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Abstract—A main problem in machine learning is to predict
the response variables of a test set given the training data
and its corresponding response variables. A predictive model
can perform satisfactorily only if the training data is an
appropriate representative of the test data. This is usually
reflected in the assumption that the training data and the
test data are drawn from the same underlying probability
distribution. However, the assumption may not be correct in
many applications for various reasons. We propose a method
based on kernel distribution embedding and Hilbert-Schmidt
Independence Criterion (HSIC) to address this problem. The
proposed method explores a new representation of the data in
a new feature space with two properties: (i) the distributions
of the training and the test data sets are as close as possible
in the new feature space, and (ii) the important structural
information of the data is preserved. The algorithm can
reduce the dimensionality of the data while it preserves the
aforementioned properties and therefore it can be seen as a
dimensionality reduction method as well. Our method has a
closed-form solution and the experimental results show that it
works well in practice.
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I. INTRODUCTION

In the realm of machine learning, a model is trained
to predict the response variables of a test data set. The
training procedure is usually based on minimizing a loss
function over all samples of a training data set and their cor-
responding response variables. However, learning achieves
its purpose only when the training data set is a suitable
representative of the test data set; otherwise the method
learns unrelated information, and therefore the efficiency of
the prediction is not satisfactory.

In conventional predictive models, the statement that the
training data is a suitable representative of the test data is
reflected in the assumption that the underlying distributions
of the training and test data sets are identical. But this
assumption is not always valid. Different reasons may cause
the underlying probability distributions of the training and
test data sets to be different. The reason might be in the
difficulty or uncontrollability in gathering data.

In last decades, attention has been focused on domain
adaptation problem in machine learning [1] and it has been
studied under different names [2] e.g. covariate shift [3],
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class imbalance [4], semi-supervised learning [5], multi-task
learning [6] and sample selection bias [7], [8], but all these
methods mostly tackle the problem by two approaches: re-
weighting source instances or changing the representation
space [2].

In re-weighting source instances, weights, w,(X,y), are
assigned to the pre-defined loss function which is then
minimized to learn the predictive model [1], [9]. In changing
the representation approach, the data is embedded into a
new feature space where the probability distributions of the
training data and that of the test data in the new feature
space are more similar [10]. There are common drawbacks
among proposed methods in literature: (i) approximation of
the underlying distributions makes solving the problem hard
in high dimensional data sets, (ii) exploring a new repre-
sentation of the data which is not necessarily linear, usually
makes solving the problem computationally expensive, and
(iii) some domain adaptation techniques are applicable only
to restricted predictive models.

We propose a method that overcomes the above draw-
backs based on kernel distribution embedding and Hilbert-
Schmidt Independence Criterion. The proposed algorithm
finds a new representation of the data in a new feature
space such that the underlying probability distributions of the
embedded training and test data sets are as close as possible
and the important structural information of the data is also
preserved for any further predictive analysis. These two
constraints lead to a single optimization problem which has a
closed-form solution. The algorithm has a good performance
when the data is mapped to a lower dimensional space. So
it can be used as a dimensionality reduction technique as
well.

A. Notation

Let X and ¢ denote random variables (i.e. input variables
in the original feature space and the new feature space
respectively). ) denotes its corresponding response variables
(i.e. output variables like class labels). P(X', ) is the under-
lying joint probability distributions of X and ). In domain
adaptation problems, the underlying probability distributions
of the training and test data sets denoted by P;,.(X,)) and
Ps(X,Y) are different. P;,.(X) and P;s(X') denote the true



marginal probability distributions of X and ) in the training
and test data sets. Similarly, P,.(Y|X) and Ps(Y|X) are
used to show the true conditional probability distributions
in the two domains.

The bold lower case alphabet, x, is a d-dimensional
sample. X, and X;s denote the matrices of the training and
test data set samples of size d X ny, and d X n;4 respectively.
ng and ny, are the numbers of the samples in the training
and test data sets respectively. Xgx, = [XtrX¢s] is a matrix
of n, d—dimensional samples where n = ng + ngs. P
is the new representation of the data in the new feature
space, where ® is defined to be ¥ : X — & such that
O := [}, Dys]. Dy and Py denote the embedded training
and test data sets in the new representation space.

II. METHOD

The main challenge of domain adaptation problem is that
of the non-similarity of the joint probability distributions of
the training and test data sets. Decomposing them as

ptr(Xay) :pfr(X)pM(y‘X)
pts(X7y) :pts(X)pts(y|X)7

it is assumed that all the difference between the joint
probability distributions of the training and test data sets
is due to the difference between their marginal probability
distributions and there exists a new representation of the
data, ®, such that the marginal probability distributions of
embedded training and test data sets are similar which means
P (@) =~ Py (D).

A. Minimizing the Distance Between Two Probability Dis-
tributions

The crucial criterion for solving domain adaptation prob-
lem is to make the discrepancy between probability distri-
butions of the training and the test data sets as small as
possible. Maximum Mean Discrepancy (MMD) is a non
parametric measure of the distance between distributions of
data sets. It is a metric representative of the distance between
the means of those probability distributions as follows [11]

MMD(ptrv ptS) = |lux,, [Ptr] — KX [PtS]H"H = (H
sup  (Ey, _p, 9(xe) —Ex _p 9(xi)),
9EF,|lglln <1

where Ey.p[g(x)] is the expectation value of the function
g(x) (where the samples are drawn from probability distri-
bution P) . It has been also shown by Jegelka et al. [11]
that MMD can be estimated empirically as

., [Por] = px, [Pulll3, ~  tr(HLarHLy),

where Lg is a kernel over ®, let’s say ®Td, and Ly is a
pre-defined kernel [11]. So the objective function is to

minimize tr(HLyHLg) = tr(HLyHOT®).  (2)

A trivial solution of this is to collapse all the samples
of each probability distribution to one point and then make
those two points close to each other. But this new repre-
sentation loses crucial information in data for the future
predictive analysis. Therefore, this objective function by
itself is not adequate and besides minimizing the distance
between the aforementioned probability distributions, the
new representation should also preserve the important data
features that are needed for any post analysis.

B. Preserving the Important Features of the Data

The dependency of the original data and its new rep-
resentation can be used as a measure that shows how
well the structure and important features for predicting the
response variables are preserved. HSIC [12] is considered
as a measure for quantifying the dependency of two random
variables.

Two random variables are independent iff the joint prob-
ability distribution of them is equal to the multiplication of
their individual probability distributions. So the dependency
between two random variables can be measured based on the
distance between the above probability distributions [12] and
this metric is estimated empirically as

HSIC(X,®) = (n — 1) 2tr(HKx HLg), 3

where Lg is a kernel over ®, let’s say &TdH, and Ky
is a valid kernel on the original data. The choice of the
kernel implies the structure and important information that
is desired to be preserved.

So a supplementary objective function is

maximize tr(HKxHLg) = tr(HLyH®T®). 4)

C. Adapting Component Analysis

Minimizing the distance between P(®;,.) and P(®P;,) and
preserving the important features of X, are incorporated to
establish a single optimization problem for solving domain
adaptation problem in which its solution is an embedding of
the data into a new feature space. The objective function of
the proposed algorithm is defined as

t’l‘(HKxHL@) (5)

maximize TS

where the denominator is the measure for the distance
between the probability distributions of the training data
set and that of the test data set. Minimizing this measure
or equivalently, maximizing the inverse of it, makes this
distance as small as possible. The numerator is the mea-
sure for estimating the dependency between the samples in
the original space and their corresponding representations.
Maximizing this measure, will preserve the structure and
important information of the data depending on kernel, K x.
Rewriting the optimization problem in terms of ® we have

tr(HK x HOT®) _ tr(®HK x H®T) (6)

maximmize - gr . HeT®) — tr(@HLy HOT) "




The objective function in (6) is invariant with respect to any
scaling of ®, so ® can be chosen such that the denominator
tr(®H Ly H®T) is equal to one:

maximize tr(®HKx H®T) e
subjectto  tr(®HLy H®T) = 1.

This optimization problem is an instance of Rayleigh quo-
tient and finding the optimal & is straight forward as it has
a closed-form solution. This corresponds to an eigenvector
estimation problem with ®”" as a matrix of eigenvectors of
K;(lL M- The number of selected eigenvectors d’ < d is the
dimensionality of the data in the new feature space. If d’
is chosen to be less than d, ® represents the data X in a
lower dimensional space, which means this method not only
handles domain adaptation problems but also can be used as
a dimensionality reduction method.

The proposed domain adaptation algorithm called Adapt-
ing Component Analysis (ACA) exploits the response vari-
ables of the training data set in addition to the training
and test sets to strengthen performance of the algorithm.
These are encapsulated in kernel K x. Once the appropriate
representation is found, we can apply further predictive
algorithms to the samples in the new feature space.

1) Choice of kernel Kx for classification task: Exploit-
ing the response variables of the training data set (which
could sometimes be easily accessible) is valuable informa-
tion that can improve the efficiency of the algorithm. Using
information of the response variables can be advantageous in
finding a new representation of data that is more appropriate
for the following predictive analysis.

ACA finds a shared feature space where the distance
between training and test data set probability distributions
are reduced while the structural properties of the data set are
preserved. However, the new shared feature space does not
need to keep the whole structure of the data unchanged. It is
only needed to keep the informative features for predicting
the response variables. ACA focused on classification task
where the new representation is desired to preserve structure
and important features of the data relevant to the classifica-
tion predictive model in a supervised manner.

Rewriting K x based on linear kernel, we have

_ [ Xz } _ [ Kx,,x,,
Rx [ XtT; [Xtr th} KthXM‘

KXtrth
KXt,th,s

)

where K, x,. and Kx,_x,. capture the information of the
structure of training and test data sets receptively. These
two sub-matrices are important for learning or training of
the predictive model and they should be preserved. But
intuitively the relative structure of the training data set and
the test data set need not to be necessarily fixed as domains
are intended to get closer. So, this can help us modifying
the structure of the data in a supervised manner with the
known response variables of the training data set. So the
matrix K x can be changed to K x Where K x 1S constructed

based on the data and the known response variables. For
example, Kx,_x,, is initially representing the similarity of
the training data set and the test data set samples. But in
classification task, if two samples of the training data set are
similar, based on their response variables, they should not
be different from a test data set sample perspective. So the
sub-matrices of Kx,, x,, and Kx,, x,. can be smoothed by a
process which reduces the variation of the data in unrelated
dimensions while it keeps the variation of the data along
the directions which contain important information relevant
to predicting the response variables. Therefore, those two
sub-matrices, Kx, x,, and Kx, x, are substituted with
Kx.x.. = Ky, Kx,,x,, and Kx, x,, = Kx,.x,, Ky,
where Ky, is a kernel on the response variables of the
training data set Xy, which represents the similarity between
the labels of the training data set samples and its main role
is to even out the difference between similar samples. Based
on this formulation, the sample of the training data set, x;
is changed to the weighted mean of its similar samples. The
weight is proportional to the similarity of sample x; and x;
(that is the (4, j)th entry of the kernel Ky, ). This makes
the variation of similar samples smaller. Therefore, Kx is
changed to

Ry = | Bxoxe Kx,x. )
Kx,.x,. Kx,.x,.
III. EXPERIMENTAL RESULTS

Domain adaptation problem has been studied extensively
in past decades and several methods have been developed. In
this paper, the proposed method is compared with MMDE
[13] and CODA [14]. MMDE is chosen since a similar
measure, MMD, is considered for estimating the distance
between the probability distributions of the training and test
sets. CODA is chosen as a recently developed method for
solving domain adaptation problem.

A. The Kernel on the Response Variables

In the objective function defined in (6), Kx and L,
are assumed to be known. Then the kernel Kx has been
changed to KX in ACA. KX = [A(X”X" Bxuxe,

) Kx.x Kxi.x,.
where Kx,.x, = Kx,.x,(Ky,) and Kx, x, =
(Ky,, )Kx,,x,.- Ky, represents the similarity of the re-
sponse variables of the training data set and can be con-
structed in various forms. Without loss of generality, we
use delta kernel for Y. Multiplication of the kernel, Ky, ,
with Kx, x,, and Kx,, x,. is basically substituting each
sample of the training data set by the weighted mean of its
corresponding similar samples which makes the variation of
the data along similar samples smaller.

B. Toy Classification Example

We first test our proposed algorithm on a toy example. The
training and test data set consists of 100 and 200 samples



of the two dimensional data drawn from multivariate normal

distributions which their means are, y;, = (—1,3) and
pes = (2,1) respectively and their covariance matrices are
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Figure 1: (a) 2-dimensional data in the original space.
Circles, o, and crosses, x are two classes of the training
data set and diamonds,o, and stars, *, are two classes of the
test data set. (b) The new representation of the data in the
new feature space based on ACA.

The training and test data sets are categorized in two
classes. The samples of each set belong to the first class if
their first feature values are smaller than their corresponding
mean and they belong to the second class if they are larger.

Fig. 1-a demonstrates the data in the original feature space
and Fig. 1-b is the embedded data where ACA algorithms
is applied. As it can be seen, the distance between the
embedded training and test data set distributions is reduced.
Consequently, the new training data samples are better
representatives of the test data set for classification. 1-nearest
neighbor (1-NN) has been used as the classifier through all
experiments and The result of the classifier on the embedded
data is compared with MMDE and CODA. The original
data is also classified without any changes using 1-NN and
the corresponding error rate is considered as the baseline.
The error rate is the mean of the number of misclassified
samples. As it is shown in Table I, ACA provides significant
improvement in the error rate of the classification process.

Table I: The error rate comparison for different algorithms
and the baseline on the toy example

DIFFERENT ALGORITHMS
ERROR RATE

BASELINE ACA
55% 8%

MMDE
57%

CODA
53%

C. Real World Data Sets

In this section, we test the proposed method, ACA, on
different real world data sets of images, text and biological
data bases.

The First data set which is a collection of images, is
MNIST handwritten digits [15]. This data set consists of
8-bit gray scale images of the digits between ”0” and ”9”.

Seven different data sets called Dig-1 to Dig-7 are generated
from MNIST data set. Domain adaptation problem is defined
as if a classifier is trained on two digits of the training set,
while it is tested on two different digits of the test set. The
training and test digits of the Dig-1 to Dig-7 are shown in
Table II. These sets are randomly chosen among all possible
cases. The number of the training and test samples are 300
and 500 respectively for all of the data sets in Table II.

The error rate of different algorithms are represented
in Table II. It shows that the error rate in ACA is on
average decreased to less than 10% approximately which is
considerably less than the error rate of MMDE and CODA.
The dimensionality of the output data in ACA is set to 2
through all experiments in this paper. The new representation
of Dig-1 in 2-dimensional space is depicted in Fig. 2 which
is significantly better for classification.

Table II: Different data set generated from MNIST database
and and the error rate comparison for different algorithms.

[ NAME | TraiN | Test | BASELINE | ACA | MMDE | CODA |
DiG-1 0,1 3,4 45.60% 4.20 % 12.00% | 17.20%
Di1G-2 5,7 2,9 18.20% 9.0% 20.80% | 18.00%
Di1G-3 3,4 1,6 17.00% 7.01% 33.10% | 28.20%
DiG-4 2,8 3,9 46.40% 7.1% 45.20% | 41.60%
DiG-5 6,9 5,7 | 27.60% | 12.60% | 34.40% | 21.60%
DiIG-6 1,3 3,6 | 40.90% 3.6% 37.20% 10.8%
DiG-7 8,4 3,2 43.40% 13.60 % 38.4% 26.8%
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Figure 2: The 2-dimensional representation of Dig-1 data set
based on ACA. Circles, o, and crosses, X are two classes
of the training data set. Diamonds,o, and stars, *, are two
classes of the test data set based on labels.

The second database, the 20 Newsgroups data set, consists
of about 20,000 newsgroup text documents which are cate-
gorized into four groups based on similar topics. The data set
is binary occurrence of the data for 100 words across 16242
postings [16]. In order to have a domain adaptation problem,
three data sets are generated such that "Newsgroup-1" data



set consists of 1000 randomly selected postings from groups
1 and 2 as the training data set, and 2000 randomly selected
postings from groups 3 and 4 as the test data set. Similarly,
“"Newsgroup-2” and "Newsgroup-3” data sets have the same
number of postings randomly selected from groups 1,3 and
1,4 in their training data sets and 2,4 and 2, 3 in their test
data sets respectively. In each of the artificially generated
data set, the task is to classify the postings of the test data
set while the algorithm is learned based on the training data
set.

Our proposed method, ACA, is compared with baseline,
MMDE and CODA on the Newsgroup-1, Newsgroup-2 and
Newsgroup-3 data sets in Table IIl. The error rate is the
average error over 10 trials where in each trial the samples
are randomly chosen from the original data set. As it is
shown in Table III, the error rate has been decreased from
almost 50% to approximately 25% — 30% for ACA. ACA
outperforms the other methods except in the second database
which is Newsgroup-2. For Newsgroup-2 the CODA has a
slightly better error rate, and that could be partly because
the 2-dimensional representation of the data is not appro-
priate in this case or, because CODA is initially designed
to solve domain adaptation problem that are characterized
by missing features, and this is often the case in natural
language processing while our algorithm is not developed
for a specific type of data.

To further test the performance of the proposed algorithm,
we run a set of classification experiments on several UCI
data sets [17] in which they are biased artificially based
on the so-called simple bias procedure[18]. Wine, German
Credit, India diabetes and Ionosphere are the data sets from
UCI archive [17] where their “Biasing Ratio” which is
defined in the biasing procedure is 80%. The error rate of
different methods on these data sets are also shown on Table
III. It shows that ACA outperforms the other methods in
these data sets as well.

Table III: Test result on various data sets by different meth-
ods. 1-nearest neighbour has been used for classification.

l DATA SET [ BASELINE [ ACA [ MMDE [ CODA ‘
NEWSGROUP-1 49.75% [ 28.9% [ 40.67% | 32.20%
NEWSGROUP-2 43.35% 29.75% 38.2% 25.19%
NEWSGROUP-3 41.6% 23.2% | 40.03% 37.1%
WINE 39.44% | 30.99% | 48.26% 31.98%
GERMAN CREDIT | 41.50% | 30.06% | 40.62% | 32.48%
INDIA DIABETES 42.13% | 38.01% | 40.71% 40.35%
TONOSPHERE 24.61% | 22.29% | 26.71% | 20.50%

The Breast Cancer dataset from the UCI Archive [17] is
a biological data set. The data includes 699 examples of be-
nign (positive label) and malignant (negative label)samples.
This is a binary classification problem from 9 initial features.
The experiment is repeated with different Biasing Ratios
equal to 70%, 80% and 90%.
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Figure 3: (a), (c) and (e) are the error rate comparison
in different algorithms on Breast Cancer data set with
Biasing Ratio of 70%, 80% and 90% respectively. The X-
axis is showing the features which the biasing process is
based on. (b), (d) and (f) are the Normalized Improvement
of ACA with respect to the baselines of (a), (c) and (e)
respectively. The bars from left to right correspond to
Baseline, ACA, MMDE and CODA.

The performance of the ACA is compared with the
baseline, MMDE and CODA in Fig. 3. The X-axis is the
feature number that the biasing procedure is based on it.
We repeat the experiment with different Biasing Ratios. All
the results are depicted in left column of Fig. 3. As can be
seen, ACA has better performance compared with the other
methods.

Another parameter for showing the efficiency of a method
is Normalized Improvement (NI) which quantifies how much
algorithm A outperforms with respect to the algorithm B.
This parameter is estimated as

_|Errory — Errorp|

NI €))

Errory

On the right column of Fig. 3 the Normalized Improvement
of ACA with respect to the baseline is shown. As can be
seen after adapting the domains of training and test data sets,



the performance is improved approximately up to 50% with
respect to the baseline in some features.
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Figure 4: (a) The error rate changes of ACA vs. different
dimensions on Dig-1, Dig-2 and Dig-3 data sets. (b) The
error rate changes of ACA vs. different dimensions on
Newsgroup-2 data set.

As it is mentioned earlier, ACA can also be used as
a dimensionality reduction technique. We run the ACA
algorithm on different data sets. For Dig-1, Dig-2 and Dig-3
data sets, the error rates versus the output dimension which
varies from 1 to 784 is depicted in Fig. 4(a). 784 is the
dimensionality of the data in original space. The error rate
is minimum in low dimensional space. The changes of the
error rate along different dimensions of the Newsgroup-2 is
also demonstrated in Fig. 4(b). The error rate is minimum
when the dimension of the data is about 15-25 in this case.
As can be seen the algorithm has a good performance in low
dimensions. So ACA can be considered as a dimensionality
reduction technique as well. The appropriate dimension
in each data set can be calculated by cross validation in
practice.

IV. CONCLUSION

We have presented a domain adaptation algorithm in
which the data samples are transferred to a new feature
space. The new representation of the data is explored such
that the training and the test data sets in the new feature
space are as close as possible while the important structural
information of the data is preserved. In order to solve this
problem and satisfy the aforementioned properties, we have
defined a fast optimization problem such that its solution is
known to be eigenvectors of a given matrix. Our experimen-
tal results show that the algorithm performs well in practice
and has a good efficiency in lower dimensions, so it can be
used as a dimensionality reduction technique.
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