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Restricted Boltzmann Machines

Restricted Boltzmann machines are some of the most common
building blocks of deep probabilistic models. They are undirected
probabilistic graphical models containing a layer of observable
variables and a single layer of latent variables.
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Restricted Boltzmann Machines

p(v,h) =
1

Z
exp{−E (v,h)}.

Where E (v,h) is the energy function.

E (v,h) = −bTv − cTh− vTWh,

Z is the normalizing constant partition function:

Z =
∑
v

∑
h

exp{−E (v,h)}.
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Restricted Boltzmann Machine (RBM)

Energy function:

E (v,h) = −bTv − cTh− vTWh

= −
∑
k

bkvk −
∑
j

cjhj −
∑
j

∑
k

Wjkhjvk

Distribution: p(v,h) = 1
Z
exp{−E (v,h)}

Partition function: Z =
∑

v

∑
h exp{−E (v,h)}
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Conditional Distributions

The partition function Z is intractable.

Therefore the joint probability distribution is also intractable.

But P(h|v) is simple to compute and sample from.
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Deriving the conditional distributions from the

joint distribution.

p(h|v) =
p(h, v)

p(v)

=
1

p(v)

1

Z
exp{bTv + cTh+ vTWh}

=
1

Z ′ exp{c
Th+ vTWh}

=
1

Z ′ exp

{
n∑

j=1

cjhj +
n∑

j=1

vTW:jhj

}

=
1

Z ′

n∏
j=1

exp{cjhj + vTW:jhj}
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The distributions over the individual binary hj

P(hj = 1|v) =
P(hj = 1, v)

P(hj = 0, v) + P(hj = 1, v)

=
exp{cj + vTW:j}

exp{0}+ exp{cj + vTW:j}
= sigmoid(cj + vTW:j)

P(h|v) =
n∏

j=1

sigmoid(cj + vTW:j)

P(v|h) =
d∏

i=1

sigmoid(bi +Wi :h)
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RBM Gibbs Sampling

Step1: Sample h(l) ∼ P(h|v(l)).

We can simultaneously and independently sample from all the
elements of h(l) given v(l).

Step 2: Sample v(l+1) ∼ P(v|h(l)).

We can simultaneously and independently sample from all the
elements of v(l+1) given h(l).
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Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Training Restricted Boltzmann Machines

The log-likelihood is given by:

`(W ,b, c) =
n∑

t=1

logP(v(t))

=
n∑

t=1

log
∑
h

P(v(t),h)

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n logZ

=
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

Ali Ghodsi Deep Learning



Maximizing the likelihood

θ = {b, c,W } :

`(θ) =
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n log
∑
v,h

exp{−E (v,h)}

∇θ`(θ) = ∇θ
n∑

t=1

log
∑
h

exp{−E (v(t),h)} )− n ∇θlog
∑
v,h

exp{−E (v,h)}

=
n∑

t=1

∑
h exp{−E (v(t),h)}∇θ − E (v(t),h)∑

h exp{−E (v(t),h)}

−n
∑

v,h exp{−E (v,h)}∇θ − E (v,h)∑
v,h exp{−E (v,h)}

=
n∑

t=1

EP(h|v(t))[∇θ − E (v(t),h)]− n EP(h,v)[∇θ − E (v,h)]
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The gradient of the negative energy function

∇W − E (v,h) =
∂

∂W
(bTv + cTh + vTWh)

= hvT

∇b − E (v,h) =
∂

∂b
(bTv + cTh + vTWh)

= v

∇c − E (v,h) =
∂

∂c
(bTv + cTh + vTWh)

= h
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∇θ`(θ) =
n∑

t=1

EP(h|v(t))[∇θ − E (v(t),h)]− n EP(h,v)[∇θ − E (v,h)]

∇W `(W ,b, c) =
n∑

t=1

ĥ(t)v(t)T − nEP(v,h)[hv
T ]

∇b`(W ,b, c) =
n∑

t=1

v(t)T − nEP(v,h)[v]

∇c`(W ,b, c) =
n∑

t=1

ĥ(t) − nEP(v,h)[h]

where
ĥ(t) = EP(h,v(t))[h] = sigmoid(c+ v(t)W ).

it is impractical to compute the exact log-likelihood gradient.
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Contrastive Divergence

Idea:

1. replace the expectation by a point estimate at ṽ

2. obtain the point ṽ by Gibbs sampling

3. start sampling chain at v(t)

EP(h,v)[∇θ − E (v,h)] ≈ ∇θ − E (v,h)|v=ṽ,h=h̃
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Set ∈, the step size, to a small positive number
Set k , the number of Gibbs steps, high enough to allow a Markov
chain of p(v; θ) to mix when initialized from pdata. Perhaps 1-20 to
train an RBM on a small image patch.
while Not converged do
Sample a mini batch of m examples from the training set
{v(1), . . . , v(m)}.
∇W ← 1

m

∑m
t=1 v

(t)ĥ(t)T
∇b ← 1

m

∑m
t=1 v

(t)

∇c ← 1
m

∑m
t=1 ĥ

(t)

for t = 1 to m do
v̂(t) ← v(t)

end for
for ` = 1 to k do
for t = 1 to m do
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ĥ(t) sampled from
∏n

j=1 sigmoid(cj + v̂(t)TW:,j).

v̂(t) sampled from
∏d

i=1 sigmoid(bj +Wi ,:ĥ(t)).
end for
end for
ĥ(t) ← sigmoid(c+ v̂(t)TW )
∇W ← ∇W − 1

m

∑m
t=1 v

(t)ĥ(t)T
∇b ← ∇b − 1

m

∑m
t=1 v

(t)

∇c ← ∇c − 1
m

∑m
t=1 ĥ

(t)

W ← W+ ∈ ∇W

b← b+ ∈ ∇b

∑
c← c+ ∈ ∇c

∑
end while
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Pseudo code

1. For each training example v(t)

i. generate a negative sample ṽ using k steps of Gibbs sampling,
starting at v(t)

ii. update parameters

W ⇐ W + α
(
h(v(t))x (t) − h(ṽ)ṽT

)
b ⇐ b+ α

(
h(v(t))− h(ṽ)

)
c ⇐ c+ α

(
v(t) − ṽ)

)

2. Go back to 1 until stopping criteria
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Example

Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to an input value of 0 and a white pixel

corresponds to 1 (the inputs are scaled between 0 and 1).
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Example

The input weights of a random subset of the hidden units. The activation of units of the first hidden layer is obtained by a dot

product of such a weight “image” with the input image. In these images, a black pixel corresponds to a weight smaller than 3

and a white pixel to a weight larger than 3, with the different shades of gray corresponding to different weight values uniformly

between 3 and 3. Larochelle, et. al, JMLR2009
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