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Abstract Predicting the response variables of the target data set is one of the main problems in

machine learning. Predictive models are desired to perform satisfactorily in a broad range of target

domains. However, that may not be plausible if there is a mismatch between the source and target

domain distributions. The goal of domain adaptation algorithms is to solve this issue and deploy a

model across different target domains. We propose a method based on kernel distribution embedding

and Hilbert-Schmidt Independence Criterion (HSIC) to address this problem. The proposed method

embeds both source and target data into a new feature space with two properties: (i) the distributions

of the source and the target data sets are as close as possible in the new feature space, and (ii) the

important structural information of the data is preserved. The embedded data can be in lower dimensional

space while preserving the aforementioned properties and therefore the method can be considered as a

dimensionality reduction method as well. Our proposed method has a closed-form solution and the

experimental results show that it works well in practice.
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1 Introduction

In the realm of machine learning, a model

is trained to predict the response variables of a

target data set. The training procedure is usu-

ally based on minimizing a loss function over

all samples of a source data set and their cor-

responding response variables. However, learn-

ing achieves its purpose only when the source

data set is a suitable representative of the tar-

get data set; otherwise the method learns unre-

lated information, and therefore the efficiency

of the prediction is not satisfactory.

In conventional predictive models, the

statement that the source data is a suitable rep-

resentative of the target data is reflected in the

assumption that the underlying distributions of

the source and target data sets are identical.

But this assumption is not always valid. Dif-

ferent reasons may cause the underlying prob-

ability distributions of the source and target

data sets to be different. The reason might be

in the difficulty or uncontrollability in gather-

ing data. For example, having samples in the

source data set from the target data set distri-

bution might not be possible as it costs a lot or

because of its unavailability at the moment.

In last decades, attention has been fo-

cused on domain adaptation problem in ma-

chine learning [1, 2]. The developed methods

are now widely used in diverse fields [2, 3]. For

instance, in the problem of generating a predic-

tive model for a certain cancer diagnosis, avail-

able data sets are usually from older popula-

tions who are more likely to have the cancer and

are willing to be monitored; however the target

data set population is not necessarily from the

same age group.

Domain adaptation has been studied un-

der different names [4] e.g. covariate shift [5],

class imbalance [6], semi-supervised learning

[7, 8, 9], transfer learning [10, 11] multi-task

learning [12, 13, 14] and sample selection bias

[15, 16], but all these methods mostly tackle

the problem by two approaches: re-weighting

source instances or changing the representation

space [4, 17].

In re-weighting source instances, to solve

the issue of the difference between the prob-

ability distributions of the source and target

data sets; weights, ws(x,y), are assigned to

the pre-defined loss function. The modified loss

function over the source data set is then mini-

mized to learn the predictive model [2, 18]. In

changing the representation approach, the data

is embedded into a new feature space. Regard-

less of the dimensionality of the new represen-

tation of data which might be in a higher [19]

or lower dimensional space [20, 21], the proba-

bility distributions of the source data and that

of the target data in the new feature space are
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more similar.

There are common drawbacks among pro-

posed methods in literature: (i) approxima-

tion of the underlying distributions makes solv-

ing the problem hard in high dimensional data

sets, (ii) exploring a new representation of the

data which is not necessarily linear, usually

makes solving the problem computationally ex-

pensive, and (iii) some domain adaptation tech-

niques are applicable only to restricted predic-

tive models.

We propose a method that overcomes the

above drawbacks based on kernel distribution

embedding and Hilbert-Schmidt Independence

Criterion. The proposed algorithm finds a new

representation of the data in a new feature

space such that the underlying probability dis-

tributions of the embedded source and target

data sets are as close as possible and the im-

portant structural information of the data is

also preserved for any further predictive anal-

ysis. These two constraints make a single opti-

mization problem which has a closed-form so-

lution. The algorithm has a good performance

when the data is mapped to a lower dimen-

sional space. So it can be used as a dimension-

ality reduction technique as well.

1.1 Notation

Let X and Φ denote random variables (i.e.

input variables in the original feature space

and the new feature space respectively). Y de-

notes its corresponding response variables (i.e.

output variables like class labels). P (X ,Y) is

the underlying joint probability distributions

of X and Y . In domain adaptation problems,

the probability distributions of the source and

target data sets are different. Ps(X ,Y) and

Pt(X ,Y) denote the underlying true joint prob-

ability distributions of the source and target

data sets respectively. Ps(X ) and Pt(X ) denote

the true marginal probability distributions of X

and Y in the source and target data sets. Sim-

ilarly, Ps(Y|X ) and Pt(Y|X ) are used to show

the true conditional probability distributions in

the two domains.

The bold lower case alphabet, x, is a d-

dimensional sample. Xs and Xt denote the

matrices of the source and target data set sam-

ples of size d × ns and d × nt respectively.

ns and nt are the numbers of the samples in

the source and target data sets respectively.

Xd×n = [XsXt] is a matrix of n, d−dimensional

samples where n = ns +nt. Φ is the new repre-

sentation of the data in the new feature space,

where Φ is defined to be

Ψ : X→ Φ, (1)
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such that

Φ := [ΦsΦt]. (2)

Φs and Φt denote the embedded source and

target data sets in the new representation

space.

2 Method

The main challenge of domain adaptation

problem is that of the non-similarity of the

probability distributions of the source and tar-

get data sets, i.e. Ps(X ,Y) and Pt(X ,Y). De-

composing the joint probability distributions of

the source and target data sets as

ps(X ,Y) = ps(X )ps(Y|X )

pt(X ,Y) = pt(X )pt(Y|X ),

It is assumed that all the difference between

the joint probability distributions of the source

and target data sets is due to the difference be-

tween their marginal probability distributions

and there exists a new representation of the

data, Φ, such that the marginal probability dis-

tributions of embedded source and target data

sets are similar:

Ps(Φ) ≈ Pt(Φ). (3)

2.1 Minimizing the Distance Between

Two Probability Distributions

The crucial criterion for solving domain

adaptation problem is to make the distance be-

tween probability distributions of the source

and the target data sets as small as possible.

Maximum Mean Discrepancy (MMD) is a non

parametric measure of the distance between

distributions of data sets. It is a metric rep-

resentative of the distance between the means

of those probability distributions as follows [22]

MMD(P̂s, P̂t) = ‖µX s [P̂s]− µX t [P̂t]‖H = (4)

sup
g∈F ,‖g‖H≤1

(EX s∼P̂s
g(xs)− EX t∼P̂t

g(x t)),

where Ex∼P [g(x )] is the expectation value of

the function g(x ) (where the samples are drawn

from probability distribution P ) . It has been

also shown by Jegelka et al. [22] that MMD

can be estimated empirically as

‖µX s [P̂s]− µX t [P̂t]‖2H ≈ tr(HLMHLΦ),

where H is the centering matrix that is defined

to be H := I − n−1eeT , and e is a vector of

ones. LΦ is a kernel over Φ, let’s say ΦT Φ, and

LM is a kernel in which the first cluster includes

the source samples and the second cluster con-

sists of the samples of the target data set:

LM =


α1ns×ns 0ns×nt

0nt×ns β1nt×nt

 (5)

where 0 and 1 are the matrices of all ze-

ros and ones with specified dimensions respec-

tively, and α and β are defined as

α =
1

n

√
ns

n
, β =

1

n

√
nt

n
. (6)
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So the objective function is to

minimize tr(HLMHLΦ) = tr(ΦHLMHΦT ).

A trivial solution of this is to collapse all

the samples of each probability distribution to

one point and then make those two points close

to each other. But this new representation

loses crucial information in data for the future

predictive analysis. Therefore, this objective

function by itself is not adequate and besides

minimizing the distance between the aforemen-

tioned probability distributions, the new rep-

resentation should also preserve the important

data features that are needed for any post anal-

ysis.

2.2 Preserving the Important Features

of the Data

The dependency of the original data and

its new representation can be used as a measure

that shows how well the structure and impor-

tant features for predicting the response vari-

ables are preserved. HSIC is considered as a

measure for quantifying the dependency of two

random variables.

Two random variables are independent iff

the joint probability distribution of them is

equal to the multiplication of their individual

probability distributions:

PX ,Φ = PXPΦ (7)

So the dependency between two random vari-

ables can be measured based on the distance

between the above probability distributions

[23] and this metric is estimated empirically as

HSIC(X ,Φ) = (n− 1)−2tr(HKXHLΦ), (8)

where LΦ is a kernel over Φ, let’s say ΦT Φ,

and KX is a valid kernel on the original data.

The choice of the kernel implies the structure

and important information that is desired to be

preserved.

So a supplementary objective function is

maximize tr(HKXHLΦ) = tr(ΦHLMHΦT ).

2.3 Adapting Component Analysis

Here, we first propose, an unsupervised

domain adaptation algorithm. We will call

it UnSupervised Adapting Component Analy-

sis (US-ACA). The algorithm exploits only the

source and target data sets to find a new rep-

resentation of the data, Φ, which makes the

probability distributions of the source and tar-

get data sets as close as possible. Then, we will

generalize the algorithm into a semi-supervised

domain adaptation algorithm, in which the re-

sponse variables of the source data set are also

exploited to strengthen the US-ACA and this

will be called Semi-Supervised Adapting Com-

ponent Analysis (SS-ACA).
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2.3.1 Unsupervised Adapting Component

Analysis

Minimizing the distance between P (Φs)

and P (Φt) and preserving the important fea-

tures of X , are incorporated to establish an

unsupervised single optimization problem for

solving domain adaptation problem in which

its solution is an embedding of the data into a

new feature space. The objective function of

the proposed algorithm is defined as

maximize tr(HKXHLΦ)
tr(HLM HLΦ)

, (9)

where the denominator is the measure for the

distance between the probability distributions

of the source data set and that of the target

data set. Minimizing this measure or equiva-

lently, maximizing the inverse of it, makes this

distance as small as possible. The numerator

is the measure for estimating the dependency

between the samples in the original space and

their corresponding representations. Maximiz-

ing this measure, will preserve the structure

and important information of the data depend-

ing on kernel, KX . The simplest and most nat-

ural kernel is linear kernel. The linear kernel

keeps the pairwise Euclidean distance globally,

but one may choose another kernel as well. For

example one can choose Isomap kernel:

K =
1

2
HD2H , (10)

where D is the geodesic distance matrix and H

is the centring matrix. Choosing Isomap ker-

nel will keep the geodesic distance of the data

while a linear kernel preserve the Euclidean dis-

tance of the data. Rewriting the optimization

problem in terms of Φ we have

maximize tr(HKXHΦT Φ)
tr(HLM HΦT Φ)

= tr(ΦHKXHΦT )
tr(ΦHLM HΦT )

. (11)

The objective function in (11) is invariant with

respect to any scaling of Φ, so Φ can be chosen

such that the denominator tr(ΦHLMHΦT ) is

equal to one:

maximize tr(ΦHKXHΦT )

subject to tr(ΦHLMHΦT ) = 1.

(12)

This optimization problem is an instance of

Rayleigh quotient and finding the optimal Φ

is straight forward as it has a closed-form solu-

tion. This corresponds to an eigenvector esti-

mation problem with ΦT as a matrix of eigen-

vectors of K−1
X LM . The number of selected

eigenvectors d′ ≤ d is the dimensionality of

the data in the new feature space. If d′ is

chosen to be less than d, Φ represents the

data X in a lower dimensional space, which

means our method not only handles domain

adaptation problems but also can be used as

a dimensionality reduction method. The al-

gorithm is described in Algorithm 1 by using

Matlab notations. For example, [U V] :=

eigs(S, dim, ’LR’) estimates the first ′dim′
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Algorithm 1 Unsupervised ACA

1: X d×n ← [X d×ns
s X d×nt

t ]

2: KX ← A kernel on X . e.g. Linear kernel

3: LM ← The MMD kernel on two

clusters of the source and target data sets

4: H ← I − n−1eeT

5: dim← The desired output dimensionality

6: S := (HKXH )−1(HLMH )

7: [U V ] := eigs(S , dim, ’LR’)

8: Φs := U (1 : ns, : ).

9: Φt := U (ns + 1 : end, :)

10: Φ = [Φs Φt]

11: return Φ

large eigenvalues and eigenvectors of S.

2.3.2 Semi-supervised Adapting Component

Analysis

Exploiting the response variables of the

source data set (which could sometimes be

easily accessible) is a valuable information

that can improve the efficiency of the algo-

rithm. The unsupervised algorithm, US-ACA,

described in the previous section does not uti-

lize the available labels or response variables

of the source data set. Using information of

the response variables could be advantageous

in finding a new representation of data that is

more appropriate for the following predictive

analysis. The predictive analysis can be a clas-

sification problem or regression which are ba-

sically predicting the response variables. The

proposed domain adaptation algorithm called

Semi-Supervised Adapting Component Anal-

ysis exploits not only the source and target

data sets to find a new representation of the

data, Φ, but also the response variables of the

source data set are exploited to strengthen per-

formance of the algorithm. These are encapsu-

lated in kernel KX . This algorithm finds an

appropriate representation of the data without

adding extra complexity to US-ACA algorithm.

Once the appropriate representation is found,

we can apply further predictive algorithms to

the samples in the new feature space where do-

main adaptation problem has been solved.

Choice of kernel KX for classification

task Exploiting the response variables of the

source data set (which could sometimes be eas-

ily accessible) is valuable information that can

improve the efficiency of the algorithm. Using

information of the response variables can be ad-

vantageous in finding a new representation of

data that is more appropriate for the following

predictive analysis.

US-ACA finds a shared feature space

where the distance between source and target

data set probability distributions are reduced

while the structural properties of the data set

are preserved. However, the new shared feature
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space does not need to keep the whole struc-

ture of the data unchanged. It is only needed

to keep the informative features for predicting

the response variables. Some of the structural

properties or hidden features of the data may

not be important for predicting a certain re-

sponse variable while they may be very impor-

tant for another one. So, it is wise to consider

the type of the task for finding the important

structure or hidden features of the data. Here,

we focused on classification task and there-

fore, we would like to find a new representa-

tion which preserves structure and important

features of the data relevant to the classifica-

tion predictive model in a supervised manner.

Rewriting KX based on linear kernel, we

have

KX = X TX =


X T

s

X T
t

 [X s X t]

=


X T

s X s X T
s X t

X T
t X s X T

t X t



=


KX sX s KX sX t

KX tX s KX tX t

 ,(13)

where KX sX s and KX tX t involve the informa-

tion of the structure of source and target data

sets receptively. These two sub-matrices are

important for learning or training of the predic-

tive model (which is the main goal) and they

should be preserved. But intuitively the rela-

tive structure of the source data set and the tar-

get data set need not to be necessarily fixed as

domains are intended to get closer. So, this can

help us modifying the structure of the data in

a supervised manner with the known response

variables of the source data set. So the ma-

trix KX can be changed to K̂X where K̂X is

constructed based on the data and the known

response variables. For example, KX tX s is ini-

tially representing the similarity of the source

data set and the target data set samples. But

in a classification task, if two samples of the

source data set are similar (they are in a same

class), based on their response variables, then

they should not be different from a target data

set sample perspective. So the sub-matrices of

KX tX s and KX sX t can be smoothed by a pro-

cess which reduces the variation of the data in

unrelated dimensions while it keeps the vari-

ation of the data along the directions which

contain important information relevant to pre-

dicting the response variables. Therefore, those

two sub-matrices, KX tX s and KX sX t are sub-

stituted with the following matrices:

K̂X sX t = KY sKX sX t (14)

K̂X tX s = KX tX sKY s , (15)

where KY s is a kernel on the response variables

of the source data set X s which represents the
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similarity between the labels of the source data

set samples and its main role is to even out the

difference between similar samples. Based on

this formulation, the sample of the source data

set, x i is changed to the weighted mean of its

similar samples. The weight is proportional to

the similarity of sample x i and x j (that is the

(i, j)th entry of the kernel KY s). This makes

the variation of similar samples smaller. There-

fore, KX is changed to K̂X :

K̂X =


KX sX s K̂X sX t

K̂X tX s KX tX t

 . (16)

The steps of the algorithm is summarized in

Algorithm 1. Matlab notations are used for

simplicity.

3 Experimental Results

Domain adaptation problem has been

studied extensively in past decades and sev-

eral methods have been developed. In this pa-

per, the proposed method is compared with

MMDE [24] and CODA [25]. MMDE is cho-

sen since a similar measure, MMD, is consid-

ered for estimating the distance between the

probability distributions of the source and tar-

get sets. CODA is chosen as a recently de-

veloped method for solving domain adaptation

problem.

Algorithm 2 Semi-supervised ACA algorithm

1: X d×n ← [X d×ns
s X d×nt

t ]

2: LM ← The MMD kernel on two

clusters of the source and target data sets

3: K̂X tX s ← KX tX s(KY s)

4: K̂X sX t ← (KY s)KX sX t

5: KX sX s ← A kernel on X s. e.g. Linear

6: KX tX t ← A kernel on X t. e.g. Linear

7: K̂X ←


KX sX s K̂X sX t

K̂X tX s KX tX t


8: S := (HK̂XH )

−1
(HLMH )

9: [U V ] := eigs(S , dim, ’LR’)

10: Φs := U (1 : ns, : ).

11: Φt := U (ns + 1 : end, :)

12: Φ = [Φs Φt]

13: return Φ

MMDE has been developed as an unsu-

pervised and semi-supervised algorithm but

our algorithms are compared with its semi-

supervised version. MMDE basically learns

a kernel of the embedded data based on four

constraints/objectives simultaneously: (i) the

distance between the source domain probabil-

ity distribution and that of the target domain

is minimized, (ii) the pairwise distance of the

data samples is preserved locally (The choice

of keeping pairwise distance of some samples

differ in unsupervised and semi-supervised ver-

sions.), (iii) the embedded data is centered, and
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(iv) the variance of the data is maximized. The

optimization problem has been written as Semi

Definite Program (SDP). After obtaining the

kernel, Principle Component Analysis (PCA)

is applied to the kernel to get the new low-

dimensional representation of the data. The

classifier is learned based on the new represen-

tation of the data to predict the labels of the

target domain [24, 26].

CODA learns a target predictor by main-

taining and growing the source domain (i.e. it-

eratively adding target features and samples

that are confident according to the current al-

gorithm.) In each iteration two adapted logistic

regression classifiers have been trained based

on two mutually exclusive views where the co-

training is effective. Then the samples with

exactly one confident classifier, are moved to

the source domain. These samples are classi-

fied correctly and have the potential to improve

the classifier in next iterations [25].

In general, the performance of an unsu-

pervised algorithm will rarely beat the perfor-

mance of a supervised algorithm. However, to

have a better overview, their results are pre-

sented together. It will be shown that US-

ACA, as an unsupervised algorithm, improves

the performance of the algorithm, although it

is not significant. Also, SS-ACA as a super-

vised algorithm has a better performance with

respect to CODA and MMDE. The proposed

algorithms can also be considered as a dimen-

sion reduction technique since they reach the

highest efficiency in lower dimensions and the

related results are depicted later.

3.1 The Kernel on the Response Vari-

ables

In the objective function defined in (11),

KX and LM are assumed to be known.

Then the kernel KX has been changed to

K̂X in SS-ACA. K̂X =


KX sX s K̂X sX t

K̂X tX s KX tX t


where K̂X tX s = KX tX s(KY s) and K̂X sX t =

(KY s)KX sX t . KY s represents the similarity

of the response variables of the source data set

and can be constructed in various forms. With-

out loss of generality, we use delta kernel for Y :

Lij =


1
ny

yi = yj

0 otherwise.

, (17)

where ny is the number of samples in the class

of yi and yj.

Multiplication of the kernel, KY s , with

KX tX s and KX sX t is basically substituting

each sample of the source data set by the

weighted mean of its corresponding similar

samples which makes the variation of the data

along similar samples smaller to even out the
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difference between them.

3.2 Toy Classification Example

We first test our proposed algorithms, US-

ACA and SS-ACA on a toy example. The

source data set consists of 100 samples of the

two dimensional data drawn from a multivari-

ate normal distribution in which the mean is

µs = (−1, 3) and the covariance matrix is

σs =


2 0.5

0.5 2

. The source data set is cate-

gorized in two classes. The samples whose first

feature values are smaller than−1 belong to the

first class, and the ones that their first feature

values are larger than −1 belong to the second

class. The target data set consists of 200 sam-

ples from another random multivariate normal

distribution with different mean, µt = (2, 1)

and similar covariance matrix. The target data

set is also categorized in two classes based on

their first features. A sample belongs to the

first class if its first feature is smaller than 2,

and it belongs to the second class if it is larger

than 2. The values −1 and 2 are the means

of the source and target data set distributions

along the first feature space.

Fig. 1-a demonstrates the data in the orig-

inal feature space and Fig. 1-b and 1-c are the

embedded data where US-ACA and SS-ACA
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Fig. 1. (a) 2-dimensional data in the original space.

Circles, ◦, and crosses, × are two classes of the

source data set and diamonds,�, and stars, ∗, are

two classes of the target data set. (b) and (c) are

the new representation of the data in the new fea-

ture space based on US-ACA and SS-ACA respec-

tively.

algorithms are applied respectively. As it can

be seen, the distance between the embedded

source and target data set distributions is re-

duced. Consequently, the new source data sam-

ples are better representatives of the target

data set. Applying the algorithms and getting

the embedded data, we can classify them using

SVM 1 or any other classifier. As shown in the

Table 1, SVM can classify the data with 41%

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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error rate for the original data. By applying

US-ACA and SS-ACA to the original data, the

error rate is decreased to 5.5% and 2.5% for

this particular sample of data.

Table 1. The error rate of the SVM on the origi-

nal data and on the modified data of US-ACA and

SS-ACA

Algorithms Error rate

Original–SVM 41%

US-ACA –SVM 5.5%

SS-ACA –SVM 2.5%

The proposed algorithms are also com-

pared with MMDE and CODA on the toy ex-

ample. US-ACA, SS-ACA is applied to the

data and 1-NN has been used as a classifier.

The classifier error rate in each cases is depicted

in Figure 2. The error rate is the mean of the

number of misclassified samples. To evaluate

the efficiency of these methods, we have also

classified the original data without any changes

using 1-NN and estimate its corresponding er-

ror rate as the baseline. As It is shown in Figure

2, US-ACA and SS-ACA provide significant im-

provement in the error rate of the classification

process.
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Fig. 2. The error rate comparison for different al-

gorithms and the baseline on the toy example

3.3 Real World Data Sets

In this section, we test the proposed meth-

ods, US-ACA and SS-ACA, on different real

world data sets of images, text and biological

data bases.

The First data set which is a collection of

images, is MNIST handwritten digits 2. This

data set consists of 8-bit gray scale images of

the digits between ”0” and ”9”. The domain

adaptation problem is defined as distinguishing

two different digits of the target data set (e.g.

3 and 4) while the algorithm is trained for dis-

tinguishing two other digits (e.g. 1 and 2). To

test the algorithm using MNIST data set, we

generate different data sets called Digits(1) to

Digits(7) which are shown in Table 2.

2http://yann.lecun.com/exdb/mnist/
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Table 2. Different data set generated from MNIST

database

Name Source Target

Digits(1) 0, 1 3, 4

Digits(2) 5, 7 2, 9

Digits(3) 3, 4 1, 6

Digits(4) 2, 8 3, 9

Digits(5) 6, 9 5, 7

Digits(6) 1, 3 3, 6

Digits(7) 8, 4 3, 2

The source digits in each data set are

showing the two digits that the algorithm is

learned to classify them, while the goal is to

classify the digits of the source data set. These

data sets are randomly chosen among all possi-

ble cases. The number of the source and target

samples are 300 and 500 respectively. The size

of the source and target data sets are fixed for

all of the data sets in Table 2. We have com-

pared the error rate on the data sets defined in

Table 2 for different algorithms and the base-

line in Figure 3.

The dimensionality of the output data in

US-ACA and SS-ACA is set to 2. The new

representation of the data of Digits(1) in 2-
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Fig. 3. The error rate comparison for different al-

gorithms and the baseline on the data sets gener-

ated from MNIST data base. (1) to (7) on the X-

axis stands for Digits(1) to Digits(7) respectively.

dimensional space based on US-ACA and SS-

ACA are depicted in Figure 4-a and 4-b respec-

tively. It is clear that the new representation,

particularly in SS-ACA is significantly better

for classification. To make a fair comparison,

the dimensionality of the output features is 2

and it is constant through all experiments in

this section. It is shown in Figure 3 that SS-

ACA outperforms in comparison with the other

algorithms. We observe that in the case of SS-

ACA, the error rate is on average decreased to

10% approximately which is considerably less

than the error rate of CODA and MMDE. No-

tice that US-ACA is an unsupervised algorithm

and does not consider the information of the re-

sponse variables of the source data set. There-
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Fig. 4. The 2-dimensional representation of Dig-

its(1) data set based on US-ACA and SS-ACA in

(a) and (b) respectively. Circles, ◦, and crosses, ×

are two classes of the source data set. Diamonds,�,

and stars, ∗, are two classes of the target data set

based on labels.

fore, it is not expected to have a performance as

good as the algorithms which are taking advan-

tage of the source data set response variables.

However, the result of US-ACA is reasonable

with respect to the other methods.

The second data, the 20 Newsgroups data

set, consists of about 20,000 newsgroup text

documents, categorized almost evenly across 20

different newsgroups based on their subjects.

Some newsgroups can use common words and

are related to each other (e.g. newsgroups of

IBM hardware and Mac hardware are similar

topics), while the others can use different lan-

guage (e.g. newsgroup about Ads for sale and a

religious topic newsgroup are not similar). This

data set is recategorized into four groups based

on similar topics. The new version is binary oc-

currence of the data for 100 words across 16242

postings 3.

In order to have a domain adaptation

problem, we generate three data sets from this

new version of the 20newsgroups data in which

the data is categorized in 4 groups. ”News-

group1” data set consists of 1000 randomly se-

lected postings from groups 1 and 2 as the

source data set, and 2000 randomly selected

postings from groups 3 and 4 as the target

data set. Similarly, ”Newsgroup2” and ”News-

group3” data sets have the same number of

postings randomly selected from groups 1, 3

and 1, 4 in their source data sets and 2, 4 and

2, 3 in their target data sets respectively. In

each of the artificially generated data set, the

task is to classify the postings of the target data

set while the algorithm is learned based on the

source data set.

3http://www.cs.nyu.edu/ roweis/data.html
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We compare our proposed methods, US-

ACA, SS-ACA with MMDE and CODA on

the Newsgroup1, Newsgroup2 and Newsgroup3

data sets. Their corresponding error rates are

compared with the baseline in Fig. 5. The er-

ror rate is the average error over 10 trials where

in each trial the samples are randomly chosen

from the original data set. As it is depicted

in Fig. 5, the error rate has been decreased

from almost 50% to approximately 35%− 40%

for US-ACA and 25% − 30% for SS-ACA. SS-

ACA outperforms the other methods except in

the second database which is Newsgroup2. For

Newsgroup2 the CODA has a slightly better er-

ror rate, and that could be partly because the

2-dimensional representation of the data is not

appropriate in this case or, because CODA is

initially designed to solve domain adaptation

problem that are characterized by missing fea-

tures, and this is often the case in natural lan-

guage processing while our algorithm is not de-

veloped for a specific type of data.

To test the performance of the proposed al-

gorithm on different types of data sets, we run a

set of classification experiments on several UCI

data sets 4 in which they are biased artificially.

To make an artificial biased data set, the data

is randomly divided into the source and target

data sets. Then an additional variable, si, for

each sample of source data set is defined [16]. si

is set to depend only on one of the sample fea-

tures, therefore, the biasing procedure is called,

simple bias [27]. This additional variable de-

termines whether the corresponding sample is

contributing in the biased source data set or

not. It means if si = 1, then the ith sample is

included in the biased source data set, else it

is excluded. There is also a parameter called

Biasing Ratio. It determines the percentage of

the samples with si = 1 that are included in or

the percentage of the samples with si = 0 that

are excluded from the source data set.
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Fig. 5. The error rate comparison for different al-

gorithms in three data sets. 1, 2 and 3 on the

X-axis stands for Newsgroup1, Newsgroup2 and

Newsgroup3 data sets respectively.

4http://archive.ics.uci.edu/ml
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The Biasing Ratio is 100%, if all the samples

with si = 1 are in and all the samples with

si = 0 are out of the source data set.

The Breast Cancer dataset from the UCI

archive is a biological data set. The data in-

cludes 699 examples from 2 classes: benign

(positive label) and malignant (negative label).

This is a binary classification problem from 9

initial features.

The performance of the US-ACA and SS-

ACA are compared with the baseline, MMDE

and CODA in Fig. 6. The X-axis is the feature

number that the additional variable si depends

on it. We repeat the experiment with different

Biasing Ratios equal to 70%, 80% and 90%. All

the results are depicted in left column of Fig.

6. As can be seen, SS-ACA has better perfor-

mance compared with the other methods.

Another parameter for showing the effi-

ciency of a method is Normalized Improvement

(NI) which quantifies how much algorithm A

outperforms with respect to the algorithm B.

This parameter is estimated as

NI =
|ErrorA − ErrorB|

ErrorA

. (18)

On the right column of Fig. 6 the Normalized

Improvement of SS-ACA with respect to the

baseline is shown. As can be seen after adapt-

ing the domains of source and target data sets,

the performance is improved approximately up
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Fig. 6. (a), (c) and (e) are the error rate com-

parison in different algorithms on Breast Cancer

data set with Biasing Ratio of 70%, 80% and 90%

respectively. The X-axis is showing the features

which the biasing process is based on. (b), (d)

and (f) are the Normalized Improvement of SS-

ACA with respect to the baselines of (a), (c) and

(e) respectively. The bars from left to right corre-

spond to Baseline, US-ACA, SS-ACA, MMDE and

CODA.
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Table 3. Test result on various data sets by different methods. 1-nearest neighbour has been used for

classification.

Data set (ns, nt) Dim. #Feature Classes Baseline SS-ACA MMDE CODA

Wine (47,156) 13 8 3 39.44% 30.99% 48.26% 31.98%

German Credit (213,600) 24 9 2 41.50% 30.06% 40.62% 32.48%

India diabetes (92,568) 8 3 2 42.13% 38.01% 40.71% 40.35%

Ionosphere (64,201) 32 8 2 24.61% 22.29% 26.71% 20.50%

to 50% with respect to the baseline in some

features.

Wine, German Credit, India diabetes and

Ionosphere are the other data sets from UCI

archive where their biasing process is as ex-

plained above, and their biasing ratio is 80%.

The number of source and target data set sam-

ples, the biased feature and also the number

of classes in each data set is depicted in Ta-

ble 3. The error rate of different methods on

these data sets are also available on Table 3.

It shows that SS-ACA outperforms the other

methods in these data sets as well.

As it is mentioned earlier, SS-ACA can

also be used as a dimension reduction tech-

nique. We run the SS-ACA algorithm on dif-

ferent data sets. For Digits(1), Digits(2) and

Digits(3) data sets, the error rates versus the

output dimension which varies from 1 to 784 is

depicted in Fig. 7(a). 784 is the dimensionality

of the data in original space. The error rate is

minimum in low dimensional space.

The changes of the error rate along dif-

ferent dimensions of the Newsgroup2 is also

demonstrated in Fig. 7(b). The error rate is

minimum when the dimension of the data is

about 15-25 in this case. As can be seen the

algorithm has a good performance in low di-

mensions. So SS-ACA can be considered as

a dimension reduction technique as well. The

appropriate dimension in each data set can be

calculated by cross validation in practice.

The running time of the proposed method

is less than MMDE and CODA. The MMDE

optimization problem is modeled as a semidefi-

nite program and CODA is an iterative method

that both consume a lot of time. The proposed

methods has a closed-form solution and it is
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Fig. 7. (a) The error rate changes of SS-ACA vs.

different dimensions on Digits(1), Digits(2) and

Digits(3) data sets. (b) The error rate changes of

SS-ACA vs. different dimensions on Newsgroup2

data set.

faster than MMDE and CODA.

4 Conclusion and future work

We have presented a domain adaptation

algorithm in which the data samples are trans-

ferred to a new feature space. The new rep-

resentation of the data is explored such that

the source and the target data sets in the new

feature space are as close as possible while the

important structural information of the data is

preserved. In order to solve this problem and

satisfy the aforementioned properties, we have

defined a fast optimization problem such that

its solution is known to be eigenvectors of a

given matrix. Our experimental results show

that the algorithm performs well in practice

and has a good efficiency in lower dimensions,

so it can be used as a dimensionality reduction

technique.

To keep the important structure of the

data, we have used a specified kernel over the

data which is modified to involve the valuable

information of the response variables of the

source data beside taking advantage of the data

itself. The proposed kernel is useful for classi-

fication, but an immediate future direction can

be investigating other appropriate kernels that

can utilize the response variable information

beside the structural information of the data

(such that the algorithm is applicable for any

predictive model tasks).

One of the advantages of the proposed

method is that the objective function of the op-

timization problem is independent of the clas-

sifier. It implies any classifier can be used for

classifying the new representation of the data

after applying SS-ACA. However the perfor-

mance of the classifiers can be improved, if

the developed optimization problem simultane-

ously minimizes the error rate of a predictive

model in addition to satisfying our current ob-

jective functions.
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