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Abstract

In this paper, We study the problem of learning a controllable representation for
high-dimensional observations of dynamical systems. Specifically, we consider
a situation where there are multiple sets of observations of dynamical systems
with identical underlying dynamics. Only one of these sets has information about
the effect of actions on the observation and the rest are just some random obser-
vations of the system. Our goal is to utilize the information in that one set and
find a representation for the other sets that can be used for planning and ling-term
prediction.

1 Introduction

The world surrounding us is full of events that we only observe them through high-dimensional
sensory data. However, in many cases, these events can be described by few features and simple
relations. Discovering the simple low-dimensional feature space is an underlying task in many data
processing algorithms. With the recent advances in the area of artificial neural networks, use of
deep structures for learning the low-dimensional representations has been outstandingly increased
in different applications. A good representation is defined based on the task in hand.

In the area of control, a good representation means a low-dimensional feature space, in which the
relation between different states of the system can be modeled by simple functions. Finding such
representation has been studied recently in different works [2]. Deep autoencoders have been used
for obtaining an appropriate representation for control in [5, 8]. This problem has been also stud-
ied in action respecting embedding (ARE) framework [3]. Embed to control (E2C) [9], finds a
low-dimensional locally-linear embedding of the observations that allows planning and long-term
prediction by applying model predictive controllers, e.g. iterative linear quadratic regulator (iLQR).
More recently, robust controllable embedding (RCE), [1], has been proposed, which can handle
noise in the dynamics of the system.

In this paper, we address this problem in a more generalized setting. Suppose we have different
sets of high-dimensional observations from the systems that have the same underlying dynamics.
Therefore, in all of the observations there exist a common set of features that correspond to the
dynamics of the system. Our goal is to extract this set of features using only one set of observations
and use the learned dynamics to do planning and long-term prediction for the other sets. To do so,
we design a model that disentangles the features that contribute in dynamics and those who just
contribute in the content of the image. Building such model requires dynamics information (i.e.
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knowing how the actions change our observation from the system) in one set and there is no need to
have such information in other sets.

Learning disentangled features has various applications in image and video processing and text
analysis and has been studied in different works [6]. More recently, authors in [7, 4] proposed a
model in the framework of generative adversarial networks (GANs) that disentangles dynamics and
content for video generation. However, to the best of our knowledge, our model is the first model
that proposes disentangling dynamics and content for control, planning, and prediction.

2 Problem Statement

Suppose we have different sets of high-dimensional observations from the states of dynamical sys-
tems where the underlying dynamics of the systems is the same. For now, let us assume that we only
have one dynamical system and there are just two observation sets from this system from different
angles. We make this assumption just for the sake of simplicity in notations, but it can be easily
relaxed. The two observation sets are denoted by X and Y that belong to the observation spaces X
and Y , respectively.

Let us denote by S, the true state space of the system, in which st represents the state of the system
at time step t. The dynamics of the system in this space is defined by fS :

st+1 = fS(st,ut) + nS (1)

where nS is the noise in the state space. We do not have any information about the state space and
want to estimate it based on our observations.

Suppose set X consists of triples (xt,ut,xt+1), i.e. observation of the system at time t, action
that is applied to the system at time t, and the next observation after applying ut to the system,
respectively. Therefore, we know how the actions change our observations in X . We also assume
that the observations in this set have Markov property. Set Y also has some observations of the
system from a different point of view. However, there is no information about the actions and the
effect of the actions on our observation in this set. We denote the observations in this set by yt.
Note that xt and yt are two different observations of the state st. Since X and Y , are observations
from one system, the underlying dynamics is the same. Suppose that our goal is to do planning and
long-term prediction in Y . Our approach to achieve this goal is to extract the dynamics information
from X and leverage this information to build a model for Y .

3 Model Description

There has been some efforts in finding a representation for high-dimensional observations of dy-
namical systems that is suitable for planning using neural networks. Recently, Robust Controllable
Embedding (RCE) [1] has been proposed that shows good performance on this task. The RCE
model is based on introducing a graphical model for the problem that describes the relation between
pairs of observations and their embedded representations. Using deep variational learning, the lower
bound of the conditional distribution of the observations is maximized.

We build our model up on RCE . However, instead of using only one latent variable, we assume
that there are two independent variables in the latent space. One of these variables is related to the
dynamics of the system and the other one is related to the content of the observation. Therefore we
aim to disentangle the dynamics and content in the latent space. Such disentanglement allows us to
model the dynamics of the observations, even though the content of them might be very different.
Consider the graphical models in Fig. 1. Fig. 1a shows the model for X . In this figure, zt and
wx are the two latent variables that we want to represent the dynamics and content information,
respectively. Similar to RCE, we want to have locally-linear dynamics in the latent space, i.e.:

ẑt+1 = Atzt + Btut + ct (2)

where At, Bt, and ct are matrices that are learned during training the model. Building this locally-
linear model will allow us to use iLQR method for control. We use z and ẑ to distinguish between
encoding of x and the variable after transition. Fig. 1b shows the model for Y . This set is encoded
with two latent variables vt and wy, representing dynamics and content, respectively. We would
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Figure 1: Graphical models. The black arrows are generative links and the red dashed ones are
recognition links. The parallel lines show the deterministic links. (a) Graphical model for set X . z̄t
and zt are two samples from p(zt|xt). The neural networks that parameterize the links with hatch
marks are hard tied, i.e. p(zt|xt) = p(z̄t|xt) = q(ẑt|xt) . (b) Graphical model for Y

like to have a locally-linear dynamics similar to Eq. 2 for v. All of the conditional distribution on
these graphical models are parameterized by neural networks.

The goal in this work can be interpreted as maximizing the likelihood of observations, while impos-
ing a further constraint that if xt and yt are two high-dimensional observations of the same state of
the dynamical system(s), then we want q(zt|xt) and q(vt|yt) be close to each other, e.g. have small
KL divergence.

Suppose q? = q(zt, z̄t, ẑt+1,wx|xt,xt+1,ut) and q† = q(vt,wy|yt). Based on the graphical
model we can consider these factorizations for q? and q†:

q? = qφ(wx|xt+1)qφ(ẑt+1|xt+1)qϕ(z̄t|ẑt+1,xt)δ(zt|ẑt+1, z̄t,ut)

q† = qφ(wy|yt)qφ(v|yt)
(3)

where φ and ϕ stand for encoder and transition network parameters, respectively. We also have the
following factorization for the generative links in the graphical model:
p(xt+1, zt, z̄t, ẑt+1,wx|xt,ut) = p(z̄t|xt)p(zt|xt)δ(ẑt+1|z̄t, zt,ut)p(xt+1|ẑt+1,wx)p(wx)

(4)

In this model, we want to maximize the likelihood of all the observations. Since we consider Markov
property for set X , maximizing the likelihood of observations in X boils down to log-likelihood of
the conditional distribution of the pair of observations. Therefore we will have:
log p(xt+1|xt,ut) + log p(yt)

≥ Eq?
[

log p(xt+1, zt, z̄t, ẑt+1,wx|xt,ut)− log q?
]

+ Eq†
[

log p(yt,vt,wy)− log q†
]

= Eqφ(ẑt+1|xt+1)
qφ(wx|xt+1)

[
log p(xt+1|ẑt+1,wx)

]
− Eqφ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+H
(
qφ(ẑt+1|xt+1)

)
+ Eqφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
− KL

(
qφ(wx|xt) ‖ p(wx)

)
+Eq†

[
log p(yt|vt,wy)

]
− KL

(
qφ(vt|yt) ‖ p(vt)

)
− KL

(
qφ(wy|yt) ‖ p(wy)

)
(5)

To maximize this lower bound we use the deep variational learning framework. We assume that the
prior of the content variables, wx and wy, are Gaussian. Also we assume p(z̄t|xt) is Gaussian.
The constraint of minimizing the KL divergence between q(zt|xt) and q(vt|yt) can be imposed by
considering q(zt|xt) as the prior for p(vt), i.e.:

p(vt) = N
(
µφ(xt), σφ(xt)

)
(6)
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Figure 2: Networks of the model

Fig. 2 shows the high-level depiction of the networks in our model. In the case we use same networks
for encoding and decoding the two observation sets (for example when the contents do not differ too
much) , we can assume that p(wx) and p(wy) are two Gaussian distributions with different means.

4 Experiment Result

To evaluate the effectiveness of the proposed model, we consider the planar system domain. Con-
sider an agent in a surrounded area, whose goal is to navigate from a corner to the opposite one, while
avoiding the six obstacles in this area. The system is observed through a set of 40× 40 pixel images
taken from the top, which specify the agent’s location in the area. Actions are two-dimensional and
specify the direction of the agent’s movement. Suppose that the difference between the two observa-
tion sets from this system is in the shape of the agent, as shown in Fig. 3. We use the same encoder
and decoder for the two observation sets. We used 8000 samples (triples (xt,ut,xt+1)) in the set
X and only 2000 samples in set Y .

Fig. 3 shows the true map of the state-space of this system and the maps that are estimated using
the model for the two observation sets. As we can see, the map that has been discovered using the
information inX is very well preserved for the set Y . In this figure we can also see some predictions
of the position of the agent for both sets given some actions versus the true position of the agent after
applying those action. This shows that the model is successful in learning the dynamics for Y even
though we did not have any information about the dynamics in this set.

(a) (b) (c)

True state-space

Estimated space using X

Learned space for Y

Figure 3: (a) Top: The true state space of the system. Middle: estimated locally-linear latent space
from set X . Bottom: The hidden space learned for set Y . (b): Left: An initial observation from
X on top and its next observations after applying four random actions Right: Reconstruction of the
initial state and prediction of the next observations. (c): Left: An initial observation from Y on
top and its next observations after applying four random actions Right: Reconstruction of the initial
state and prediction of the next observations
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Table 1: Planar System

Dataset Reconstruction Loss Prediction Loss Planning Loss Success Rate
with action (X) 3.6± 1.7 6.2± 2.8 21.4± 2.9 100%

without action (Y ) 3.9± 2.2 6.3± 3.0 22.0± 2.4 100%

To evaluate the performance of the model in planning, we provide different sets of initial and final
observations in X and Y , and use the learned models to find the policy that leads the agent to reach
the final observation within T steps. We present the performance of the model in table 1 in terms
of: 1) Reconstruction Loss is the loss in reconstructing current observation using the encoder and
decoder. 2) Prediction Loss is the loss in predicting next observations, given current observation and
current action, using the encoder, decoder, and transition network. 3) Planning Loss is computed
based on the following quadratic loss:

J =

T∑
t=1

(st − sf )>Q(st − sf ) + u>
t Rut. (7)

where Q and R are cost weighting matrices. sf is the state corresponding to the final observation.
We apply the sequence of actions returned by iLQR to the dynamical system and report the value of
the loss in Eq. 7. 4) Success Rate shows the number of times the agents reaches the goal within the
planning horizon T , and remains near the goal in case it reaches it in less than T steps. For each of
the sets, all the results are averaged over 20 runs.

5 Discussion

This model has potential applications in self-driving cars. Self-driving cars use many sensors to
observe the surrounding environment that includes expensive sensors for dynamics estimation. They
also use multiple cameras to monitor the area. Observations from the camera are rich in term of
information about the content (objects in the area), however, extracting dynamics information using
these observations is a hard task. On the other hand, the dynamics estimator sensors are poor in terms
of the content information but provide information about action-state space with high accuracy. If
we can find a way to transfer the learned dynamics from the sensor to the cameras, we can remove
the sensor at the test time and reduce the cost of experiments.
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