
Deep Learning

Restricted Boltzmann Machines (RBM)

Ali Ghodsi

University of Waterloo

December 15, 2015

Slides are partially based on Book in preparation, Deep Learning
by Bengio, Goodfellow, and Aaron Courville, 2015

Ali Ghodsi Deep Learning



Restricted Boltzmann Machines

Restricted Boltzmann machines are some of the most common
building blocks of deep probabilistic models. They are undirected
probabilistic graphical models containing a layer of observable
variables and a single layer of latent variables.

Ali Ghodsi Deep Learning



Restricted Boltzmann Machines

p(v,h) =
1

Z
exp{−E (v,h)}.

Where E (v,h) is the energy function.

E (v,h) = −bTv − cTh− vTWh,

Z is the normalizing constant partition function:

Z =
∑
v

∑
h

exp{−E (v,h)}.

Ali Ghodsi Deep Learning



Restricted Boltzmann Machine (RBM)

Energy function:

E (v,h) = −bTv − cTh− vTWh

= −
∑
k

bkvk −
∑
j

cjhj −
∑
j

∑
k

Wjkhjvk

Distribution: p(v,h) = 1
Z
exp{−E (v,h)}

Partition function: Z =
∑

v

∑
h exp{−E (v,h)}

Ali Ghodsi Deep Learning



Conditional Distributions

The partition function Z is intractable.

Therefore the joint probability distribution is also intractable.

But P(h|v) is simple to compute and sample from.

Ali Ghodsi Deep Learning



Deriving the conditional distributions from the

joint distribution.

p(h|v) =
p(h, v)

p(v)

=
1

p(v)

1

Z
exp{bTv + cTh+ vTWh}

=
1

Z ′ exp{c
Th+ vTWh}

=
1

Z ′ exp

{
n∑

j=1

cjhj +
n∑

j=1

vTW:jhj

}

=
1

Z ′

n∏
j=1

exp{cjhj + vTW:jhj}

Ali Ghodsi Deep Learning



Deriving the conditional distributions from the

joint distribution.

p(h|v) =
p(h, v)

p(v)

=
1

p(v)

1

Z
exp{bTv + cTh+ vTWh}

=
1

Z ′ exp{c
Th+ vTWh}

=
1

Z ′ exp

{
n∑

j=1

cjhj +
n∑

j=1

vTW:jhj

}

=
1

Z ′

n∏
j=1

exp{cjhj + vTW:jhj}

Ali Ghodsi Deep Learning



Deriving the conditional distributions from the

joint distribution.

p(h|v) =
p(h, v)

p(v)

=
1

p(v)

1

Z
exp{bTv + cTh+ vTWh}

=
1

Z ′ exp{c
Th+ vTWh}

=
1

Z ′ exp

{
n∑

j=1

cjhj +
n∑

j=1

vTW:jhj

}

=
1

Z ′

n∏
j=1

exp{cjhj + vTW:jhj}

Ali Ghodsi Deep Learning



Deriving the conditional distributions from the

joint distribution.

p(h|v) =
p(h, v)

p(v)

=
1

p(v)

1

Z
exp{bTv + cTh+ vTWh}

=
1

Z ′ exp{c
Th+ vTWh}

=
1

Z ′ exp

{
n∑

j=1

cjhj +
n∑

j=1

vTW:jhj

}

=
1

Z ′

n∏
j=1

exp{cjhj + vTW:jhj}

Ali Ghodsi Deep Learning



Deriving the conditional distributions from the

joint distribution.

p(h|v) =
p(h, v)

p(v)

=
1

p(v)

1

Z
exp{bTv + cTh+ vTWh}

=
1

Z ′ exp{c
Th+ vTWh}

=
1

Z ′ exp

{
n∑

j=1

cjhj +
n∑

j=1

vTW:jhj

}

=
1

Z ′

n∏
j=1

exp{cjhj + vTW:jhj}

Ali Ghodsi Deep Learning



The distributions over the individual binary hj

P(hj = 1|v) =
P(hj = 1, v)

P(hj = 0, v) + P(hj = 1, v)

=
exp{cj + vTW:j}

exp{0}+ exp{cj + vTW:j}
= sigmoid(cj + vTW:j)

P(h|v) =
n∏

j=1

sigmoid(cj + vTW:j)

P(v|h) =
d∏

i=1

sigmoid(bi +Wi :h)

Ali Ghodsi Deep Learning



RBM Gibbs Sampling

Step1: Sample h(l) ∼ P(h|v(l)).

We can simultaneously and independently sample from all the
elements of h(l) given v(l).

Step 2: Sample v(l+1) ∼ P(v|h(l)).

We can simultaneously and independently sample from all the
elements of v(l+1) given h(l).

Ali Ghodsi Deep Learning



Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Maximizing the likelihood

θ = {b, c,W } :

`(θ) =
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

∇θ`(θ) = ∇θ
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n ∇θlog
∑
v,h

exp{−E (v,h)}

=
n∑

t=1

∑
h exp{−E (v(t),h)}∇θ − E (v(t),h)∑

h exp{−E (v(t),h)}

−n
∑

v,h exp{−E (v,h)}∇θ − E (v,h)∑
v,h exp{−E (v,h)}

=
n∑

t=1

EP(h|v(t))[∇θ − E (v(t),h)]− n EP(h,v)[∇θ − E (v,h)]

Ali Ghodsi Deep Learning



Maximizing the likelihood

θ = {b, c,W } :

`(θ) =
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

∇θ`(θ) = ∇θ
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n ∇θlog
∑
v,h

exp{−E (v,h)}

=
n∑

t=1

∑
h exp{−E (v(t),h)}∇θ − E (v(t),h)∑

h exp{−E (v(t),h)}

−n
∑

v,h exp{−E (v,h)}∇θ − E (v,h)∑
v,h exp{−E (v,h)}

=
n∑

t=1

EP(h|v(t))[∇θ − E (v(t),h)]− n EP(h,v)[∇θ − E (v,h)]

Ali Ghodsi Deep Learning



Maximizing the likelihood

θ = {b, c,W } :

`(θ) =
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

∇θ`(θ) = ∇θ
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n ∇θlog
∑
v,h

exp{−E (v,h)}

=
n∑

t=1

∑
h exp{−E (v(t),h)}∇θ − E (v(t),h)∑

h exp{−E (v(t),h)}

−n
∑

v,h exp{−E (v,h)}∇θ − E (v,h)∑
v,h exp{−E (v,h)}

=
n∑

t=1

EP(h|v(t))[∇θ − E (v(t),h)]− n EP(h,v)[∇θ − E (v,h)]

Ali Ghodsi Deep Learning



Maximizing the likelihood

θ = {b, c,W } :

`(θ) =
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

∇θ`(θ) = ∇θ
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n ∇θlog
∑
v,h

exp{−E (v,h)}

=
n∑

t=1

∑
h exp{−E (v(t),h)}∇θ − E (v(t),h)∑

h exp{−E (v(t),h)}

−n
∑

v,h exp{−E (v,h)}∇θ − E (v,h)∑
v,h exp{−E (v,h)}

=
n∑

t=1

EP(h|v(t))[∇θ − E (v(t),h)]− n EP(h,v)[∇θ − E (v,h)]

Ali Ghodsi Deep Learning



The gradient of the negative energy function

∇W − E (v,h) =
∂

∂W
(bTv + cTh + vTWh)

= hvT

∇b − E (v,h) =
∂

∂b
(bTv + cTh + vTWh)

= v

∇c − E (v,h) =
∂

∂c
(bTv + cTh + vTWh)

= h

Ali Ghodsi Deep Learning



∇θ`(θ) =
n∑

t=1

EP(h|v(t))[∇θ − E (v(t),h)]− n EP(h,v)[∇θ − E (v,h)]

∇W `(W ,b, c) =
n∑

t=1

ĥ(t)v(t)T − nEP(v,h)[hv
T ]

∇b`(W ,b, c) =
n∑

t=1

v(t)T − nEP(v,h)[v]

∇c`(W ,b, c) =
n∑

t=1

ĥ(t) − nEP(v,h)[h]

where
ĥ(t) = EP(h,v(t))[h] = sigmoid(c+ v(t)W ).

it is impractical to compute the exact log-likelihood gradient.
Ali Ghodsi Deep Learning



Contrastive Divergence

Idea:

1. replace the expectation by a point estimate at ṽ

2. obtain the point ṽ by Gibbs sampling

3. start sampling chain at v(t)

EP(h,v)[∇θ − E (v,h)] ≈ ∇θ − E (v,h)|v=ṽ,h=h̃

Ali Ghodsi Deep Learning



Set ∈, the step size, to a small positive number
Set k , the number of Gibbs steps, high enough to allow a Markov
chain of p(v; θ) to mix when initialized from pdata. Perhaps 1-20 to
train an RBM on a small image patch.
while Not converged do
Sample a mini batch of m examples from the training set
{v(1), . . . , v(m)}.
∇W ← 1

m

∑m
t=1 v

(t)ĥ(t)T
∇b ← 1

m

∑m
t=1 v

(t)

∇c ← 1
m

∑m
t=1 ĥ

(t)

for t = 1 to m do
v̂(t) ← v(t)

end for
for ` = 1 to k do
for t = 1 to m do

Ali Ghodsi Deep Learning



ĥ(t) sampled from
∏n

j=1 sigmoid(cj + v̂(t)TW:,j).

v̂(t) sampled from
∏d

i=1 sigmoid(bj +Wi ,:ĥ(t)).
end for
end for
ĥ(t) ← sigmoid(c+ v̂(t)TW )
∇W ← ∇W − 1

m

∑m
t=1 v

(t)ĥ(t)T
∇b ← ∇b − 1

m

∑m
t=1 v

(t)

∇c ← ∇c − 1
m

∑m
t=1 ĥ

(t)

W ← W+ ∈ ∇W

b← b+ ∈ ∇b

∑
c← c+ ∈ ∇c

∑
end while

Ali Ghodsi Deep Learning



Pseudo code

1. For each training example v(t)

i. generate a negative sample ṽ using k steps of Gibbs sampling,
starting at v(t)

ii. update parameters

W ⇐ W + α
(
h(v(t))x (t) − h(ṽ)ṽT

)
b ⇐ b+ α

(
h(v(t))− h(ṽ)

)
c ⇐ c+ α

(
v(t) − ṽ)

)

2. Go back to 1 until stopping criteria

Ali Ghodsi Deep Learning



Example

Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to an input value of 0 and a white pixel

corresponds to 1 (the inputs are scaled between 0 and 1).

Ali Ghodsi Deep Learning



Example

The input weights of a random subset of the hidden units. The activation of units of the first hidden layer is obtained by a dot

product of such a weight “image” with the input image. In these images, a black pixel corresponds to a weight smaller than 3

and a white pixel to a weight larger than 3, with the different shades of gray corresponding to different weight values uniformly

between 3 and 3. Larochelle, et. al, JMLR2009

Ali Ghodsi Deep Learning


