
Supervised Principal Component Analysis:

Visualization, Classification and Regression on

Subspaces and Submanifolds

Elnaz Barshana, Ali Ghodsib, Zohreh Azimifara,∗, Mansoor Zolghadri
Jahromia

aDepartment of IT and Computer Engineering, School of Electrical and Computer
Engineering, Shiraz University, Shiraz, Iran

bDepartment of Statistics and Actuarial Science, School of Computer Science, University
of Waterloo, Canada

Abstract

We propose “Supervised Principal Component Analysis (Supervised PCA)”,
a generalization of PCA that is uniquely effective for regression and classi-
fication problems with high-dimensional input data. It works by estimating
a sequence of principal components that have maximal dependence on the
response variable. The proposed Supervised PCA is solvable in closed-form,
and has a dual formulation that significantly reduces the computational com-
plexity of problems in which the number of predictors greatly exceeds the
number of observations (such as DNA microarray experiments). Further-
more, we show how the algorithm can be kernelized, which makes it ap-
plicable to non-linear dimensionality reduction tasks. Experimental results
on various visualization, classification and regression problems show signif-
icant improvement over other supervised approaches both in accuracy and
computational efficiency.

Keywords: Dimensionality reduction, Principal component analysis
(PCA), Kernel methods, Supervised learning, Visualization, Classification,
Regression

∗Corresponding author: Tel.: +98 (711) 613 3036; fax: +98 (711) 647 4605.
Email addresses: barshan@cse.shirazu.ac.ir (Elnaz Barshan),

aghodsib@uwaterloo.ca (Ali Ghodsi), azimifar@cse.shirazu.ac.ir (Zohreh
Azimifar), zjahromi@cse.shirazu.ac.ir (Mansoor Zolghadri Jahromi)

Preprint submitted to Elsevier November 30, 2010

1. Introduction

Principal Component Analysis (PCA) [1] is a classical data analysis method
that provides a sequence of the best linear approximations to a given high-
dimensional data set. It is one of the most popular techniques for dimension-
ality reduction. The subspace modeled by PCA captures the maximum vari-
ability in the data, and can be viewed as modeling the covariance structure
of the data. However, its effectiveness is limited to unsupervised problems.

Consider the supervised task of predicting a dependent response random
variable from an independent high-dimensional explanatory random variable.
Conventional classification and regression methods usually generate unsatis-
factory results due to the “curse of dimensionality” [2], whereby the number
of data points required for learning grows exponentially with the dimen-
sionality of the data. This problem will be intensified when the number of
predictors greatly exceeds the number of observations.

A canonical example of this scenario is in DNA microarray experiments,
which usually consist of expression values for thousands of genes while the
number of observations (e.g., individual tumor samples) is relatively small.
In other words, each observation is expressed by thousands of features. These
situations are especially prone to the curse of dimensionality. So some form
of dimensionality reduction as a pre-processing step is of critical importance.

On the other hand, the prominent dimensionality reduction techniques,
such as PCA, are unsupervised. Therefore, it is not possible to guide the algo-
rithm toward the modes of variability that are of particular interest. Instead,
conventional PCA will ignore the response variable and discover a sequence
of directions that correspond to the maximum variation of the covariate data.
When the task is regression or classification, it would be preferable to project
the explanatory variables along directions that are related to the response
variable. That is, we are interested in certain modes of variability that are
dependent on the response variable; this goal is not necessarily achieved by
using the directions that have maximum variation.

In this paper we propose supervised dimensionality reduction technique
called “Supervised Principal Component Analysis (Supervised PCA)”. It is a
generalization of PCA which aims at finding the principal components with
maximum dependence on the response variables. In other words, we seek
for a subspace in which the dependency between predictors and response
variable is maximized. We show that conventional PCA is a special form of
Supervised PCA as a general framework. Similar to PCA, Supervised PCA

2

can be solved in closed-form and does not suffer from the high computational
complexity of iterative optimization procedures. Our proposed Supervised
PCA also investigates the quantitative value of target variable and thus it
is applicable on regression problems. This property is in contrast with a
large number of supervised dimensionality reduction techniques which con-
sider only similarities and dissimilarities along the labels, a fact which causes
these methods to be limited on classification problems only. Besides, we
derive a dual formulation for Supervised PCA which significantly reduces
the computational complexity of problems in which the number of predictors
greatly exceeds the number of observations. In order for our method to be
applicable for estimating nonlinear transformation of data, a kernel version
of Supervised PCA is also proposed.

The rest of this paper is organized as follows: Section 2 precisely describes
the mathematical framework of the problem of supervised dimensionality
reduction. A brief overview on different categories of prominent methods of
supervised dimensionality reduction is given in Section 3. Section 4 describes
the dependence measurement criterion which our proposed method relies
on. In Section 5, we introduce our new algorithm, Supervised PCA, and its
extensions as well as its connection to conventional PCA. We examine the
performance of the proposed method on various visualization, classification
and regression problems in comparison with other methods in Section 6.
Finally we conclude in Section 8.

2. Problem Definition

Suppose (X ,Y) are drawn from distribution PX ,Y , where X ∈ R
p is a

p-dimensional explanatory variable and Y ∈ R
� is an �-dimensional response

variable1. Given i.i.d. samples {(x1,y1), · · · , (xn,yn)} as n realization of
(X ,Y) , we are looking for an orthogonal projection U of X onto S such that
S = UTX and Y depends mainly on UTX .

1X is called explanatory variable, covariate or feature. Y is called response variable,
label, outcome or target variable. Note that Y could be continuous (regression) or discrete
(classification). It could also be either single or multivariate.

3

3. Related Works

Most of the research in supervised dimensionality reduction is focused on
learning a linear subspace. This body of research includes various approaches
such as classical Fisher’s Discriminant Analysis (FDA) [3], the large family
of methods known as Metric Learning (ML) [4–12], the family of Sufficient
Dimension Reduction (SDR) algorithms [13–20], and the method proposed
by Bair et al. [21] known as supervised principal components (in this paper,
we refer to this method as Bair’s SPC).

3.1. Fisher’s Discriminant Analysis (FDA)

Fisher’s Discriminant Analysis (FDA) is a traditional method of super-
vised dimensionality reduction and continues to be practically useful. In
brief, for a general C-class problem, FDA maps the data into a (C − 1)-
dimensional space such that the distance between means of the projected
classes is maximized while the within-class variance is minimized.

3.2. Metric Learning

The Metric Learning (ML) family of techniques attempts to construct a
Mahalanobis distance over the input space, which could then be used instead
of Euclidean distances. This approach can be equivalently interpreted as
learning a linear transformation of the original inputs, followed by using the
Euclidean distance in the projected space. ML methods search for a metric
(or equivalently, a linear transformation) under which points in the same
class (similar pairs) are near each other and simultaneously far from points
in the other classes.

3.3. Sufficient Dimensionality Reduction

Sufficient Dimensionality Reduction (SDR) finds an orthogonal transfor-
mation U such that Y and X are conditionally independent given UTX .
That is, SDR tries to preserve the conditional probability density function
such that PY|X (y|x) = PY|UTX (y|UTx). It has been shown that U always
exists2, and in many cases U is not unique. Therefore, SDR searches for the
“central subspace”, which is the intersection of all such subspaces.

Most of the SDR algorithms are based on the idea proposed by Li [13, 15],
which considers the SDR problem as an inverse regression problem. The

2The identity matrix is always a trivial solution.

4

main intuition here is to find E[X |Y] due to the fact that if the conditional
distribution P(Y|X) varies along a subspace of X , then the inverse regres-
sion E[X |Y] should also lie in X (See [13] for more details). Unfortunately,
for this approach to be successful strong assumptions should be made about
the marginal distribution PX (x) (e.g., the distribution should be elliptical).
Inverse regression methods can be effective if the assumptions that they em-
body are met, but they fail if the assumptions are not satisfied.

In order to overcome the above problem, Kernel Dimensionality Reduc-
tion (KDR) [20] has been proposed as an alternative approach. KDR makes
no strong assumptions about either the conditional distribution PY|UTX (y|UT x)
or the marginal distribution PX (x). It tries to quantify the notion of con-
ditional dependency by making use of the conditional covariance operators
defined on reproducing kernel Hilbert spaces (RKHS’s) [22]. The conditional
independence is then imposed by minimizing the conditional covariance op-
erator in a RKHS. A nonlinear extension of KDR, called manifold KDR
(mKDR), is proposed in [23], in which the original input space is mapped to
a nonlinear manifold, and KDR is applied to find a linear subspace of the
manifold. This algorithm provides a nonlinear projection of the given train-
ing data, but has no straightforward extension for the new test points. That
is, for a new data point, one has to rebuild the entire manifold including the
new input data. None of these SDR methods have a closed-form solution.

3.4. Bair’s Supervised Principal Components

Bair’s Supervised Principal Components (Bair’s SPC) is an effective heuris-
tic for supervised dimensionality reduction, especially in the case of regression
problems. This method is similar to conventional PCA, except that it uses
the subgroup of features with the highest dependence on the outcome Y
rather than using all of the features. BSPC can be viewed as a preprocessing
step for the conventional PCA, in which the irrelevant sources of variation
are removed based on their scores. The BSPC procedure is summarized as
follows.

Assume we have a set of n data points {xi}ni=1 each consisting of p features,
stacked in the p×n matrix X, and denote the jth feature (jth row of X) by
Xj:.

1. Compute standard regression coefficients for each feature j as:

5

wj =
XT

j:Y√
XT

j:Xj:

(1)

2. Reduce the data matrix X to include only those features whose coeffi-
cients exceed a threshold θ in absolute value.

3. Compute the first few principal components of the reduced data matrix.

4. Use the principal components calculated in step 3 in a regression model
or a classification algorithm to predict the outcome.

4. Hilbert-Schmidt Independence Criterion

Gretton et al. [24] proposed an independence criterion in RKHSs. This
measure, referred to as the Hilbert-Schmidt Independence Criterion (HSIC),
measures the dependence between two random variables, X and Y , by com-
puting the Hilbert-Schmidt norm of the cross-covariance operator3 associated
with their RKHSs. The HSIC has been widely used in many practical appli-
cations such as feature selection [25], feature extraction [26], and clustering
algorithms [27].

HSIC uses the fact that two random variables, X and Y , are independent
if and only if any bounded continuous function of the two random variables is
uncorrelated. That is, HSIC deals with cross-covariance operators which map
from one space to another. Let us define F as a separable RKHS containing
all continuous bounded real-valued functions of x from X to R. Likewise,
let G be a separable RKHS containing all continuous bounded real-valued
functions of y from Y to R. Then the cross-covariance between elements of
F and G is:

Cov(f(x), g(y)) = Ex,y[f(x)g(y)]− Ex[f(x)]Ey[g(y)] (2)

It can be shown that there exists a unique linear operator Cx,y : G → F
mapping elements of G to the elements of F such that:

3In the terminology of functional analysis, an operator is a mapping which maps ele-
ments from one Hilbert space to elements of another.

6

〈f, Cx,yg〉F = Cov(f(x), g(y)) ∀f ∈ F , ∀g ∈ G (3)

According to [28] and [20], this operator can be defined as:

Cx,y := Ex,y[(Φ(x)− µx)⊗ (Ψ(y)− µy)] (4)

where µx = E[Φ(x)], µy = E[Ψ(y)], ⊗ is the tensor product and Φ and Ψ are
the associated feature maps of F and G, respectively. As with any operator,
we may define a norm for the cross-covariance operator. Indeed, several
norms have been defined in the literature. A particularly useful form is the
Hilbert-Schmidt (HS) norm. For a linear operator C : G → F , provided the
sum converges, the HS norm is defined as:

‖C‖2HS :=
∑
i,j

〈Cvi, uj〉2F (5)

where uj and vi are orthogonal bases of F and G, respectively.
The square of the Hilbert-Schmidt norm of the cross-covariance opera-

tor, or HSIC, is then used as a measure of the dependence of two random
variables. It can be shown that ‖Cxy‖2HS = 0 if and only if x and y are inde-
pendent as long as their RKHSs are universal. The HSIC can be expressed
in terms of kernel functions via the following identity:

HSIC(PX ,Y,F ,G) = Ex,x′,y,y′ [k(x, x′)l(y, y′)] + Ex,x′[k(x, x′)]Ey,y′[l(y, y′)]

−2Ex,y[Ex′[k(x, x′)]Ey′[l(y, y′)]] (6)

where k and l are the associated kernels of F and G, respectively. Here
Ex,x′,y,y′ stands for the expectation over independent pairs of (x, y) and (x′, y′)
drawn from PX ,Y .

4.1. Empirical HSIC

In order to make HSIC a practical criterion for testing independence, it
has to be approximated given a finite number of observations. Let Z :=

7

{(x1,y1), · · · , (xn,yn)} ⊆ X × Y be a series of n independent observations
drawn from PX ,Y . An empirical estimate of HSIC is:

HSIC(Z,F ,G) := (n− 1)−2tr(KHLH) (7)

where H, K, L ∈ R
n×n, Kij := k(xi,xj), Lij := l(yi,yj), and Hij := I −

n−1eeT (the centering matrix)4. Based on this result, we can conclude that
in order to maximize the dependence between two kernels we need to increase
the value of the empirical estimate, i.e., tr(KHLH). It is interesting to note
that if one of the kernel matrices K or L is already centered, say L, then
HLH = L and thus we may simply use the objective function tr(KL) which
no longer includes the centering matrix H . Similarly, if HKH = K we may
rewrite tr(KHLH) = tr(HKHL) and arrive at identical results.

5. Supervised Principal Component Analysis

Assume we have a set of n data points {xi}ni=1 each consisting of p fea-
tures, stacked in the p × n matrix X. In addition, assume that Y is the
�× n matrix of outcome measurements. We address the problem of finding
the subspace UT X such that the dependency between the projected data
UT X and the outcome Y is maximized. In order to measure the depen-
dence between UT X and the output variable Y , we use the Hilbert-Schmidt
Independence Criterion.

We need to maximize tr(HKHL) where K is a kernel of UT X (e.g.
XT UUT X), L is a kernel of Y (e.g. Y T Y), and Hij := I − n−1eeT . This
objective can be formulated as

tr(HKHL) = tr(HXTUUT XHL) (8)

= tr(UT XHLHXTU)

We are looking for an orthogonal transformation matrix U which maps data
points to a space where the features are uncorrelated. Thus, our optimization
problem is constrained and becomes:

4“e” is a vector of all ones.

8

arg max
U

tr(UT XHLHXTU) (9)

subject to UT U = I

It is evident this optimization problem can be solved in closed-form. If the
symmetric and real matrix Q = XHLHXT has eigenvalues λ1 ≤ . . . ≤
λp and corresponding eigenvectors v1, . . . , vp, then, the maximum value of
the cost function satisfying the constraint is λp + λp−1 + . . . + λp−d+1 and
the optimal solution is U = [vp, vp−1, . . . , vp−d+1] [29]. Here, d denotes the
dimension of the output space S.

The Supervised PCA procedure is summarized in Algorithm 1.

Alg. 1 Supervised PCA

Input: training data matrix, X, testing data example, x, kernel matrix of
target variable, L, and training data size, n.
Onput: Dimension reduced training and testing data, Z and z.
1: H ← I − n−1eeT

2: Q← XHLHXT

3: Compute basis: U ← eigenvectors of Q corresponding to the top d
eigenvalues.
4: Encode training data: Z ← UT X
5: Encode test example: z← UT x

5.1. Connection to Principal Component Analysis

Consider the unsupervised problem, where the response variable is un-
known; then L can be set equal to an identity matrix. The identity matrix is
a kernel which only captures the similarity between a point and itself. Max-
imizing the dependence between K and the identity matrix corresponds to
retaining the maximal diversity across all observations, and is thus equivalent
to classical PCA.

It is easy to verify that when L is equal to the identity matrix I, then
XHLHXT becomes the covariance matrix of X:

XHIHXT = (XH)(XH)T (10)

9

= [X(I − n−1eeT)][X(I − n−1eeT)]T

= (X − µx)(X − µx)
T

= Cov(X)

where eeT is a square matrix of size n with all elements being equal to one,
and µx denotes the mean of data presented in X.

This means that finding the top d eigenvalues of the covariance matrix
of the data is equivalent to finding the top d eigenvalues of XHIHXT and
consequently maximizing tr(UT XHIHXTU). In other words, PCA is a
special form of the more general framework proposed by Supervised PCA;
we set L = I which means that we retain the maximal diversity between
observations.

5.2. Dual Supervised Principal Component Analysis

In many cases the dimensionality p of the p× n data matrix X is much
larger than the number of data points (i.e. p >> n). Such problems are of
particular interest, especially in genomics and computational biology. In this
case applying the direct form of Supervised PCA proposed in Algorithm 1
is impractical because of the need to calculate the eigenvectors of the very
large p× p matrix Q. We would prefer a run time that depends only on the
number of training examples n, or it has at least a reduced dependence on p.

Note that both Q = XHLHXT and L are positive semidefinite matrices.
Thus, we can apply the following definitions:

Q = XHLHXT = ΨΨT (11)

L = ∆T ∆

⇒ Ψ = XH∆T

Clearly the solution for U can be expressed as the singular value decom-
position (SVD) of Ψ:

Ψ = UΣV T (12)

since the columns of U in the SVD contain the eigenvectors of ΨΨT .

10

The singular value decomposition also allows us to formulate the principle
component algorithm entirely in terms of dot products between data points,
which limits the direct dependence on the original dimensionality n.

Note that in the SVD factorization, the eigenvectors in U that correspond
to non-zero singular values in Σ (square roots of the eigenvalues) are in a
one-to-one correspondence with the eigenvectors in V . Now suppose that we
perform a dimensionality reduction on U ; we keep only the first d eigenvectors
corresponding to the top d non-zero singular values in Σ. These eigenvectors
will still be in a one-to-one correspondence with the first d eigenvectors in V
and we have ΨV̂ = ÛΣ̂, where the dimensionality of these matrices are:

Ψp×n Ûp×d Σ̂d×d V̂n×d.

Here, notation “̂ ” denotes the matrices of the reduced SVD. Now, Σ̂ is square
and invertible, because its diagonal has non-zero entries. Thus, the following
conversion between the top d eigenvectors can be derived:

Û = Ψ V̂ Σ̂−1 (13)

Replacing all deployments of U in Algorithm 1 with ΨV̂ Σ̂−1 generates the
dual form of Supervised PCA which is summarized in Algorithm 2.

Alg. 2 Dual Supervised PCA

Input: training data matrix, X, testing data example, x, kernel matrix of
target variable, L, training data size, n.
Onput: Dimension reduced training and testing data, Z and z .
1: Decompose L such that L = ∆T ∆.
2: H ← I − n−1eeT

3: Ψ← XH∆T

4: Compute basis:
V ← eigenvectors of ΨT Ψ = ∆H [XT X]H∆T corresponding to the top d

eigenvalues.
Σ← diagonal matrix of square roots of the top d eigenvalues of ΨT Ψ.
U ← ΨV Σ−1

5: Encode training data: Z ← UT X = Σ−1V T ∆H [XT X]
6: Encode test example: z← UT x = Σ−1V T ∆H [XTx]

11

5.3. Kernel Supervised Principal Component Analysis

In many cases, nonlinear transformations of the data are required to suc-
cessfully apply learning algorithms. One efficient method for doing this is
to use a kernel that computes a similarity measure between any two data
points. In this section, we show how to perform Supervised Principal Com-
ponent Analysis in the feature space implied by a kernel, which allows our
method to be extended to nonlinear mappings of the data.

5.3.1. Kernel Supervised PCA based on the Dual formulation

Consider a feature space H such that:

Φ : x→ H (14)

x �→ Φ(x)

This allows us to formulate the kernel supervised PCA objective as follows:

arg max
U

tr(UT Φ(X)HLHΦ(X)TU) (15)

subject to UT U = I

By the same argument used for Supervised PCA, the solution can be found
by SVD:

Ψ = Φ(X)H∆T = UΣV T (16)

where U contains the eigenvectors of Ψ(X)Ψ(X)T .
Now assume that we have a kernel K(·, ·) that allows us to compute

K(x, y) = Φ(x)T Φ(y). Given such a function, we can then compute the ma-
trix Φ(X)T Φ(X) = K efficiently, without computing Φ(X) explicitly. Cru-
cially, K is n × n here and does not depend on the dimensionality of the
feature space. Therefore it can be computed with a run time that depends
only on n. Also, note that Supervised PCA can be formulated entirely in
terms of dot products between data points (Algorithm 2). Replacing the dot
products in Algorithm 2 by the kernel function K (which is in fact equivalent
to the inner product of a Hilbert space) yields the Kernel Supervised PCA
algorithm.

12

5.3.2. Direct formulation of Kernel Supervised PCA

Kernel Supervised PCA can be formulated directly, without use of the
dual formulation. The key idea is to express the transformation matrix U as
a linear combination of the projected data points, U = Φ(X)β, via represen-
tation theory [30]. Thus we can rewrite the objective function as:

tr(UT Φ(X)HLHΦ(X)T U) = tr(βT Φ(X)T Φ(X)HLHΦ(X)T Φ(X)β)

= tr(βT KHLHKβ) (17)

with the constraint:

UT U = βT Φ(X)T Φ(X)β (18)

= βT Kβ

where K is a kernel function. We have now expressed the objective function
and the constraint in terms of inner products between data points, which can
be computed via the kernel. The new optimization problem has the following
form:

arg max
U

tr(βT KHLHKβ) (19)

subject to βT Kβ = I

This is a generalized eigenvector problem. β can be computed as the top
d generalized eigenvectors of (KHLHK, K). Our Kernel Supervised PCA
procedure is summarized in Algorithm 3.

Our experiments suggest that both variations of Kernel Supervised PCA
produce very similar results in practice. However, the direct formulation
(Algorithm 3) has slightly less computational complexity, as there is no need
to decompose the kernel matrix L and compute the matrix ∆. In the rest of
this paper, all experiments with Kernel Supervised PCA are reported using
Algorithm 3.

13

Alg. 3 Kernel Supervised PCA

Input: Kernel matrix of training data, K,kernel matrix of testing data,
Ktest, kernel matrix of target variable, L, testing data example, x, training
data size, n.
Onput: Dimension reduced training and testing data, Z and z.
1: H ← I − n−1eeT

2: Q← KHLHK
3: Compute basis: β ← generalized eigenvectors of (Q, K) corresponding
to the top d eigenvalues.
4: Encode training data: Z ← βT [Φ(X)T Φ(X)] = βT K
5: Encode test example: z← βT [Φ(X)T Φ(x)] = βT Ktest

6. Experimental Results

In this section we study the effectiveness of the proposed Supervised PCA
method in comparison with some of the state-of-the-art algorithms for super-
vised dimensionality reduction. The performance of the methods is evaluated
on a number of visualization, classification, and regression problems. In all of
the following experiments, the input features are first normalized to the range
[0, 1], and the kernel parameter is obtained using 10-fold cross-validation.

6.1. Visualization

First, the applicability of our method on a data visualization task is
examined. We evaluate the performance of Supervised PCA and Kernel
Supervised PCA and compare them with Bair’s SPC, KDR and mKDR (as
described in Section 3). In the case of KDR and mKDR, the MATLAB
source code provided us by the authors was used.

When the response variable is provided in the form of labels, we apply
a delta kernel L(y, y′) = δ(y, y′) to compute L. For example, in a 2-class
problem, if there are 5 data points such that the first 3 data points belong
to class 1 and the fourth and the fifth data points are from class 2, L(y, y′)
can be formed as follows:

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

14

Train data
Test Data

(a)SPCA (b)BSPC (c)KDR

(d)KSPCA (e)mKDR

Figure 1: The 2-dimensional projection of Iris data set, as produced by Supervised PCA
(SPCA), Bair’s SPC (BSPC), KDR, Kernel Supervised PCA (KSPCA), and mKDR, re-
spectively. Different symbols are used to denote data instances from different classes. Solid
symbols denote the training set, whereas ‘hollow’ symbols denote the test set.

This kernel leads the algorithm toward an embedding where instances from
the same class are grouped tighter. Besides, an RBF kernel has been used
as the data kernel in our nonlinear Supervised PCA.

We first present the effectiveness of our method on some real-world data
sets, and later we explore its capability to detect data nonlinearity using
some artificial data. A brief description of these data sets is given in Table 1.
For the visualization experiments, we performed a random selection of 70%
training set and 30% testing set. Note that in the case of mKDR, due to
the lack of a straightforward extension for new test data, we assume that in-
put features of both training and test sets are provided at the learning time.
But the value of response variable is only provided for training data. This
assumption holds for all of the visualization, classification and regression ex-
periments with mKDR. In the case of real life data sets, we used the Iris and
Sonar data sets available from the UCI machine learning repository [31]. The
2-dimensional projection results for the Iris data set using various methods
are presented in Figure 1. Evidently, all of these methods demonstrate a

15

Train Data
Test Data

(a)SPCA (b)BSPC (c)KDR

(d)KSPCA (e)mKDR

Figure 2: The 2-dimensional projection of Sonar data set, as produced by Supervised
PCA (SPCA), Bair’s SPC (BSPC), KDR, Kernel Supervised PCA (KSPCA), and mKDR,
respectively. Different symbols are used to denote data instances from different classes.
Solid symbols denote the training set, whereas ‘hollow’ symbols denote the test set.

reasonable separation between the three different classes. However, the pro-
jection produced by Kernel Supervised PCA is able to separate the classes
shown by “�” and “
” symbols more clearly. To consider the linear methods,
Supervised PCA generates a projection very close to the ones produced by
KDR and Bair’s SPC in which the data points at the class “©” are separated
perfectly. This is important to notice that the proposed Supervised PCA can
be computed in closed-form and its computational complexity is much less
than KDR. The reader is referred to Section 6.2 for further discussion.

Figure 2 shows the projection of the Sonar data set into a 2-dimensional
space, as estimated by each method. Kernel supervised PCA yields a better
embedding in this experiment as well and mKDR produces the next best
separation. This is partly due to the fact that Kernel supervised PCA and
mKDR provide a nonlinear projection while the other methods can only
produce a linear embedding.

The poor performance of the linear methods on nonlinear problems be-

16

(a)Binary XOR (b)Concentric Rings

Figure 3: The original form of two artificial data sets used in data visualization experi-
ments. Different symbols are used to denote data instances from different classes.

comes more evident in the following two experiments, in which we use the
Binary XOR and Concentric Rings data sets. These two artificial data sets,
depicted in Figure 3, are highly nonlinear. Figure 4 shows the 2-dimensional
projection produced by the above methods on the Binary XOR data added
with a 1-dimensional Gaussian noise attribute (σNoise = 1). The results in-
dicate that Bair’s SPC essentially fails at class separation, as opposed to
Kernel Supervised PCA and mKDR which make the two classes linearly
separable. Although KDR and Supervised PCA show better discrimination
than Bair’s SPC, they are also unable to unify the two clusters of both classes
simultaneously. A similar experiment for the Concentric Rings data set is
considered in Figure 5, and the nonlinearity is much more obvious. In this
case, none of the linear methods could unfold the data and simply left the
original structure of the data unchanged. It is worth noting that in all of
these experiments, in addition to a good visualization of the training data,
Supervised PCA and Kernel Supervised PCA were also able to provide good
generalization to the testing data.

Most prominent dimensionality reduction algorithms, either supervised
or unsupervised, provide an embedding only for the given training data,
with no straightforward extension for new test points. In other words, they
are merely used as a data visualization tool. Colored Maximum Unfolding
(CMVU) [26] is one of the most effective techniques of this category.

Figure 6 shows a final visualization experiment, in which a 1000-sample
subset of the USPS hand-written digits data set is embedded into 2 dimen-
sions by Kernel Supervised PCA and CMVU. Kernel Supervised PCA demon-
strably provides more separability between the classes.

17

Train Data
Test Data

(a)SPCA (b)BSPC (c)KDR

(d)KSPCA (e)mKDR
Figure 4: The 2-dimensional projections of Binary XOR data set added with a 1-
dimensional Gaussian noise (σNoise = 1), as produced by Supervised PCA (SPCA), Bair’s
SPC (BSPC), KDR, Kernel Supervised PCA (KSPCA), and mKDR, respectively. Differ-
ent symbols are used to denote data instances from different classes.

Train Data
Test Data

(a)SPCA (b)BSPC (c)KDR

(d)KSPCA (e)mKDR
Figure 5: The 2-dimensional projections of Concentric Rings data set, as produced by
produced by Supervised PCA (SPCA), Bair’s SPC (BSPC), KDR, Kernel Supervised
PCA (KSPCA), and mKDR, respectively. Different symbols are used to denote data
instances from different classes.

18

(a)KSPCA (b)CMVU

Figure 6: The 2-dimensional projections of USPS data set, as produced by Kernel Super-
vised PCA (KSPCA) and Colored Maximum Variance Unfolding (CMVU), respectively.

6.2. Classification

In this section we focus on classification problems and study the behavior
of Supervised PCA and Kernel Supervised PCA in comparison with some
other methods of supervised dimensionality reduction. We compare Super-
vised PCA with FDA, KDR, mKDR, CFML5 and Bair’s SPC. To the best of
our knowledge, the above selection shows a well-known representative from
each category of supervised dimensionality reduction techniques. In classifi-
cation experiments, we performed 40 random splits of the data, taking 70%
for training and 30% for testing. For each of the algorithms, we have calcu-
lated the transformation matrix using the training set, and after computing
the low dimensional projection of the data, a one-nearest-neighbor classifier
has been used to classify the test data. As with the visualization experi-
ments, in the case of Supervised PCA and Kernel Supervised PCA a delta
kernel L(y, y′) = δ(y, y′) was applied on the labels, and for Kernel Supervised
PCA we used an RBF kernel for the data6.

The data sets used in the first part of our comparative study are taken

5CFML has two versions. The one that is used here is the second version which uses
the constraint WT MSW = I.

6In the case of the labels’ kernel matrix, we add an identity matrix of the same size to
it to avoid the problem of rank deficiency.

19

Table 1: Description of data sets used in the visualization and classification experiments.

Data sets No. of Data Points No. of Dimensions No. of Classes
Balance 625 4 3
Binary XOR 400 2 2
Colon Cancer 62 2000 2
Concentric Rings 313 2 2
Heart Disease 297 13 5
Ionosphere 351 34 2
Iris 150 4 3
Lymphoma 96 4026 2
Parkinsons 197 23 2
Sonar 208 60 2
SRBCT 83 2308 4
USPS 1000 256 10

from the UCI repository [31]. We conducted a number of experiments on the
Balance, Heart Disease, Ionosphere, Parkinsons and Sonar data sets; their
descriptions are presented in Table 1.

Figure 7 shows the testing data classification error rate along different
projection dimensions. Note that since the solution of FDA is of rank C − 1
(where C is the number of classes), this solution remains constant for any
m-dimensional projection if m ≥ C − 1. As can be seen, Supervised PCA is
significantly competitive with other linear methods; in 4 of 5 cases, it shows
the lowest error rate. Furthermore, Kernel Supervised PCA outperforms
all of the linear methods except in the cases of the Sonar and Parkinsons
data, in which our Supervised PCA stays superior. In the case of nonlinear
methods, Kernel Supervised PCA outperforms mKDR in all of the five cases.
This is partly due to the fact that the optimization procedure of mKDR often
results in a low rank transformation matrix which limits the efficiency of this
method on classification problems. It is remarkable that in lower dimensional
spaces (which are most suited for the task of data visualization), Kernel
Supervised PCA performs significantly better than Supervised PCA. It can
be seen that for higher dimensional data sets like Sonar and Ionosphere, FDA
operates poorly due to its limitation on the maximum number of projection
dimensions.

20

1 2 3 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Projection Dimension

E
rr

or
 R

at
e

SPCA

KSPCA

KDR

BSPC

CFML

FDA

mKDR

2 4 6 8 10

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Projection Dimension

E
rr

or
 R

at
e

(a)Balance (b)Heart Disease

5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

Projection Dimension

E
rr

or
 R

at
e

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Projection Dimension

E
rr

or
 R

at
e

(c)Ionosphere (d)Parkinsons

5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Projection Dimension

E
rr

or
 R

at
e

Figure 7: Classification error rates
on five UCI data sets for differ-
ent projection dimensions, as com-
puted by the algorithms Supervised
PCA (SPCA), Kernel Supervised
PCA (KSPCA), KDR, Bair’s SPC
(BSPC), CFML, FDA, and mKDR.

(e)Sonar

21

Table 2: Average runtime of various algorithms in seconds.

Data sets SPCA KSPCA BSPC CFML KDR mKDR FDA
Balance 0.012 0.480 0.009 5.216 454.105 0.679 0.001
Heart Disease 0.002 0.072 3.534 1.185 79.708 0.383 0.002
Ionosphere 0.007 0.146 0.259 1.961 349.853 0.978 0.007
Parkinsons 0.002 0.038 0.570 0.580 57.451 1.781 0.002
Sonar 0.015 0.067 1.435 0.996 156.428 1.199 0.084

The average runtimes of the algorithms is shown in Table 2.7 More pre-
cisely, it is the amount of time each of these algorithms required in order
to compute the projection matrix for the given data and label matrices. In
the case of KDR, the time required to produce the projection matrix for
a d-dimensional subspace depends on the value of d; so the reported time
is the average runtime across the different values of d. All the other algo-
rithms’ runtimes are independent of d. In the case of Bair’s SPC, since the
threshold is approximated for each training set separately and it is all the
supervision Bair’s SPC performs on PCA, the time to find the appropriate
threshold have been added to Bair’s SPC runtime. Although KDR as a linear
method performs well especially in low dimensional spaces (which is suitable
for a data visualization task), its running time is dramatically larger than
the other methods8. By comparison, Supervised PCA is computationally
more efficient because it does not need any threshold tuning like Bair’s SPC,
nor does it have CFML’s requirement on the identification of similar and
dissimilar pairings of the data. This table illustrates that the computational
complexity of Kernel Supervised PCA is much less than that of mKDR as a
nonlinear method. Moreover, our proposed Kernel Supervised PCA is even
faster than the linear methods CFML, Bair’s SPC and KDR.

In the second part of our comparative study, we present the experimental
results on a number of well-known DNA microarray dataset. We perform
experiments on three data sets: Colon cancer [32], Lymphoma [33], and SR-

7All algorithms were implemented in MATLAB running on a system with Intel(R)
Core(TM)2 CPU T7200 @ 2.00GHz and 1GB of RAM.

8We have used the KDR and mKDR codes provided us by the authors of the KDR and
mKDR papers.

22

Table 3: Comparison of the different methods on three different microarray datasets. The
methods are Bair’s SPC (BSPC), Supervised PCA (SPCA), CFML, KDR, mKDR and
Kernel Supervised PCA (KSPCA). Table lists the classification error rate for the test set
predictions as well as the number of projection dimensions used by each method to achieve
its best performance (the reported performance).

Method Colon Cancer Lymphoma SRBCT
PCA 0.297�0.077 (9) 0.186�0.054 (9) 0.093�0.059 (8)
BSPC 0.242�0.086 (5) 0.102�0.065 (8) 0.132�0.072 (9)
SPCA 0.221�0.094 (2) 0.076�0.053 (7) 0.078�0.054 (5)
CFML 0.311�0.096 (1) 0.113�0.063 (4) 0.396�0.110 (3)
KDR 0.255�0.112 (5) 0.217�0.082 (8) 0.440�0.106 (9)
mKDR 0.329�0.092 (1) 0.228�0.072 (1) 0.306�0.082 (3)
KSPCA 0.237�0.100 (2) 0.081�0.060 (9) 0.092�0.060 (3)

BCT [34]; their descriptions are presented in Table 1. In the case of these
data sets, since the dimensionality of the input space is much greater than
the number of observations, we can benefit from the dual form of Supervised
PCA. Due to this fact, the method FDA is not suitable for our comparative
study in this part. Because applying FDA on data sets in which the num-
ber of samples is less than the number of input features, results in singular
within-class covariance matrix and consequently sub-optimal performance.
Instead, we examine the performance of PCA as an unsupervised method to
understand the effect of supervsion. Table 3 shows the average classification
error rate over 40 random splits of data taking 70% for training and 30% for
testing. Error rate of test set computed for different projection dimensions
(up to ten dimensions) and the reported result corresponds to the projection
dimension in which each method achieves its best performance. Evidently, for
all of these three data sets, the proposed Supervised PCA produces the low-
est error rate and outperforms the other methods. Furthermore, the results
indicate that the next best estimation is also produced by Kernel Supervised
PCA in all of these three experiments. Superiority of Supervised PCA over
its nonlinear version is in alignment with various reports in the literature of
microarray gene analysis that claim better performance is realized with linear
kernels [35]. It is worth to note that in all of these three data sets, Supervised
PCA outperforms PCA and enhances class separability by considering the
effect of response variable in the produced projection directions.

23

6.3. Regression

In the third and final experiment, we evaluate the performance of our pro-
posed method on some regression problems. Most of conventional supervised
dimensionality reduction methods do not address the problem of continuous
target variables, and focuses instead on the discrete case. Therefore, these
techniques are not applicable to the family of regression problems. FDA
and CFML are in this category, and thus are unsuitable for comparison in
this section.Instead, we compare Prinicipal Component Regression (PCR),
KDR, Bair’s SPC, MORP, Kernel MORP, Supervised PCA, Kernel Super-
vised PCA and manifold KDR at regression. In the case of Supervised PCA,
MORP and their nonlinear versions, an RBF kernel is applied on the target
variables. For each of these methods, after estimating the transformation
matrix using the training set, we fit a linear regression model to the response
variable Y and the dimension-reduced data Z.

Our regression experiments use three sets of synthetic data first intro-
duced by Li et al. [36] in the context of dimensionality reduction in regres-
sion. In all of these experiments, it is assumed we have a set of n data points
{xi}ni=1 each consisting of p features, stacked in the p × n matrix X. We
construct a univariate response variable y which depends only on a specific
subset of the features. We denote the jth feature (jth row of X) by Xj:, and
the ith data point (ith column of X) by X:i.

Regression A:

This regression is defined as:

y =
X1:

0.5 + (X2: + 1.5)2
+ (1 + X2:)

2 + 0.5ε, (20)

where X:i ∼ N(0, I4) is a 4-dimensional input vector and ε ∼ N(0, 1) is
normal additive Gaussian noise. Note that only the first two dimensions are
relevant to the response variable y.

Regression B:

The second regression definition is given by:

y = sin2(πX2: + 1) + 0.5ε, (21)

with predictor X:i ∈ R
4 uniformly distributed on the set

24

Table 4: Average Root Mean Square (RMS) error for the test set predictions on arti-
ficial regression data A, B, and C using PCR, KDR, Bair’s SPC (BSPC), Supervised
PCA (SPCA), MORP, Kernel Supervised PCA (KSPCA), Kernel MORP (KMORP), and
mKDR.

Method Regression(A) Regression(B) Regression(C)
PCR 2.2858�0.5363 0.6014�0.0738 0.8405�0.2705
KDR 1.6422�0.3709 0.5771�0.0769 0.8664�0.2704
BSPC 1.6420�0.3670 0.5766�0.0748 0.9348�0.2482
SPCA 1.6723�0.3800 0.5754�0.0763 0.8318 �0.2734
MORP 2.0617�0.5188 0.6184�0.0673 0.8422�0.2697
KSPCA 1.5113�0.3263 0.5670�0.0701 0.8224�0.2767
KMORP 1.6468�0.5282 0.6151�0.0670 0.8465�0.2587
mKDR 1.6420�0.3416 0.5815�0.0757 0.8454�0.2741

[0, 1]4\{x ∈ R
4|xj: ≤ 0.7 ∀j ∈ {1, 2, 3, 4}} (22)

and ε is as defined in regression (A). Here, the true subspace is of dimension
1. Unlike the previous case, the distribution of X in regression (B) is not
elliptical.

Regression C:

The final regression (C) is as follows:

y =
1

2
(X1:)

2ε (23)

where X:i ∼ N(0, I10) and taking again ε ∼ N(0, 1) the independent noise. In
this case the noise is multiplicative rather than additive, and the dimension
of the true subspace is 1.

We draw 50 samples of size n = 100 out of each regression distribution,
and in each set we examine 70% for training and 30% for testing. Table 4
shows the average Root Mean Square (RMS) error of estimating the test data
response variable produced by each method. This table demonstrates that
PCR as an unsupervised method is not good at prediction and generates

25

1 2 3 4 5 6 7 8 9 10
4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

Projection Dimensions

R
M

S
 E

rr
or

BSPC

KDR

SPCA

KSPCA

mKDR

Figure 8: RMS error on DLBCL data set for different projection dimensions using Bair’s
SPC (BSPC), KDR, Supervised PCA (SPCA), Kernel Supervised PCA (KSPCA), and
mKDR.

the highest error rate. For all of these three data sets, Kernel Supervised
PCA produces the lowest error rate and outperforms the other methods. To
consider only the linear methods, in regression (B) and (C) our Supervised
PCA results in better performance than KDR, Bair’s SPC and MORP. In
the case of regression (A), among linear methods, Bair’s SPC produces the
best estimation.

As justified by the above artificial experiments, it would be more interest-
ing to evaluate the algorithms with a real world data set. The one we study
here is from a microarray data experiment, which consists of the survival
times of patients with diffuse large B-cell lymphoma (DLBCL) [37]. This
data set has been used previously in studies of dimension reduction meth-
ods [21]. It includes gene expression measurements of 7399 genes obtained
from 240 patients; we consider 160 patients as a training set and 80 patients
as the validation set. Since the dimensionality of the input space is much
greater than the number of training samples (7399 � 160), we can benefit
from the dual form of Supervised PCA. Figure 8 depicts the RMS error of
testing data target variables, estimated along different projection dimensions.

26

The simple linear Supervised PCA has a better generalization performance
than its nonlinear kernelized version. This result is in alignment with vari-
ous reports in the literature of microarray gene analysis that claim superior
performance is realized with linear kernels [35].

As shown in the figure, the best performance is achieved by Bair’s SPC
in dimension d = 5; Supervised PCA produces the next best estimation at
d = 7. In the case of the nonlinear methods, the lowest prediction errors pro-
duced by mKDR and Kernel Supervised PCA are very close to each other
and both approaches reach their best performance at d = 7. It is noticeable
that although KDR does not generate the lowest error, it reaches its best
performance in lower dimensional spaces (d = 2) in contrast with the other
methods. This is in line with our observations from the classification exper-
iments. It is important to note that, in addition to the good performance
of our proposed technique, it is considerably more computationally efficient
than the other approaches.

7. Discussion

The experimental results in the previous section demonstrate the per-
formance of Supervised PCA on a variety of data sets. In this section, we
discuss two other related approaches to PCA and the difference between these
methods and Supervised PCA.

7.1. Partial Least Squares

The experimental results in the previous section demonstrate the per-
formance of Supervised PCA on a variety of data sets. In this section, we
discuss two other related approaches to PCA and the difference between these
methods and Supervised PCA.

7.2. Partial Least Squares

Partial Least Squares (PLS) [38] is a family of techniques for analyzing the
relationship between blocks of data by means of latent variables. Consider
we have n observations from explanatory variable X ∈ R

p and target variable
Y ∈ R

l stored in zero-mean matrices Xp×n and Yl×n. PLS decomposes these
matrices into:

X = PT T + E (24)

Y = QW T + F

27

where T and W are n × d matrices of d extracted latent vectors, Pp×d and
Ql×d stands for loading matrices and En×p and Fn×l are matrices of residuals.
PLS finds a set of weight vectors U = [u1, ..., ud] and C = [c1, ..., cd] such that:

[Cov(ti, wi)]
2 = max

ui,ci

[Cov(XT ui, Y
T ci)]

2 (25)

where ti and wi are the i-th columns of matrices T and W respectively. PLS
is an iterative procedure. In each iteration, after extraction of latent vectors
t and w (through solving an eigenvalue problem), matrices X and Y are
deflated by subtracting the information contained in the derived vectors t
and w.

According to the above description, Supervised PCA and PLS are dif-
ferent in four major aspects. The first difference is in the definition of their
objective functions. That is, PLS aims at maximizing the covariance between
the two random variables while Supervised PCA maximizes the dependence
between the twos. Therefore, PLS can only detect linear dependence between
the two variables. In contrast, Supervised PCA is capable of capturing any
kind of dependence (linear or nonlinear) with high probability. This differ-
ence will be discussed in more details in the following paragraphs. As the
second dissimilarity, note that, unlike PLS which produces the score vectors
for both predictors and target variable, Supervised PCA only extracts the
projection of the input features. This comes from the fact that PLS originally
designed as a regression model and not as a tool for dimensionality reduction.
However, Supervised PCA, as a generalization for PCA, is essentially a tool
for dimension reduction in which the projection of target variable is not ben-
eficial. The third difference relates to the way of extracting the projection
directions by each method. As mentioned earlier, PLS is an iterative pro-
cedure since it requires to deflate the random variables before deriving each
columns of matrices T and U . On the contrary, Supervised PCA extracts
all of the projection directions at once and has closed form solution. After
discussing these major structural differences between PLS and Supervised
PCA, we study one of the closest variants of PLS to the proposed approach
and demonstrate their differences empirically.

Depending on the form of deflation, several variations of PLS have been
defined. In most of the proposed variations, matrices X and Y are deflated

28

separately. However, there is a variant of PLS called PLS-SB [39] (in ac-
cordance with [40]) which deflates the cross-product matrix XY T instead of
separate deflation of X and Y . This scheme leads to extraction of all latent
vectors at once through solving an eignevalue problem of the form:

XY T Y XT U = λU (26)

and calculating T and W as:

T = XTU (27)

C = Y T

W = Y T C.

Considering this formulation, PLS-SB is a special case of Supervised PCA,
as a general framework, when a linear kernel applied on the target variable
(i.e. L = Y T Y). However, there are problems in which applying other types
of kernel is more beneficial. In this case, the general framework proposed by
Supervised PCA gives a user the freedom to choose an appropriate type of
kernel. In contrast, the definition of the objective function of PLS-SB does
not provide us with such a possibility. For instance, consider the problem of
data classification. In a C−class problem, the maximum number of projec-
tion dimensions that PLS-SB can extract is C − 1. In contrast, Supervised
PCA can avoid this problem through applying a full-rank kernel matrix for
the response variable Y . Figure 9 illustrates the effect of this limitation on
the classification performance of PLS-SB compared with that of Supervised
PCA. By adding an identity matrix to the linear kernel used in PLS-SB, a
valid full-rank kernel is constructed and used as L in Supervised PCA.

In addition to the problem of rank deficiency, applying a linear kernel
could affect the performance of PLS-SB in a more significant way. As dis-
cussed before, PLS can only detect linear dependence between the two vari-
ables while Supervised PCA is able to capture nonlinear dependence, too.
That is, by applying a nonlinear kernel on the response variable Y , Su-
pervised PCA, as a linear method, can produce a projection in which the
nonlinear relationships between X and Y is captured. It is important to
note that, Supervised PCA reflects the nonlinear properties of data through
a linear projection which is completely interpretable. For example, consider

29

0 5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

Projection Dimension

E
rr

or
 R

at
e

SPCA
PLS−SB

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Projection Dimension

E
rr

or
 R

at
e

(a)Ionosphere (b)Parkinsons

Figure 9: Classification error rates on two UCI data sets for different projection dimensions,
as computed by the algorithms Supervised PCA (SPCA) and PLS-SB.

the regression problem (C) previously defined in Section 6.3 in which Y is
nonlinearly dependent to X (Y = 1

2
(X1:)

2ε). The average RMS error of pre-
dicting the response variable for testing data using PLS-SB and Supervised
PCA is computed. In the case of Supervised PCA, an RBF kernel is applied
on the dependent variable Y . The RMS errors produced by PLS-SB and
Supervised PCA are 0.9011±0.2504 and 0.8318±0.2734, respectively. Thus,
applying an RBF kernel on the response variable Y results in less prediction
error compared with that of a linear kernel. In conclusion, unlike PLS-SB,
whose application is limited to some specific problems, Supervised PCA is
more general and can be applied on a variety of problems by appropriately
choosing the kernel matrix L.

In order to model the nonlinear relationship between sets of data, kernel-
ized variant of PLS was proposed firstly by Rosipal and Trejo [41]. The main
idea is to reformulate the PLS procedure in terms of dot products between
data points and then using the kernel trick. That is, the inner products are
replaced with kernel matrices which contain the inner products of a nonlinear
transformation of data. This procedure can be applied on different variations
of PLS. For PLS-SB, if we multiply both sides of (26) by XT and merge the
last two steps of (27), we have [42]:

XT XY T Y T = λT (28)

30

Concentric Rectangles

Figure 10: The original form of the artificial data set used in data visualization experiment.
Different symbols are used to denote data instances from different classes.

W = Y T Y T

By replacing the inner products matrices XTX and Y T Y with the centered
kernel matrices Kx and Ky respectively, the nonlinear variant of PLS-SB is
formulated as:

KxKyT = λT (29)

W = KyT

There is a key difference between the kernelized variants of PLS-SB and Su-
pervised PCA. Kernel Supervised PCA solves the eigenvalue problem in order
to extract the projection directions (i.e. U). However, in Kernel PLS-SB,
the produced eigenvectors are the embedding directions (i.e. T). Therefore,
In Kernel Supervised PCA, the projection directions are orthonormal (i.e.
UT U = I) while in Kernel PLS-SB, the embedding coordinates are orthonor-
mal (i.e. T TT = I). An immediate consequence of this fact is that, all of
the extracted feature vectors using PLS-SB have unit variance. Thus, it is
not suitable for applications in which the difference in the variance of the
directions is important. On the other hand, since Kernel PLS-SB directly
extracts the score vectors T , the transformation matrix U is not available.

31

Therefore, the way of projecting testing data should be changed and com-
puted based on the matrix of latent vectors T (and not the weight matrix U).
The formulation of Kernel PLS-SB for projecting the test set is as follows:

Ttest = KtestW (T TKxW)−1 (30)

where Ktest is the kernel matrix of testing data. In order to understand
the effect of this difference emprically, the performance of Kernel PLS-SB
and Kernel Supervised PCA is examined on visualizing an artificial data set
shown in Figure 10. The data is firstly added with a 1-dimensional Gaussian
noise attribute (σNoise = 1) and then its 2-dimensional projection is com-
puted using Kernel Supervised PCA and Kernel PLS-SB. As the first row of
Figure 11 indicates, the nonlinear version of PLS-SB provides a clearer sepa-
ration. However, the projection of testing data in the second row, illustrates
that Kernel Supervised PCA has better generalization in comparison with
Kernel PLS-SB. This observation is supported by our experimental results
on classification performance of Kernel Supervised PCA and Kernel PLS
supports this observation. Figure 12 shows the testing data classification
error rate along different projection directions using these two methods on
five UCI data sets9. It is evident that Kernel Supervised PCA outperforms
Kernel PLS-SB in all of the five cases. In addition, the kernelized variant
of Supervised PCA, compared with PLS-SB, reaches its best performance
in lower dimensional spaces. This observation is more obvious for higher
dimensional data sets like Parkinsons, Ionosphere and Sonar.

7.3. Canonical Correlation Analysis

Similar to PLS, Canonical Correlation Analysis (CCA) [43] is a technique
for modeling the association between two variables. CCA searches for basis
vectors for two blocks of variables such that the projection of variables onto
these basis vectors are maximally correlated. Consider we have n observa-
tions from explanatory variable X ∈ R

p and target variable Y ∈ R
l stored

in zero-mean matrices Xp×n and Yl×n. CCA seeks for linear transformation
matrices Wx ∈ R

d and Wy ∈ R
q such that the correlation coefficient

9The setup of the experiment is the same as the classification experiments in Section 6.2

32

−0.1 −0.05 0 0.05 0.1 0.15

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

0.6

0.8

(a)KPLS-SB (b)KSPCA

−0.1 −0.05 0 0.05 0.1 0.15

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

0.6

0.8

(c)KPLS-SB (d)KSPCA

Figure 11: The 2-dimensional projection of Concentric Rectangles data set, as produced by
Supervised Kernel Supervised PCA (KSPCA) and Kernel PLS-SB (KPLS-SB). Different
symbols are used to denote data instances from different classes. Top panels show the
projection of training set and bottom panels show the projection of testing and training
data together. Solid symbols denote the training set, whereas ’hollow’ symbols denote the
test set.

33

1 2 3 4
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Projection Dimension

E
rr

or
 R

at
e

KSPCA
KPLS−SB

2 4 6 8 10
0.42

0.425

0.43

0.435

0.44

0.445

0.45

Projection Dimension

E
rr

or
 R

at
e

(a)Balance (b)Heart Disease

5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

Projection Dimension

E
rr

or
 R

at
e

5 10 15 20
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Projection Dimension

E
rr

or
 R

at
e

(c)Ionosphere (d)Parkinsons

5 10 15 20 25 30
0.16

0.18

0.2

0.22

0.24

0.26

Projection Dimension

E
rr

or
 R

at
e

Figure 12: Classification error rates
on five UCI data sets for different
projection dimensions, as computed
by the algorithms Kernel Supervised
PCA (KSPCA) and Kernel PLS-SB
(KPLS-SB).

(e)Sonar

34

ρ =
Cov(Wx

T X, Wy
T Y)√

V ar(Wx
T X)V ar(Wy

T Y)
(31)

=
Wx

T XY T Wy√
(Wx

T XXT Wx)(Wy
T Y Y T Wy)

is maximized. Maximizing ρ is equivalent to optimizing the following objec-
tive function:

arg max
Wx,Wy

Wx
T XY T Wy (32)

subject to :

Wx
T XXT Wx = I

Wy
T Y Y T Wy = I.

It can be shown that the optimum value of Wx for the above objective
function is obtained by solving the generalized eigenvalue problem of the
form [44]:

XY T (Y Y T)−1Y XT Wx = λ2XXT Wx. (33)

After estimating columns of Wx as the top d eigenvectors of problem (33),

the corresponding Wy can be obtained as Wy = (Y Y T)
−1

Y XT Wx

λ
.

Considering the above formulation, Supervised PCA has two key advan-
tages over CCA. The first one comes from the fact that CCA optimization
procedure involves computation of two inverses, that of Y Y T and that of
XXT . Thus, it is only applicable to problems in which the number of fea-
tures does not exceed the number of observations. In contrast, Supervised
PCA avoids any costly matrix inversion while its dual formulation signifi-
cantly reduces the computational complexity of problems in which the num-
ber of predictors greatly exceeds the number of observations. As the second
difference, note that, in discrimination, CCA and FDA performs identically.

35

That is, the directions given by CCA (using the dummy matrix Y for group
membership) are equivalent to Fisher’s discrimination directions [45]. There-
fore, similar to FDA, CCA suffers from the problem of rank deficiency. Our
experimental results in Section 6.2 previously showed the drastic effect of
this limitation on the classification performance of FDA (CCA).

CCA may not extract useful features of data when the correlation exists
in some nonlinear relationships. Kernel CCA [46] addresses this problem by
first projecting the data into a higher dimensional feature space and then
applying CCA in this new feature space. Let the kernel matrices Kx and Ky

contain the inner products of the new projection of data Φ(X) and Ψ(Y),
respectively. The weights Wx and Wy can be rewritten as the linear combi-
nation of the projected data, Wx = Φ(X)α and Wy = Ψ(Y)β. Substitution
in equation (32) and replacing the inner products as Kx = Φ(X)T Φ(X) and
Ky = Ψ(Y)T Ψ(Y) results in the following:

arg max
α,β

αT KxKyβ (34)

subject to :

αTKx
2α = I

βTKy
2β = I

It is important to note that when the kernel matrices are invertible, the naive
kernelization of CCA gives trivial solution |ρ = 1| and does not provide useful
information. In order to avoid this problem the constraints in (34) should
be regularized. Maximizing (34) with the regularized constraints leads to
solving the generalized eigenvalue problem of the form:

⇒ Ky(Ky + κI)−1Kxα = λ2(Kx + κI)α (35)

In contrast with the Kernel CCA, none of the two proposed algorithms for
Kernel Supervised PCA suffer from overfitting problem and consequently no
extra regularization is required. In conclusion, maximizing the dependency
using HSIC leads to a more general and well-posed objective function in
comparison with maximizing the correlation coefficient ρ.

8. Conclusion

This paper presented Supervised PCA, a new approach to supervised di-
mensionality reduction that is based on extracting the principal components

36

of the data that have maximal dependence on the target variable. We demon-
strated that conventional PCA is a special case of this general framework.
Supervised PCA considers the quantitative value of the target variable, and
is thus applicable to both classification and regression problems. It solves for
a full-rank matrix with a closed-form solution. Therefore, it is computation-
ally efficient without imposing any limitation on the dimensionality of the
output feature space. We have also derived a dual form of Supervised PCA
which reduces the computational complexity of the problems with the input
space dimension much larger than the number of samples. Moreover, by ker-
nelizing Supervised PCA, we have extended our method to efficiently model
the nonlinear variability of the data and to perform nonlinear dimensionality
reduction.

Our experiments on a variety of visualization, classification and regression
problems illustrate the efficiency of the proposed method and show that
in many cases, Supervised PCA outperforms the existing state-of-the-art
techniques both in accuracy and computational efficiency.

This study can be extended in different directions. Supervised PCA fo-
cuses on producing a projection with maximum dependence on the response
variable and does not consider local structure of the data. Consequently, it
cannot faithfully extract the intrinsic dimensionality of the data. This is a
problem which could be addressed in future research on Supervised PCA. Ad-
ditionally, this general framework could be investigated to derive supervised
versions of many other conventional unsupervised techniques.

References

[1] I. T. Jolliffe, Principal Component Analysis, Springer-Verlag, New York, 1986.

[2] R. Bellman, Adaptive control process: A guided tour, Princeton. University
Press.

[3] R. A. Fisher, The use of multiple measurements in taxonomic problems, An-
nals Eugen. 7 (1936) 179–188.

[4] E. P. Xing, A. Y. Ng, M. I. Jordan, S. Russell, Distance metric learning with
application to clustering with side-information, Advances in Neural Informa-
tion Processing Systems (NIPS) 15 (2002) 505–512.

[5] M. Bilenko, S. Basu, R. J. Mooney, Integrating constraints and metric learning
in semi-supervised clustering, ICML 69 (2004) 11.

37

[6] H. Chang, D.-Y. Yeung, Locally linear metric adaptation for semi-supervised
clustering, ICML 69 (2004) 153–160.

[7] H. Chang, D.-Y. Yeung, Locally linear metric adaptation with application
to semi-supervised clustering and image retrieval, Pattern Recognition 39 (7)
(2006) 1253–1264.

[8] D.-Y. Yeung, H. Chang, Extending the relevant component analysis algorithm
for metric learning using both positive and negative equivalence constraints,
Pattern Recognition 39 (5) (2006) 1007–1010.

[9] S. Basu, M. Bilenko, R. J. Mooney, A probabilistic framework for semi-
supervised clustering, KDD (2004) 59–68.

[10] K. Q. Weinberger, J. Blitzer, L. K. Saul, Distance metric learning for large
margin nearest neighbor classification, Advances in Neural Information Pro-
cessing Systems 18 (2006) 1473–1480.

[11] A. Globerson, S. T. Roweis, Metric learning by collapsing classes, Advances
in Neural Information Processing Systems 18 (2006) 451–458.

[12] B.Alipanahi, M. Biggs, A. Ghodsi, Distance metric learning versus fisher dis-
criminant analysis, Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (2008) 598–603.

[13] K. Li, Sliced inverse regression for dimension reduction (with discussion),
Journal of the American Statistical Association 86 (1991) 316–342.

[14] R. D. Cook, S. Weisberg, Discussion of li (1991), Journal of the American
Statistical Association 86 (1991) 328–332.

[15] K. Li, On principal hessian directions for data visualization and dimension
reduction: Another application of stein’s lemma, Journal of the American
Statistical Association 87 (1992) 1025–1039.

[16] A. M. Samarov, Exploring regression structure using nonparametric func-
tional estimation, Journal of the American Statistical Association 88 (1993)
836–847.

[17] R. D. Cook, X. Yin, Dimension reduction and visualization in discriminant
analysis (with discussion), Australian & New-Zealand Journal of Statistics 43
(2001) 147–199.

38

[18] M. Hristache, A. Juditsky, J. Polzehl, V. Spokoiny, Structure adaptive ap-
proach for dimension reduction, The Annals of Statistics 29 (2001) 1537–1566.

[19] K. Torkkola, Feature extraction by non-parametric mutual information max-
imization, Journal of Machine Learning Research 3 (2003) 1415–1438.

[20] K. Fukumizu, F. R. Bach, M. I. Jordan, Dimensionality reduction for su-
pervised learning with reproducing kernel hilbert spaces, Journal of Machine
Learning Research 5 (2004) 73–99.

[21] E. Bair, T. Hastie, D. Paul, R. Tibshirani, Prediction by supervised principal
components, Journal of the American Statistical Association 101 (2006) 119–
137.

[22] N. Aronszajn, Theory of reproducing kernels, Transactions of the American
Mathematical Society 68 (3) (1950) 337–404.

[23] J. Nilsson, F. Sha, M. I. Jordan, Regression on manifolds using kernel dimen-
sion reduction, ICML 227 (2007) 697–704.

[24] A. Gretton, O. Bousquet, A. J. Smola, B. Scholkopf, Measuring statistical
dependence with hilbert-schmidt norms., Proceedings Algorithmic Learning
Theory (ALT) 3734 (2005) 63–77.

[25] L. Song, A. J. Smola, A. Gretton, K. M. Borgwardt, J. Bedo, Supervised
feature selection via dependence estimation, ICML 227 (2007) 823–830.

[26] L. Song, A. J. Smola, K. M. Borgwardt, A. Gretton, Colored maximum vari-
ance unfolding, NIPS.

[27] L. Song, A. J. Smola, A. Gretton, K. M. Borgwardt, A dependence maximiza-
tion view of clustering, ICML 227 (2007) 815–822.

[28] C. R. Baker, Joint measures and cross-covariance operators, Transactions of
the American Mathematical Society 186 (1973) 273–289.

[29] H. Lutkepohl, Handbook of Matrices, John Wiley and Sons, 1997.

[30] J. L. Alperin, Local Representation Theory: Modular Representations as an
Introduction to the Local Representation Theory of Finite Groups, Cambridge
University Press, 1986.

[31] A. Asuncion, D. Newman, Uci machine learning repository (2007).

39

[32] U. Alon, N. Barkai, D. A. Notterman, K. Gishdagger, S. Ybarradagger,
D. Mackdagger, A. J. Levine, Broad patterns of gene expression revealed
by clustering analysis of tumor and normal colon tissues probed by oligonu-
cleotide arrays, Proceedings of the National Academy of Sciences of the United
States of America 96 (12) (1999) 6745–6750.

[33] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosen-
wald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E.
Marti, T. Moore, J. Hudson, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock,
W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke,
R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown,
L. M. Staudt, Distinct types of diffuse large b-cell lymphoma identified by
gene expression profiling., Nature 403 (6769) (2000) 503–511.

[34] J. Khan, J. S. Wei, M. Ringnr, L. H. Saal, M. Ladanyi, F. Westermann,
F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, P. S. Meltzer, Clas-
sification and diagnostic prediction of cancers using gene expression profiling
and artificial neural networks., Nature Medicine 7 (6) (2001) 673–9.

[35] L. Song, J. Bedo, K. M. Borgwardt, A. Gretton, A. J. Smola, Gene selection
via the bahsic family of algorithms, Bioinformatics 23 (2007) 490–498.

[36] B. Li, H. Zha, F. Chiaromonte, Contour regression: A general approach to
dimension reduction, ICML 33 (2005) 1580–1616.

[37] A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher,
R. D. Gascoyne, H. K. Muller-Hermelink, E. B. Smeland, L. M.Staudt, The
use of molecular profiling to predict survival after chemotherapy for diffuse
large b-cell lymphoma, Annals of Statistics 346 (4) (2002) 1937–1947.

[38] S. Wold, C. Albano, W. J. Dunn, U. Edlund, K. Esbensen, P. Geladi, S. Hell-
berg, E. Johansson, W. Lindberg, M. Sjostrom, Mathematics and statistics
in chemistry, chapter multivariate data analysis in chemistry, Chemometrics
(1984) 17.

[39] P. D. Sampson, A. P. Streissguth, H. M. Barr, F. L. Bookstein, Neurobe-
havioral effects of prenatal alcohol: Part ii. partial least squares analysis,
Neurotoxicology 11 (1989) 477–491.

[40] J. A. Wegelin, A survey of partial least squares (pls) methods, with emphasis
on the two-block case, Technical report, University of Washington, 2000.

40

[41] R. Rosipal, L. J. Trejo, Kernel partial least squares regression in reproducing
kernel hilbert space, Journal of Machine Learning Research 2 (2001) 97–123.

[42] R. Rosipal, Kernel partial least squares for nonlinear regression and discrim-
ination, Neural Network World 13 (3) (2003) 291–300.

[43] H. Hotelling, Relations between two sets of variables, Biometrika 28 (1936)
312–377.

[44] D. Hardoon, S. Szedmak, J. Shawe-taylor, Canonical correlation analysis: An
overview with application to learning methods, Neural Computation 16 (12)
(2004) 2639–2664.

[45] M. S. Bartlett, Further aspects of the theory of multiple regression, In Pro-
ceedings of the Cambridge Philosophical Society 34 (1938) 33–40.

[46] C. Fyfe, P. Lai, Kernel and nonlinear canonical correlation analysis, In IEEE-
INNS-ENNS International Joint Conference on Neural Networks 4 (2000)
4614.

41

