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Abstract

Dimensionality reduction is the process by which a set of
data points in a higher dimensional space are mapped to a
lower dimension while maintaining certain properties of these
points relative to each other. One important property is the
preservation of the three angles formed by a triangle con-
sisting of three neighboring points in the high dimensional
space. If this property is maintained for those same points in
the lower dimensional embedding then the result is a con-
formal map. However, many of the commonly used non-
linear dimensionality reduction techniques, such as Locally
Linear Embedding (LLE) or Laplacian Eigenmaps (LEM),
do not produce conformal maps. Post-processing techniques
formulated as instances of semi-definite programming (SDP)
problems can be applied to the output of either LLE or LEM
to produce a conformal map. However, the effectiveness of
this approach is limited by the computational complexity of
SDP solvers. This paper will propose an alternative post-
processing algorithm that produces a conformal map but does
not require a solution to a SDP problem and so is more com-
putationally efficient thus allowing it to be applied to a wider
selection of datasets. Using this alternative solution, the pa-
per will also propose a new algorithm for 3D object classifica-
tion. An interesting feature of the 3D classification algorithm
is that it is invariant to the scale and the orientation of the
surface.

Introduction

Manifold learning is a significant problem across a wide
variety of information processing fields including pat-
tern recognition, data compression, machine learning, and
database navigation. In many problems, the measured data
vectors are high-dimensional but we may have reason to be-
lieve that the data lies on or near a lower-dimensional man-
ifold. It is possible that the high-dimensional data points
are multiple, indirect measurements of an underlying source,
which typically cannot be directly measured. Learning a
suitable low-dimensional manifold from high-dimensional
data provides important information about the underlying
source. There exist a class of algorithms that can discover
this underling source in non-linear cases. This includes
Locally Linear Embedding (LLE) (Roweis and Saul 2000)
and Laplacian Eigenmaps (LEM) (Belkin and Niyogi 2003).
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However, both LLE and LEM have a particular drawback:
they do not produce conformal maps since the lower m-
dimensional data produced by LLE or LEM, do not pre-
serves the angles from the higher d dimensional data.

Conformal map algorithms are important tools used in
many disciplines such as data mining (Burges 2005), com-
puter vision (Wang, Jin, and Gu 2007; Kulpinski 2002), and
artificial intelligence (Gu and Yau 2003; Jenkins and Mataric
2002; Pless and Simon 2002).

The paper Extension of Spectral Methods by Sha and Saul
(Sha and Saul 2005), introduces the interesting idea of us-
ing spectral methods like LLE and LEM to find the low di-
mensional manifold and then further modifying the output
to produce a conformal map. The conformal map algorithm
they propose finds a linear transformation such that when it
is applied to the output from LLE or LEM the result is con-
formal with respect to the original high dimensional data.

The difficulty with this algorithm lies with the fact that
it is computationally intensive. The piece of the algorithm
that enables it to find the linear transformation uses Semidef-
inite Programming (Vandenberghe and Boyd 1996) which
becomes slow when the LLE output is high dimensional. It
can be shown that the Sha and Saul algorithm has a com-
plexity of O

(

m9
)

where m is the dimension of the output
from LLE. As the value of m increases the runtime required
for such an algorithm becomes too large to be practical.

This paper will present an alternative to the Conformal
Map algorithm proposed by Sha and Saul (Sha and Saul
2005). Our proposed algorithm maintains the idea of pro-
cessing the output from LLE (or LEM) but avoids the use of
semidefinite programming.

In this paper we will first discuss LLE and Extension of
Spectral Methods by Sha and Saul. Afterward the paper
will present a new method for the efficient conformal map-
ping and show why it is indeed faster. This paper will then
validate the results of the proposed algorithm by comparing
them to the results produced by the original Sha and Saul
algorithm. Finally, the last part of this paper proposes a new
algorithm that effectively classifies 3D surfaces using con-
formal maps.

Locally Linear Embedding

Assume that there exists n high dimensional points
{xi}n

i=1 ⊂ R
d. The main goal in LLE (Roweis and Saul
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2000) is to map these high-dimensional data points to the
single global coordinate system of the manifold such that
the local geometry in the neighborhood of each data point is
preserved. This proceeds in three steps. First, by identifying
the neighbors of each data point xi, then by computing the
weights that best linearly reconstruct xi from its neighbors,
and finally by finding the low-dimensional embedding vec-
tor {yi}n

i=1 ⊂ R
p which is best reconstructed by the weights

determined in the previous step.
After finding the k nearest neighbors in the first step, a

sparse matrix of local weights Wij is computed. These
weights minimize the local reconstruction error

∑n
i=1 ||xi−

∑k

j=1 Wijxj ||2 subject to the constraints that
∑

j Wij = 1
and Wij = 0 if xj is not a neighbor of xi. The embed-
ding, Y = [y1 y2 . . . yn] a p by n matrix, is then obtained
from the lowest p eigenvectors of M = (I −W )T (I −W ),
excluding the smallest eigenvector corresponding to eigen-
value 0.

Note that the solution for Y can have an arbitrary origin
and orientation. In order to make the problem well-posed,
these two degrees of freedom must be removed. Requiring
the coordinates to be centered on the origin (

∑n

i yi = 0),
and constraining the embedding vectors to have unit covari-
ance (Y T Y = I), removes the first and second degrees of
freedom respectively. Discarding the eigenvector associated
with eigenvalue 0 satisfies the first of these two constraints.

The Conformal Map (Sha and Saul 2005)
A conformal map is a low-dimensional embedding where
the angles formed by three neighboring points in the orig-
inal high dimensional dataset are equal to the angles be-
tween those same three points in the embedding. Consider
the point xi and its neighbors xj and xk in d-dimensional
space. Also, consider zi, zk and zj to be the images of those
points in the final embedding. If the transformation were
a conformal map then the triangle formed by the x points
would have to be similar to that formed by the z points. In
the traingle formed by the x points the expression |xj − xk|
represents the length of one side of the triangle while the ex-
pression |zj − zk| represents the corresponding side in the
embedding. Since the triangles are similar there must exist√

si such that:

√
si =

|xj − xk|
|zj − zk|

=
|xi − xk|
|zi − zk|

=
|xi − xj |
|zi − zj |

(1)

si =
|xj − xk|2

|zj − zk|2
=

|xi − xk|2

|zi − zk|2
=

|xi − xj|2

|zi − zj|2
(2)

It is usually not possible to find a perfect embedding
where all of the triangles are exactly similar to each other.
Therefore, the goal is to find a set of z coordinates such that
the triangles are as similar as possible. This leads to the fol-
lowing minimization:

min
z,si

j,k

|zj − zk|2 − si|xj − xk|2
2

(3)

Where the xi represent the initial points and the zi denote
the points in the final embedding. Let yi represent the points
in the embedding produced by LLE (or LEM). The yi points
represent an intermediate step in the algorithm and so go
part of the way to solving for zi. Once LLE has produced

a result, the goal of the algorithm becomes a search for a
transformation matrix L such that zi = Lyi where the zi

values satisfy the minimization in Equation (3).

min
L,si

j,k

|Lyj − Ly
k
|2 − si|xj − xk|2

2

(4)

This should be done for all points xi and with the condition
that the points xj and xk are the neighbors of xi.

min
L,si i j,k

ηijηik |Lyj − Lyk|2 − si|xj − xk|2
2

(5)

Where η is an indicator variable and ηij = 1 only if xj is a
neighbor of xi otherwise ηij = 0.

It has been shown in (Sha and Saul 2005) that the value
for si can be calculated via least squares and the initial min-
imization (5) can be rewritten as:

minimize t (6)

such that P � 0 (7)

trace (P ) = 1 (8)

I RV ec (P )

(RV ec (P ))T t
� 0 (9)

Where P = LT L, I is the identity matrix, R is a m2 × m2

matrix computed from {xi, yi}n
i=1, and t is an unknown

scaler. The condition trace (P ) = 1 is added to avoid the
trivial solution where P = 0. The optimization is an in-
stance of semidefinite programming problem(SDP) over el-
ements of unknown matrix P . After solving the SDP, the
matrix P can be decomposed back into LT L and the final
embedding can be found by zi = Lyi for all i.

Alternative Solution

The solution presented in this paper will begin with the ini-
tial optimization problem (5) which has two unknown vari-
ables, si and L. The value for the unknown si parameters

can be found through least squares. 1 Finding si values and
substitute them back into the initial equation (5) the result
can be written as:

D (L) = min
L

V ec (P )T
QV ec (P )

where V ec operator represents the vectorization of a matrix
such that a m2 by m2 matrix is converted into a column
vector of length m4, and the matrix Q is known and can be
computed from {xi, yi}n

i=1.

In this case there exists the trivial solution where LT L =
P = 0. To remove this possibility, a constraint is added
such that the trace of P must be one. To add this constraint
we use the Lagrange multiplier λ1. The new optimization
becomes:

D (L) = min
L

V ec (P )T
QV ec (P ) (10)

+λ1 (trace (P ) − 1)2

= min
L

V ec L
T

L
T

QV ec L
T

L (11)

+λ1 trace L
T

L − 1
2

1In this section details are omitted due to lack of space.
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The minimization equation is difficult to solve for L pri-
marily because the polynomial in the equation is of degree
four.

To solve for L we reduced the degree of the polyno-

mial. We will rewrite P = LT L as P = BT C and
add the constraint that V ec (B) = V ec (C) for some un-
known matrices B and C. This is the key to the new algo-
rithm since it reduces the degree of the polynomial to 2 in
terms of B and 2 in terms of C. Of course there are now
two unknowns and there is an extra constraint to consider.
To include the constraint into the equation we can form
the Lagrangian by adding a new parameter λ2 and adding
||V ec (B) − V ec (C) ||2 to the minimization. Then Equa-
tion (12) can be written as:

D (B, C) = min
B,C

V ec B
T

C
T

QV ec B
T

C

+λ1 trace B
T

C − 1
2

+λ2||V ec (B) − V ec (C) ||2 (12)

Now we can assume that one of the variables is known
and then solve for the other one. Note that trace

(

BT C
)

=

V ec (B)
T

V ec (C) = V ec
(

BT
)T

V ec
(

CT
)

. And there-
fore:

D (B, C) = min
B,C

V ec B
T

C
T

QV ec B
T

C

+λ1 V ec (B)
T

V ec (C) − 1
2

+λ2||V ec (B) − V ec (C) ||2 (13)

To develop the solution further, note that V ec (ABC) =
(

CT ⊗ A
)

V ec (B) (Lutkepohl 1997) where ⊗ is the Kro-
necker product. Therefore the following can be substituted
back into Equation (13):

V ec B
T

C =
V ec IBT C = CT ⊗ I V ec BT

V ec BT CI = V ec (C)T (I ⊗ B)

Now assume that C is known and solve for V ec
(

BT
)

. This
can be solved in closed-form which leads to:

V ec B
T = 2 (λ1 + λ2) V ec C

T

(C ⊗ I) Q + Q
T

C
T ⊗ I

+ 2λ1V ec C
T

V ec C
T T

+ 2λ2I
−1

(14)

Similarly, if we assume that B is known we can find the
solution for V ec (C).

V ec (C) = 2 (λ1 + λ2) V ec (B)

(I ⊗ B) Q + Q
T

I ⊗ B
T

+2λ1V ec (B) V ec (B)T + 2λ2I
−1

(15)

Algorithm

The algorithm is based on the theoretical solution presented
in the previous section. The basic concept is to iteratively
compute matrices B and C such that successive estimations
will bring the result closer to the real solution. However
it must be noted that not all problems posed have an exact

solution. A perfect conformal map may not exist for a par-
ticular dataset. To address this concern an error margin was
introduced: ErrorMargin. The algorithm will iterate by
successively esimating B and C until the difference between
the two matrices, as defined by an ErrorFunction, is
smaller than the error margin that was defined. The al-
gorithm will eventually converge because at each step the
cost monotonically decreases. When that algorithm has con-
verged, the matrices B and C will be equal to each other, or
sufficiently similar with respect to the predefined margin of
error. This will represent the solution for the unknown ma-
trix L: L = B ≈ C. The outline for the algorithm is:

X = GetInitialHighDimensionalPoints()

Y = RunLLE(X)

Q = ComputeQMatrix(X,Y)

B,C = RandomMatrix()

While (ErrorFunction(B,C) > ErrorMargin)

C = EstimateC (B, Q)

B = EstimateB (C, Q)

EndWhile

L = B or L = C since B ≈ C

Z = LY to find the final embedding

The functions EstimateB and EstimateC are based on
the calculations in Equations (14) and (15) respectively. The
function ComputeQMatrix depends only on known ele-
ments {xi, yi}n

i=1. Details are omitted due to lack of space,
but the derivation is easy to understand at a high level.

The ErrorFunction is composed of the minimization
goal in Equation (12). The allowed error margin is a value
set by the user and can be used as a tuning parameter. Other
tuning parameters used in the algorithm are the λ1 and λ2

regularization parameters which must both be greater than
zero since they decide how important each of the two re-
strictions are. For all of the tests performed in this paper the
values for both λ1 and λ2 were set to 1.

Experimental results

In this section, some results of the proposed algorithm are
presented for a number of synthetic datasets as well as a
few natural image datasets. In the first part of this section,
the purpose is to show that the algorithm presented in this
paper creates conformal maps of the same quality as those
produced by the algorithm introduced by Sha and Saul. In
the second part, the paper will examine some interesting re-
sults obtained by applying the conformal map algorithm to
datasets composed of images of handwritten digits and to
datasets of images of faces.

Synthetic Datasets

Consider the Swiss Roll example in Figure 1. The image
shows, in order from left to right, the initial 3D dataset,
the result produced by LLE, the result produced by the new
algorithm, and in the rightmost panel the result produced
by the Sha and Saul algorithm. The third and fourth pan-
els show that the two algorithms produce nearly identical
embeddings. Both algorithms use LLE as the base dimen-
sionality reduction algorithm. The result shown is produced
consistently at this level of quality for both algorithms.
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(a) Swiss Roll 3D Data (b) LLE Result

(c) New Algorithm (d) Sha and Saul Algo-
rithm

Figure 1: Swiss Roll with Embedding using LLE as base.

In most of the examples in this paper LLE is used as the
base dimensionality reduction algorithm. However, the new
conformal map algorithm as well as the Sha and Saul al-
gorithm can also use LEM to reduce the dimensionality of
the original data. The images in Figure 2 show that the algo-
rithm can also be used for other types of manifolds. The Half
Sphere in Figure 2 is a fairly difficult case since it cannot
be unfolded properly without forcing some of the points to-
gether in the final embedding. However, the algorithm does
a good job by clustering a number of points together at ei-
ther end indicating correctly that those points are also close
together in the 3D surface. LLE does not manage to cluster
these end points correctly for the Half Sphere.

(a) Half Sphere 3D (b) LLE

(c) New Algorithm (d) Sha and Saul Result

Figure 2: Half Sphere with Embeddings

Real Datasets

While synthetic datasets are useful in showing that the new
algorithm produces similar results to the ones presented by
Sha and Saul, it is more interesting to apply the new confor-
mal map algorithm to a number of real datasets. Consider
the dataset composed of 1965 face images. Each face is
a gray scale image of 20 by 28 pixels and so represents a

point in a 560 dimensional space. The embedding produced
by the first two dimensions of LLE is in the left panel of
Figure 3 while the embedding of the first two dimensions of
our algorithm is in the right panel of the same figure. LLE
produces a figure where the happy faces are mostly at the
bottom and the sad faces are mostly at the top. However,
there is no clear separation between the two groups. In the
conformal map embedding the points in the data are clearly
separated into two sets. In the top set the facial expressions
are unhappy while in the bottom set the facial expressions
are happy. Each set is arranged in a line. The faces that are
on the left side of the plot are facing to the right while the
faces that are on the right side of the plot are facing to the
left. This is an example of where the conformal map algo-
rithm has been able to establish the proper position of each
point relative to its neighbors.

(a) LLE

(b) Conformal Map

Figure 3: Brendan Frey Face Dataset

Finally, in Figure 4 the dataset consists of 1100 images
of hand drawn digits each of One, Two, and Four. Again,
LLE can group similar images together but lacks transition
and in this case some of the images of One are superimposed
on the images of Four. In contrast, the conformal map can
detect the difference between the images with One and those

560



with Four since it can create a smooth transition between
the two. The plot in the last panel shows that the conformal
map algorithm may also be useful as pre-processing tool for
classification applications.

(a) LLE

(b) Conformal Map

(c) Conformal Map by Class

Figure 4: Digits 1, 2, 4

Application of Conformal Map in

Classification of 3D Objects

The classification of three dimensional surfaces is an impor-
tant task in artificial intelligence and computer vision. It can
be used for three dimensional object classification and three
dimensional face recognition.

In general, the classification of surfaces or 3D objects is
a difficult problem because objects can be translated, ro-
tated and scaled. As a result, the classical classifiers, when
applied to the raw data, fail to group the objects correctly
(Robert Osada and Dobkin 2001). In this section we show

how conformal mapping can be used to solve that prob-
lem. Five different surfaces (Swiss Roll, S-Curve, Half
Sphere,Half Ellipsoid, Cone) will be used in the classifica-
tion.

The main idea in this algorithm is to classify the trans-
formations which map a 3D object to a conformal 2D map
instead of classifying the raw data directly.

Consider a rectangular piece of paper. This paper can
be folded into any number of different shapes including the
Swiss Roll and the S-Curve. However, the set of actions that
are required to fold one shape are different than the set of ac-
tions required to fold another. Likewise, if we have a shape
that is already folded like a Swiss Roll the actions that will
unfold that paper are different from the actions required to
unfold the S-Curve. This is the basic intuition that drives
this classification algorithm. More precisely we propose to
model 3D objects by characterizing the transformations that
preserve the invariants they encode.

The transformation that produces the conformal map will
be used to classify the objects. An immediate benefit that
arises from this approach is that the classification is invari-
ant to scale, position and orientation (intuitively the same
actions must be taken to unfold a large figure as a small).

Unfortunately, there is no single transformation that can
be applied to the initial three dimensional data points to pro-
duce the two dimensional embedding. The conformal map
algorithm is actually a two step process beginning with LLE
and then adjusting that output to create a conformal map.
Both the transformation performed by LLE, and the adjust-
ment through the algorithm presented in this paper, must be
captured in order to uniquely identify the full transforma-
tion.

The first step is LLE. The LLE algorithm produces a
weight matrix W that uniquely defines the transformation.
However, the matrix W cannot be explicitly used in clas-
sification. W is the matrix that represents the weights of
the neighbours for each point. It is of size m by n where
m is the dimensionality of the output of LLE and n is the
number of sampled points. However, the points are not sam-
pled from the 3D surface in any specific order. Therefore,
two sets of points drawn from the same surface may have
completely different W matrices because the sampling order
of the points is different from one set of points to the next.
Consider the singular value decomposition of W = UΣV T .
Row permutation of W will change U and column permuta-
tion will change V . However, the diagonal matrix Σ, which
represents the singular values of W is independent of row
or column permutations. This implies that if W1 and W2

are equal up to a permutation of rows or columns then their
corresponding singular values will be equal. Having equal
singular values is necessary but not sufficient to show that
W1 and W2 are equal. These singular values will be used to
characterize the transformation.

The post processing step of the Conformal Map algorithm
produces a transformation matrix L. That matrix, and the
output from LLE Y , are used to compute the final embed-
ding: Z = LY . Therefore, this matrix uniquely identifies
the entire post processing step. The whole matrix will be
used to help characterize the transformation. For a matrix L
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of size n1 by n1 there are a total of n2
1 values that will be

used to identify the post processing step.
When comparing two surfaces, both the singular values of

W , say there are n2 of them, and the full matrix L will be
combined to form a vector. This vector is a point in n2

1 + n2

dimensional space. To judge similarity between transforma-
tions, the Euclidean distance between all pairs of points will
be calculated. Points that are close together will be of the
same type of 3D surface while the points that are further
away will belong to a different 3D surface. 1.8 A simple
classification algorithm will be used. The training set will
consist of a number of samples from each class which will
define a centroid for that class. A centroid is defined as the
average of all of the points in a particular class. A point that
needs to be classified will be placed in the same class as the
nearest centroid measured by Euclidean distance.

Experimental results for classification
Five synthetic classes of 3D surfaces are considered to test
the classification algorithm. In order to create a training set
and a test set we repeatedly sampled from these surfaces.
Each training and test sample is represented by 1000 points
drawn randomly from the equation that represents the sur-
face.

The results presented in this section will show that this
classification algorithm can properly distinguish between
the five surfaces. They will also show that this algorithm
is scale and rotation invariant. In other words, the algorithm
will correctly classify an object even if it is much larger or
smaller than any of the training surfaces and rotated a ran-
dom amount around the x, y and z-axis.

The training set is composed of 250 randomly sampled
surfaces, 50 from each of the 5 types of surfaces. All of the
objects are of the same size and orientation. The training set
is then used to create five different centroids, one for each
class.

A random sample of 25 surfaces from each class were se-
lected to create a test set. In this case the classification error
rates for Swiss Roll, S-Curve, Half Sphere, Half Ellipsoid,
and cone are 8%, 12%, 0%, 4%, and 0% respectively.

One of the interesting properties of this algorithm is that it
classifies surfaces based on a transformation and so it is in-
variant to scale. To test this property, the Half Sphere surface
is sampled 150 times where the first 50 samples have a ra-
dius of 1, the next 50 have a radius of 10 and the last 50 have
a radius of 100. The training set of 250 surfaces contains 50
samples of the Half Sphere where the radius was 12, and 50
samples of each of the other shapes. The results show that
the classification error rates for Half Spheres with r = 1,
r = 10, and r = 100 are 4 %, 4% and 2% respectively.

Another interesting property of this classification algo-
rithm is that it is invariant to the orientation of the surface.
To test this idea the cone surface was sampled 50 times and
then each sample was rotated a random amount around the
x, y, and z axis. Three of those random rotations are shown
in Figure 5. Each of the 50 cones was rotated in a differ-
ent way. The training sample was composed of 50 samples
of each type of surface and all surfaces were in their origi-
nal orientation. Of the 50 cones in the test all but one were

(a) Orientation 1 (b) Orientation 2 (c) Orientation 3

Figure 5: Cone In Different Orientations

classified correctly giving an error rate of 2%.

Conclusion

This paper has introduced a computationally efficient algo-
rithm that produces Conformal Maps. The algorithm’s use-
fulness was demonstrated through both synthetic and real
datasets. Finally, this paper has shown that the conformal
map algorithm has the potential to classify three dimensional
objects.
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