlooking the ambiguity in the NOE cross-peak assignments.
In order to automate the NMR protein structure determination process,
we need a robust structure calculation method that tolerates more errors.
We give a new SDP formulation that does not assume (i–iv) above. More-
over, the new method, called “SPROS” (Semidefinite Programming-based
Protein structure determination), models the protein molecule as a set of
intersecting two- and three-dimension cliques. We adapt and extend a
technique called semidefinite facial reduction which makes the SDP prob-
lem strictly feasible and reduces its size to approximately one quarter the
size of the original problem. The reduced problem is more numerically
stable to solve and can be solved nearly 100 times faster.
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2 The SPROS Method

2.1 Euclidean Distance Geometry

Euclidean Distance Matrix A symmetric matrix D is called a Eu-
clidean Distance Matrix (EDM) if there exists a set of points {x1, . . . ,xn},
xi ∈ Rr such that:

Dij = ‖xi − xj‖2, ∀i, j. (1)

The smallest value of r is called the embedding dimension of D, and is
denoted embdim(D) = r. The space of all n× n EDMs is denoted En.

The Gram Matrix If we define X := [x1, . . . ,xn] ∈ Rr×n, then the
matrix of inner-products, or Gram Matrix, is given by G := X>X. It im-
mediately follows that G ∈ Sn+, where Sn+ is the set of symmetric positive
semidefinite n×n matrices. The Gram matrix and the Euclidean distance
matrix are linearly related:

D = K(G) := diag(G) · 1> + 1 · diag(G)> − 2G, (2)

where 1 is the all-ones vector of the appropriate size. To go from the
EDM to the Gram matrix, we use the K† : Sn → Sn linear map:

G = K†(D) := −1
2HDH, D ∈ SnH , (3)

where H = I− 1
n11> is the centering matrix, Sn is the space of symmetric

n × n matrices, and SnH := {A ∈ Sn : diag(A) = 0}, is the set of
symmetric matrices with zero diagonal.

Schoenberg’s Theorem Given a matrix D, we can determine if it is an
EDM with the following well-known theorem [27]:

Theorem 1. A matrix D ∈ SnH is a Euclidean distance matrix if and only
if K†(D) is positive semidefinite. Moreover, embdim(D) = rank(K†(D))
for all D ∈ En.

2.2 The SDP Formulation

Semidefinite optimization or, more commonly, semidefinite programming
is a class of convex optimization problems that has attracted much atten-
tion in the optimization community and has found numerous applications
in different science and engineering fields. Notably, several diverse convex
optimization problems can be formulated as SDP problems [31]. Cur-
rent state-of-the-art SDP solvers are based on primal-dual interior-point
methods.
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Preliminary Problem Formulation There are three types of con-
straints in our formulation: (i) equality constraints, which are the union
of equality constraints preserving bond lengths (B), bond angles (A), and
planarity of the coplanar atoms (P), giving E = EB ∪ EA ∪ EP ; (ii) upper
bounds, which are the union of NOE-derived (N ), hydrogen bonds (H),
disulfide and salt bridges (D), and torsion angle (T ) upper bounds, giv-
ing U = UN ∪ UH ∪ UD ∪ UT ; (iii) lower bounds, which are the union of
steric or van der Waals (W) and torsion angle (T ) lower bounds, giving
L = LW ∪LT . We assume the target protein has n atoms, a1, . . . , an. The
preliminary problem formulation is given by:

minimize γ〈I,K〉+
∑

ij wijξij +
∑

ij w
′
ijζij (4)

subject to 〈Aij ,K〉 = eij , (i, j) ∈ E
〈Aij ,K〉 ≤ uij + ξij , (i, j) ∈ U
〈Aij ,K〉 ≥ lij − ζij , (i, j) ∈ L
ξij ∈ R+, (i, j) ∈ U , ζij ∈ R+, (i, j) ∈ L
K1 = 0, K ∈ Sn+,

where Aij = (ei − ej)(ei − ej)
> and ei is the ith column of the identity

matrix. The centering constraint K1 = 0, ensures that the embedding of
K is centered at the origin. Since both upper bounds and lower bounds
may be inaccurate and noisy, non-negative penalized slacks, ζij ’s and
ξij ’s, are included to prevent infeasibility and manage ambiguous upper
bounds. The heuristic rank reduction term, γ〈I,K〉, with γ < 0, in the
objective function, produces lower-rank solutions [33].

Challenges in Solving the SDP Problem Solving the optimization
problem in (4) can be challenging: For small to medium sized proteins, the
number of atoms, n, is 1,000-3,500, and current primal-dual interior-point
SDP solvers cannot solve problems with n > 2, 000 efficiently. Moreover,
the optimization problem in (4) does not satisfy strict feasibility, causing
numerical problems; see [32].

It can be observed that the protein contains many small intersecting
cliques. For example, peptide planes or aromatic rings, are 2D cliques, and
tetrahedral carbons form 3D cliques. As we show later, whenever there
is a clique in the protein, the corresponding Gram matrix, K, can never
be full-rank, which violates strict feasibility. By adapting and extending
a technique called semidefinite facial reduction, not only do we obtain an
equivalent problem that satisfies strict feasibility, but we also significantly
reduce the SDP problem size.
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2.3 Cliques in a Protein Molecule

A protein molecule with ` amino acid residues has ` + 1 planes in its
backbone. Moreover, each amino acid has a different side chain with a
different structure; therefore, the number of cliques in each side chain
varies. We assume that the i-th residue, ri, has si cliques in its side

chain, denoted by S(1)i , . . . ,S(si)i . For all amino acids (except glycine and
proline), the first side chain clique is formed around the tetrahedral car-

bon CA, S(1)i = {Ni,CAi,HAi,CBi,Ci}, which intersects with two pep-

tide planes Pi−1 and Pi in two atoms: S(1)i ∩ Pi−1 = {Ni,CAi} and

S(1)i ∩Pi = {CAi,Ci}. There is a total of q = `+1+
∑`

i=1 si cliques in the
distance matrix of any protein. To simplify, let Ci = Pi−1, 1 ≤ i ≤ `+ 1,

and C`+2 = S(1)1 , C`+2 = S(2)1 , . . . , Cq = S(s`)` .

2.4 Algorithm for Finding the Face of the Structure

For t < n and U ∈ Rn×t, the set of matrices USt+U> is a face of Sn+
(in fact every face of Sn+ can be described in this way); see, e.g., [26].
We let face(F) represent the smallest face containing a subset F of Sn+;
then we have the important property that face(F) = USt+U> if and
only if there exists Z ∈ St++ such that UZU> ∈ F . Furthermore, in this
case, we have that every Y ∈ F can be decomposed as Y = UZU>, for
some Z ∈ St+, and the reduced feasible set {Z ∈ St+ : UZU> ∈ F} has a
strictly feasible point, giving us a problem that is more numerically stable
to solve (problems that are not strictly feasible have a dual optimal set
that is unbounded and therefore can be difficult to solve numerically; for
more information, see [32]). Moreover, if t� n, this results in a significant
reduction in the matrix size.

The Face of a Single Clique Here, we solve the Single Clique prob-
lem, which is defined as follows: Let D be a partial EDM of a protein.
Suppose the first n1 points form a clique in the protein, such that for
C1 = {1, . . . , n1}, all distances are known. That is, the matrix D1 = D[C1]
is completely specified, where for an index set I ⊆ {1, . . . , n}, B = A[I]
is the |I| × |I| matrix formed by rows and columns of A indexed by I.
Moreover, let r1 = embdim(D1). We now show how to compute the
smallest face containing the feasible set {K ∈ Sn+ : K(K[C1]) = D1}.

Theorem 2 (Single Clique, [17]). Let U1 ∈ Rn×(n−n1+r1+1) be de-
fined as follows:

– let V1 ∈ Rn1×r1 be a full column rank matrix such that range(V1) =
range(K†(D1));
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– let Ū1 :=
[
V1 1

]
and U1 :=

[ r1+1 n−n1

n1 Ū1 0
n−n1 0 I

]
∈ Rn×(n−n1+r1+1).

Then U1 has full column rank, 1 ∈ range(U), and

face{K ∈ Sn+ : K(K[C1]) = D[C1]} = U1Sn−n1+r1+1
+ U>1 .

Computing the V1 Matrix In Theorem 2, we can find V1 by computing
the eigendecomposition of K†(D[C1]) as follows:

K†(D[C1]) = V1Λ1V
>
1 , V1 ∈ Rn1×r1 , Λ1 ∈ Sr1++. (5)

It can be seen that V1 has full column rank (columns are orthonormal)
and also range(K†(D[C1])) = range(V1).

2.5 The Face of a Protein Molecule

The protein molecule is made of q cliques, {C1, . . . , Cq}, such that D[Cl]
is known, and we have rl = embdim(D[Cl]), and nl = |Cl|. Let F be
the feasible set of the SDP problem. If for each clique Cl, we define Fl :=
{K ∈ Sn+ : K(K[Cl]) = D[Cl]}, then

F ⊆

(
q⋂

l=1

Fl

)
∩ SnC , (6)

where SnC = {K ∈ Sn : K1 = 0}. For l = 1, . . . , q, let Fl := face(Fl) =
UlSn−nl+rl+1

+ U>l , where Ul is computed as in Theorem 2. We have [17]:(
q⋂

l=1

Fl

)
∩ SnC ⊆

(
q⋂

l=1

UlSn−nl+rl+1
+ U>l

)
∩ SnC = (USk+U>) ∩ SnC , (7)

where U ∈ Rn×k is a full column rank matrix that satisfies range(U) =⋂q
l=1 range(Ul).

We now have an efficient method for computing the face of the feasible
set F . After computing U , we can decompose the Gram matrix as K =
UZU>, for Z ∈ Sk+. However, by exploiting the centering constraint,
K1 = 0, we can reduce the matrix size one more. If V ∈ Rk×(k−1) has
full column rank and satisfies range(V ) = null(1>U), then we have [17]:

F ⊆ (UV )Sk−1+ (UV )>. (8)

For more details on facial reduction for Euclidean distance matrix
completion problems, see [16].
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Constraints for Preserving the Structure of Cliques If we find a
base set of points Bl in each clique Cl such that embdim(D[Bl]) = rl,
then by fixing the distances between points in the base set and fixing
the distances between points in Cl \ Bl and points in Bl, the entire clique
is kept rigid. Therefore, we need to fix only the distances between base
points [3], resulting in a three- to four-fold reduction in the number of
equality constraints. We call the reduced set of equality constraints EFR.

2.6 Solving and Refining the Reduced SDP Problem

From equation (8), we can formulate the reduced SDP problem as follows:

minimize γ〈I, Z〉+
∑

ij wijξij +
∑

ij w
′
ijζij (9)

subject to 〈A′ij , Z〉 = eij , (i, j) ∈ EFR
〈A′ij , Z〉 ≤ uij + ξij , (i, j) ∈ U
〈A′ij , Z〉 ≥ lij − ζij , (i, j) ∈ L
ξij ∈ R+, (i, j) ∈ U , ζij ∈ R+, (i, j) ∈ L
Z ∈ Sk−1+ ,

where A′ij = (UV )>Aij(UV ).

Post-Processing We perform a refinement on the raw structure de-
termined by the SDP solver. For this refinement we use a BFGS-based
quasi-Newton method [21] that only requires the value of the objective
function and its gradient at each point. Letting X(0) = XSDP, we itera-
tively minimize the following objective function:

φ(X) = wE
∑

(i,j)∈E

(‖xi − xj‖ − eij)2 + wU
∑

(i,j)∈U

f (‖xi − xj‖ − uij)2

+ wL
∑

(i,j)∈L

g (‖xi − xj‖ − lij)2 + wr

n∑
i=1

‖xi‖2, (10)

where f(α) = max(0, α) and g(α) = min(0,−α), and wr is the weight of
the regularization term. We also employ a hybrid protocol from XPLOR-
NIH that incorporates thin-layer water refinement [22] and a multidimen-
sional torsion angle database [18, 19].

3 Results

We tested the performance of SPROS on 18 proteins: 15 protein data
sets from the DOCR database in the NMR Restraints Grid [10, 11] and
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three protein data sets from Donaldson’s laboratory at York University.
We chose proteins with different sizes and topologies, as listed in Table 1.
Finally, the input to the SPROS method is exactly the same as the input
to the widely-used CYANA method.

3.1 Implementation

The SPROS method has been implemented and tested in Matlab 7.13
(apart from the water refinement, which is done by XPLOR-NIH). For
solving the SDP problem, we used the SDPT3 method [30]. For minimiz-
ing the post-processing objective function (10), we used the BFGS-based
quasi-Newton method implementation by Lewis and Overton [21]. All
the experiments were carried out on an Ubuntu 11.04 Linux PC with a
2.8 GHz Intel Core i7 Quad-Core processor and 8 GB of memory.

3.2 Determined Structures

From the 18 test proteins, 9 of them were calculated with backbone
RMSDs less than or equal to 1 Å, and 16 have backbone RMSDs less
than 1.5 Å. Detailed analysis of calculated structures is listed in Table 2.
The superimposition of the SPROS and reference structures for three of
the proteins are depicted in Fig. 1. More detailed information about the
determined structures can be found in [4].

To further assess the performance of SPROS, we compared the SPROS
and reference structures for 1G6J, Ubiquitin, and 2GJY, PTB domain of
Tensin, with their corresponding X-ray structures, 1UBQ and 1WVH, respec-
tively. For 1G6J, the backbone (heavy atoms) RMSDs for SPROS and the
reference structures are 0.42 Å (0.57 Å) and 0.73±0.04 Å (0.98±0.04 Å),
respectively. For 2GJY, the backbone (heavy atoms) RMSDs for SPROS
and the reference structures are 0.88 Å (1.15 Å) and 0.89 ± 0.08 Å (1.21
± 0.06 Å), respectively.

3.3 Discussion

The SPROS method was tested on 18 experimentally derived protein
NMR data sets of sequence lengths ranging from 76 to 307 (weights rang-
ing from 8 to 35 KDa). Calculation times were in the order of a few
minutes per structure. Accurate results were obtained for all of the data
sets, although with some variability in precision. The best attribute of the
SPROS method is its tolerance for, and efficiency at, managing many in-
correct distance constraints (that are typically defined as upper bounds).

Our final goal is a fully automated system for NMR protein struc-
ture determination, from peak picking [1] to resonance assignment [2], to
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(a) 2L3O (b) 2K49 (c) 2YTO

Fig. 1. Superimposition of structures determined by SPROS in blue and the reference
structures in red.

Table 1. Information about the proteins used in testing SPROS. The second, third,
and fourth columns, list the topologies, sequence lengths, and molecular weight of
the proteins, the fifth and sixth columns, n and n′, list the original and reduced SDP
matrix sizes, respectively. The seventh column lists the number of cliques in the protein.
The eights and ninth columns, mE and m′

E , list the number of equality constraints in
the original and reduced problems, respectively. The 10th column, mU , lists the total
number of upper bounds for each protein. The 11th column, bound types, lists intra-
residue, |i − j| = 0, sequential, |i − j| = 1, medium range, 1 < |i − j| ≤ 4, and long
range, |i−j| > 4, respectively, in percentile. The 12th column, m̄U±sU , lists the average
number of upper bounds per residue, together with the standard deviation. The 13th

column, mN , lists the number of NOE-inferred upper bounds. The 14th column, pU ,
lists the fraction of pseudo-atoms in the upper bounds in percentile. The last two
columns, mT and mH, list the number of upper bounds inferred from torsion angle
restraints, and hydrogen bonds, disulfide and salt bridges, respectively.

ID topo. len. weight n n′ cliques (2D/3D) mE m′
E mU bound types m̄U ± sU mN pU mT mH

1G6J a+b 76 8.58 1434 405 304 (201/103) 5543 1167 1354 21/29/17/33 31.9±15.3 1291 32 63 0
1B4R B 80 7.96 1281 346 248 (145/103) 4887 1027 787 26/25/ 6 /43 17.1±10.8 687 30 22 78
2E8O A 103 11.40 1523 419 317 (212/105) 5846 1214 3157 19/29/26/26 71.4±35.4 3070 24 87 0
1CN7 a/b 104 11.30 1927 532 393 (253/140) 7399 1540 1560 46/24/12/18 23.1±13.4 1418 31 80 62
2KTS a/b 117 12.85 2075 593 448 (299/149) 7968 1719 2279 22/28/14/36 34.6±17.4 2276 25 0 3
2K49 a+b 118 13.10 2017 574 433 (291/142) 7710 1657 2612 22/27/18/38 40.9±21.1 2374 27 146 92
2K62 B 125 15.10 2328 655 492 (327/165) 8943 1886 2367 21/32/15/32 33.9±18.6 2187 32 180 0
2L3O A 127 14.30 1867 512 393 (269/124) 7143 1492 1270 24/38/20/18 22.5±12.7 1055 25 156 59
2GJY a+b 144 15.67 2337 639 474 (302/172) 8919 1875 1710 7 /30/19/44 25.0±16.6 1536 29 98 76
2KTE a/b 152 17.21 2576 717 542 (360/182) 9861 2089 1899 17/31/22/30 24.3±20.8 1669 30 124 106
1XPW B 153 17.44 2578 723 541 (355/186) 9837 2081 1206 0 /31/11/58 17.0±10.8 934 37 210 62
2K7H a/b 157 16.66 2710 756 563 (363/200) 10452 2196 2768 29/33/13/25 30.3±11.3 2481 19 239 48
2KVP A 165 17.28 2533 722 535 (344/191) 9703 2094 5204 31/26/23/20 59.2±25.0 4972 22 232 0
2YT0 a+b 176 19.17 2940 828 627 (419/208) 11210 2404 3357 23/28/14/35 34.9±22.3 3237 30 120 0
2L7B A 307 35.30 5603 1567 1205 (836/369) 21421 4521 4355 10/30/44/16 27.6±14.4 3459 23 408 488

1Z1V A 80 9.31 1259 362 272 (181/91) 4836 1046 1261 46/24/18/13 28.6±16.3 1189 15 0 72
HACS1 B 87 9.63 1150 315 237 (156/81) 4401 923 828 46/21/ 5 /27 20.2±14.2 828 20 0 36
2LJG a+b 153 17.03 2343 662 495 (327/168) 9009 1909 1347 40/29/ 8 /22 16.4±11.9 1065 28 204 78
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Table 2. Information about determined structures of the test proteins. The second,
third, and fourth columns list SDP time, water refinement time, and total time, re-
spectively. For the backbone and heavy atom RMSD columns, the mean and standard
deviation between the determined structure and the reference structures is reported
(backbone RMSDs less than 1.5 Å are shown in bold). The seventh column, CBd,
lists the number of residues with “CB deviations” larger than 0.25 Å computed by
MolProbity, as defined by [9]. The eighth and ninth columns list the percentage of
upper bound violations larger than 0.1 Å and 1.0 Å, respectively (the numbers for the
reference structures are in parentheses). The last three columns, list the percentage of
residues with favorable and allowed backbone torsion angles and outliers, respectively.

RMSD violations Ramachandran

ID ts tw tt backbone heavy atoms CBd. 0.1 Å 1.0 Å fav. alw. out.

1G6J 44.5 175.5 241.0 0.68±0.05 0.90±0.05 0 4.96 (0.08±0.07) 0.85 (0) 100 100 0
1B4R 21.4 138.0 179.0 0.85±0.06 1.06±0.06 0 20.92 (13.87±0.62) 6.14 (2.28±0.21) 80.8 93.6 6.4
2E8O 129.8 181.3 340.9 0.58±0.02 0.68±0.01 0 31.33 (31.93±0.14) 9.98 (10.75±0.13) 96.2 100 0
1CN7 75.0 230.1 339.7 1.53±0.11 1.80±0.10 0 10.27 (7.63±0.80) 3.18 (2.11±0.52) 96.1 99.0 1.0
2KTS 116.7 231.0 398.5 0.92±0.06 1.13±0.06 0 25.36 (27.44±0.58) 6.49 (10.36±0.68) 86.1 95.7 4.3
2K49 140.7 240.7 422.7 0.99±0.14 1.24±0.16 0 13.75 (15.79±0.67) 2.80 (4.94±0.46) 93.8 97.3 2.7
2K62 156.1 259.0 464.2 1.40±0.08 1.72±0.08 1 33.74 (42.92±0.95) 10.79 (21.20±1.20) 87.8 95.9 4.1
2L3O 61.7 212.0 310.0 1.28±0.15 1.59±0.15 0 21.53 (19.81±0.58) 7.33 (7.61±0.31) 80.4 92.8 7.2
2GJY 113.7 285.9 455.7 0.99±0.07 1.29±0.09 0 11.67 (8.36±0.59) 0.36 (0.49±0.12) 85.4 92.3 7.7
2KTE 139.9 297.7 503.2 1.39±0.17 1.85±0.16 1 35.55 (31.97±0.46) 11.94 (11.96±0.40) 79.4 90.8 9.2
1XPW 124.8 297.1 489.7 1.30±0.10 1.68±0.10 0 9.74 (0.17±0.09) 1.20 (0.01±0.02) 87.9 97.9 2.1
2K7H 211.7 312.0 591.0 1.24±0.07 1.49±0.07 0 17.60 (16.45±0.30) 4.39 (4.92±0.35) 92.3 96.1 3.9
2KVP 462.0 282.4 814.8 0.94±0.08 1.05±0.09 0 15.15 (17.43±0.29) 4.01 (5.62±0.21) 96.6 100 0
2YT0 292.1 421.5 800.1 0.79±0.05 1.04±0.06 1 29.04 (28.9±0.36) 6.64 (6.60±0.30) 90.5 97.6 2.4
2L7B 1101.1 593.0 1992.1 2.15±0.11 2.55±0.11 3 19.15 (21.72±0.36) 4.23 (4.73±0.23) 79.2 91.6 8.4

1Z1V 30.6 158.8 209.2 1.44±0.17 1.74±0.15 0 3.89 (2.00±0.25) 0.62 (0) 90.9 98.5 1.5
HACS1 17.4 145.0 176.1 1.00±0.07 1.39±0.10 0 20.29 (15.68±0.43) 4.95 (3.73±0.33) 83.6 96.7 3.3
2LJG 94.7 280.4 426.3 1.24±0.09 1.70±0.10 1 28.35 (25.3±0.51) 10.76 (8.91±0.49) 80.6 90.7 9.3

protein structure determination. An automated system, without the la-
borious human intervention will have to tolerate more errors than usual.
This was the initial motivation of designing SPROS. The key is to toler-
ate more errors. Thus, we are working towards incorporating an adaptive
violation weight mechanism to identify the most significant outliers in the
set of distance restraints automatically.
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8. Brünger, A.T.: X-PLOR Version 3.1: A System for X-ray Crystallography and
NMR. Yale University Press (1993)

9. Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.a., Immormino, R.M., Kapral,
G.J., Murray, L.W., Richardson, J.S., Richardson, D.C.: MolProbity: all-atom
structure validation for macromolecular crystallography. Acta crystallographica.
Section D, Biological crystallography 66(Pt 1), 12–21 (Jan 2010)

10. Doreleijers, J.F., Mading, S., Maziuk, D., Sojourner, K., Yin, L., Zhu, J., Markley,
J.L., Ulrich, E.L.: BioMagResBank database with sets of experimental NMR con-
straints corresponding to the structures of over 1400 biomolecules deposited in the
protein data bank. Journal of biomolecular NMR 26(2), 139–146 (Jun 2003)

11. Doreleijers, J.F., Nederveen, A.J., Vranken, W., Lin, J., Bonvin, A.M., Kaptein,
R., Markley, J.L., Ulrich, E.L.: BioMagResBank databases DOCR and FRED con-
taining converted and filtered sets of experimental NMR restraints and coordinates
from over 500 protein PDB structures. Journal of biomolecular NMR 32(1), 1–12
(May 2005)

12. Güntert, P.: Structure calculation of biological macromolecules from NMR data.
Quarterly reviews of biophysics 31(2), 145–237 (1998)

13. Güntert, P.: Automated NMR structure calculation with CYANA. Methods in
Molecular Biology 278, 353–378 (2004)
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