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Abstract—Given a very large data set distributed over a
cluster of several nodes, this paper addresses the problem of
selecting a few data instances that best represent the entire
data set. The solution to this problem is of a crucial importance
in the big data era as it enables data analysts to understand
the insights of the data and explore its hidden structure. The
selected instances can also be used for data preprocessing
tasks such as learning a low-dimensional embedding of the
data points or computing a low-rank approximation of the
corresponding matrix. The paper first formulates the problem
as the selection of a few representative columns from a matrix
whose columns are massively distributed, and it then proposes
a MapReduce algorithm for selecting those representatives. The
algorithm first learns a concise representation of all columns
using random projection, and it then solves a generalized
column subset selection problem at each machine in which a
subset of columns are selected from the sub-matrix on that
machine such that the reconstruction error of the concise
representation is minimized. The paper then demonstrates the
effectiveness and efficiency of the proposed algorithm through
an empirical evaluation on benchmark data sets.

Keywords-Column Subset Selection; Greedy Algorithms; Dis-
tributed Computing; Big Data; MapReduce;

I. INTRODUCTION

Recent years have witnessed the rise of the big data era
in computing and storage systems. With the great advances
in information and communication technology, hundreds
of petabytes of data are generated, transferred, processed
and stored every day. The availability of this overwhelming
amount of structured and unstructured data creates an acute
need to develop fast and accurate algorithms to discover
useful information that is hidden in the big data. One of the
crucial problems in the big data era is the ability to represent
the data and its underlying information in a succinct format.

Although different algorithms for clustering and dimen-
sion reduction can be used to summarize big data, these
algorithms tend to learn representatives whose meanings are
difficult to interpret. For instance, the traditional clustering
algorithms such as k-means [1] tend to produce centroids
which encode information about thousands of data instances.
The meanings of these centroids are hard to interpret. Even
clustering methods that use data instances as prototypes,
such as k-medoid [2], learn only one representative for
each cluster, which is usually not enough to capture the
insights of the data instances in that cluster. In addition,
using medoids as representatives implicitly assumes that the

data points are distributed as clusters and that the number
of those clusters are known ahead of time. This assumption
is not true for many data sets. On the other hand, traditional
dimension reduction algorithms such as Latent Semantic
Analysis (LSA) [3] tend to learn a few latent concepts in
the feature space. Each of these concepts is represented by
a dense vector which combines thousands of features with
positive and negative weights. This makes it difficult for the
data analyst to understand the meaning of these concepts.
Even if the goal of representative selection is to learn
a low-dimensional embedding of data instances, learning
dimensions whose meanings are easy to interpret allows the
understanding of the results of the data mining algorithms,
such as understanding the meanings of data clusters in the
low-dimensional space.

The acute need to summarize big data to a format that
appeals to data analysts motivates the development of dif-
ferent algorithms to directly select a few representative data
instances and/or features. This problem can be generally
formulated as the selection of a subset of columns from a
data matrix, which is formally known as the Column Subset
Selection (CSS) problem [4], [5], [6]. Although many algo-
rithms have been proposed for tackling the CSS problem,
most of these algorithms focus on randomly selecting a
subset of columns with the goal of using these columns to
obtain a low-rank approximation of the data matrix. In this
case, these algorithms tend to select a relatively large number
of columns. When the goal is to select a very few columns
to be directly presented to a data analyst or indirectly used
to interpret the results of other algorithms, the randomized
CSS methods are not going to produce a meaningful subset
of columns. On the other hand, deterministic algorithms for
CSS, although more accurate, do not scale to work on big
matrices with massively distributed columns.

This paper addresses the aforementioned problem by
presenting a fast and accurate algorithm for selecting a
very few columns from a big data matrix with massively
distributed columns. The algorithm starts by learning a
concise representation of the data matrix using random
projection. Each machine then independently solves a gen-
eralized column subset selection problem in which a subset
of columns is selected from the current sub-matrix such
that the reconstruction error of the concise representation
is minimized. A further selection step is then applied to

This article has been accepted for publication at the 2013 IEEE 13th International Conference on Data Mining

©2013 IEEE DOI 10.1109/ICDM.2013.155



the columns selected at different machines to select the
required number of columns. The proposed algorithm is
designed to be executed efficiently over massive amounts
of data stored on a cluster of several commodity nodes.
In such settings of infrastructure, ensuring the scalability
and the fault tolerance of data processing jobs is not a
trivial task. In order to alleviate these problems, MapReduce
[7] was introduced to simplify large-scale data analytics
over a distributed environment of commodity machines.
Currently, MapReduce (and its open source implementation
Hadoop [8]) is considered the most successful and widely-
used framework for managing big data processing jobs.
The approach proposed in this paper considers the different
aspects of developing MapReduce-efficient algorithms.

The contributions of the paper can be summarized as
follows:
• The paper proposes an algorithm for distributed Col-

umn Subset Selection (CSS) which first learns a con-
cise representation of the data matrix and then selects
columns from distributed sub-matrices that approximate
this concise representation.

• To facilitate CSS from different sub-matrices, a fast and
accurate algorithm for generalized CSS is proposed.
This algorithm greedily selects a subset of columns
from a source matrix which approximates the columns
of a target matrix.

• A MapReduce-efficient algorithm is proposed for learn-
ing a concise representation using random projection.
The paper also presents a MapReduce algorithm for
distributed CSS which only requires two passes over
the data with a very low communication overhead.

• Large-scale experiments have been conducted on
benchmark data sets in which different methods for
CSS are compared.

The rest of the paper is organized as follows. Section II
describes the notations used throughout the paper. Section
III gives a brief background on the CSS problem. Section IV
describes a centralized greedy algorithm for CSS, which is
the core of the distributed algorithm presented in this paper.
Section V gives a necessary background on the framework
of MapReduce. The proposed MapReduce algorithm for
distributed CSS is described in details in Section VI. Section
VII reviews the state-of-the-art CSS methods and their
applicability to distributed data. In Section VIII, an empirical
evaluation of the proposed method is described. Finally,
Section IX concludes the paper.

II. NOTATIONS

The following notations are used throughout the paper
unless otherwise indicated. Scalars are denoted by small
letters (e.g., m, n), sets are denoted in script letters (e.g.,
S, R), vectors are denoted by small bold italic letters (e.g.,
f , g), and matrices are denoted by capital letters (e.g., A,
B). The subscript (i) indicates that the variable corresponds

to the i-th block of data in the distributed environment. In
addition, the following notations are used:
For a set S:
|S| the cardinality of the set.

For a vector x ∈ Rm:
xi i-th element of x.
‖x‖ the Euclidean norm (`2-norm) of x.

For a matrix A ∈ Rm×n:
Aij (i, j)-th entry of A.
Ai: i-th row of A.
A:j j-th column of A.
A:S the sub-matrix of A which consists of the

set S of columns.
AT the transpose of A.
‖A‖F the Frobenius norm of A: ‖A‖F =√

Σi,jA2
ij .

Ã a low rank approximation of A.
ÃS a rank-l approximation of A based on the

set S of columns, where |S| = l.

III. COLUMN SUBSET SELECTION (CSS)

The Column Subset Selection (CSS) problem can be
generally defined as the selection of the most represen-
tative columns of a data matrix [4], [5], [6]. The CSS
problem generalizes the problem of selecting representative
data instances as well as the unsupervised feature selection
problem. Both are crucial tasks, that can be directly used
for data analysis or as pre-processing steps for developing
fast and accurate algorithms in data mining and machine
learning.

Although different criteria for column subset selection
can be defined, a common criterion that has been used in
much recent work measures the discrepancy between the
original matrix and the approximate matrix reconstructed
from the subset of selected columns [9], [10], [11], [12],
[13], [4], [5], [6], [14]. Most of the recent work either
develops CSS algorithms that directly optimize this criterion
or uses this criterion to assess the quality of the proposed
CSS algorithms. In the present work, the CSS problem is
formally defined as

Problem 1: (Column Subset Selection) Given an m×n
matrix A and an integer l, find a subset of columns L such
that |L| = l and

L = arg min
S

‖A− P (S)A‖2F ,

where P (S) is an m ×m projection matrix which projects
the columns of A onto the span of the candidate columns
A:S .

The criterion F (S) = ‖A−P (S)A‖2F represents the sum
of squared errors between the original data matrix A and its
rank-l column-based approximation (where l = |S|),

ÃS = P (S)A . (1)
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In other words, the criterion F (S) calculates the Frobe-
nius norm of the residual matrix E = A−ÃS . Other types of
matrix norms can also be used to quantify the reconstruction
error. Some of the recent work on the CSS problem [4], [5],
[6] derives theoretical bounds for both the Frobenius and
spectral norms of the residual matrix. The present work,
however, focuses on developing algorithms that minimize
the Frobenius norm of the residual matrix.

The projection matrix P (S) can be calculated as

P (S) = A:S
(
AT

:SA:S
)−1

AT
:S , (2)

where A:S is the sub-matrix of A which consists of the
columns corresponding to S. It should be noted that if S is
known, the term

(
AT

:SA:S
)−1

AT
:SA is the closed-form solu-

tion of least-squares problem T ∗ = arg min
T

‖A−A:ST‖2F .

The set of selected columns (i.e., data instances or fea-
tures) can be directly presented to a data analyst to learn
about the insights of the data, or they can be used to
preprocess the data for further analysis. For instance, the
selected columns can be used to obtain a low-dimensional
representation of all columns into the subspace of selected
ones. This representation can be obtained by calculating
an orthogonal basis for the selected columns Q and then
embedding all columns of A into the subspace of Q as
W = QTA. The selected columns can also be used to
calculate a column-based low-rank approximation of A [12].
Moreover, the leading singular values and vectors of the low-
dimensional embedding W can be used to approximate those
of the data matrix.

IV. GREEDY CSS

The column subset selection criterion presented in Section
III measures the reconstruction error of a data matrix based
on the subset of selected columns. The minimization of
this criterion is a combinatorial optimization problem whose
optimal solution can be obtained in O

(
nlmnl

)
[5]. This

section briefly describes a deterministic greedy algorithm for
optimizing this criterion, which extends the greedy method
for unsupervised feature selection recently proposed by
Farahat et al. [15], [16]. A brief description of this method
is included in this section for completeness. The reader is
referred to [16] for the proofs of the different formulas
presented in this section.

The greedy CSS [16] is based the following recursive
formula for the CSS criterion.

Theorem 1: Given a set of columns S . For any P ⊂ S,

F (S) = F (P)− ‖ẼR‖2F ,

where E = A − P (P)A, and ẼR is the low-rank approxi-
mation of E based on the subset R = S \ P of columns.

Proof: See [16, Theorem 2].
The term ‖ẼR‖2F represents the decrease in reconstruction

error achieved by adding the subset R of columns to P .

This recursive formula allows the development of an efficient
greedy algorithm that approximates the optimal solution of
the column subset selection problem. At iteration t, the goal
is to find column p such that

p = arg min
i

F (S ∪ {i}) , (3)

where S is the set of columns selected during the first t− 1
iterations.

Let G be an n × n matrix which represents the inner-
products over the columns of the residual matrix E, i.e.,
G = ETE. The greedy selection problem can be simplified
to (See [16, Section 6])

Problem 2: (Greedy Column Subset Selection) At iter-
ation t, find column p such that

p = arg max
i

‖G:i‖2

Gii

where G = ETE, E = A− ÃS and S is the set of columns
selected during the first t− 1 iterations.

For iteration t, define δ = G:p and ω = G:p/
√
Gpp =

δ/
√
δp . The vector δ(t) can be calculated in terms of A

and previous ω’s as

δ(t) = ATA:p −
t−1∑
r=1

ω(r)
p ω(r) . (4)

The numerator and denominator of the selection criterion
at each iteration can be calculated in an efficient manner
without explicitly calculating E or G using the following
theorem.

Theorem 2: Let f i = ‖G:i‖2 and gi = Gii be the
numerator and denominator of the criterion function for
column i respectively, f = [f i]i=1..n, and g = [gi]i=1..n.
Then,

f (t) =
(
f − 2

(
ω ◦

(
ATAω − Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)

.

where ◦ represents the Hadamard product operator.
Proof: See [16, Theorem 4].

Algorithm 1 shows the complete greedy CSS algorithm.
The distributed CSS algorithm presented in this paper intro-
duces a generalized variant of the greedy CSS algorithm
in which a subset of columns is selected from a source
matrix such that the reconstruction error of a target matrix
is minimized. The distributed CSS method uses the greedy
generalized CSS algorithm as the core method for selecting
columns at different machines as well as in the final selection
step.
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Algorithm 1 Greedy Column Subset Selection
Input: Data matrix A, Number of columns l
Output: Selected subset of columns S

1: Initialize S = { }
2: Initialize f (0)

i = ‖ATA:i‖2, g(0)
i = AT

:iA:i for i = 1...n
3: Repeat t = 1→ l:
4: p = arg max

i
f

(t)
i /g

(t)
i , S = S ∪ {p}

5: δ(t) = ATA:p −
∑t−1

r=1 ω
(r)
p ω(r)

6: ω(t) = δ(t)/
√
δ(t)
p

7: Update f i’s, gi’s (Theorem 2)

V. MAPREDUCE PARADIGM

MapReduce [7] was presented as a programming model
to simplify large-scale data analytics over a distributed
environment of commodity machines. The rationale behind
MapReduce is to impose a set of constraints on data access
at each individual machine and communication between
different machines to ensure both the scalability and fault-
tolerance of the analytical tasks. Currently, MapReduce is
considered the de-facto solution for many data analytics
tasks over large distributed clusters [17], [18].

A MapReduce job is executed in two phases of user-
defined data transformation functions, namely, map and
reduce phases. The input data is split into physical blocks
distributed among the nodes. Each block is viewed as a list
of key-value pairs. In the first phase, the key-value pairs of
each input block b are processed by a single map function
running independently on the node where the block b is
stored. The key-value pairs are provided one-by-one to the
map function. The output of the map function is another
set of intermediate key-value pairs. The values associated
with the same key across all nodes are grouped together
and provided as an input to the reduce function in the
second phase. Different groups of values are processed in
parallel on different machines. The output of each reduce
function is a third set of key-value pairs and collectively
considered the output of the job. It is important to note that
the set of the intermediate key-value pairs is moved across
the network between the nodes which incurs significant
additional execution time when much data are to be moved.
For complex analytical tasks, multiple jobs are typically
chained together [17] and/or many rounds of the same job
are executed on the input data set [18].

In addition to the programming model constraints, Karloff
et al. [19] defined a set of computational constraints that
ensure the scalability and the efficiency of MapReduce-
based analytical tasks. These computational constraints limit
the used memory size at each machine, the output size of
both the map and reduce functions and the number of rounds
used to complete a certain tasks.

The MapReduce algorithms presented in this paper ad-

here to both the programming model constraints and the
computational constraints. The proposed algorithm aims also
at minimizing the overall running time of the distributed
column subset selection task to facilitate interactive data
analytics.

VI. DISTRIBUTED CSS ON MAPREDUCE

This section describes a MapReduce algorithm for the
distributed column subset selection problem. Given a big
data matrix A whose columns are distributed across different
machines, the goal is to select a subset of columns S from
A such that the CSS criterion F (S) is minimized.

One naı̈ve approach to perform distributed column subset
selection is to select different subsets of columns from
the sub-matrices stored on different machines. The selected
subsets are then sent to a centralized machine where an
additional selection step is optionally performed to filter
out irrelevant or redundant columns. Let A(i) be the sub-
matrix stored at machine i, the naı̈ve approach optimizes
the following function.

c∑
i=1

∥∥∥A(i) − P (L(i))A(i)

∥∥∥2

F
, (5)

where L(i) is the set of columns selected from A(i) and c is
the number of physical blocks of data. The resulting set of
columns is the union of the sets selected from different sub-
matrices: L = ∪ci=1L(i). The set L can further be reduced
by invoking another selection process in which a smaller
subset of columns is selected from A:L.

The naı̈ve approach, however simple, is prone to missing
relevant columns. This is because the selection at each
machine is based on approximating a local sub-matrix,
and accordingly there is no way to determine whether the
selected columns are globally relevant or not. For instance,
suppose the extreme case where all the truly representative
columns happen to be loaded on a single machine. In this
case, the algorithm will select a less-than-required number
of columns from that machine and many irrelevant columns
from other machines.

In order to alleviate this problem, the different machines
have to select columns that best approximate a common
representation of the data matrix. To achieve that, the
proposed algorithm first learns a concise representation of
the span of the big data matrix. This concise representation
is relatively small and it can be sent over to all machines.
After that each machine can select columns from its sub-
matrix that approximate this concise representation. The
proposed algorithm uses random projection to learn this
concise representation, and proposes a generalized Column
Subset Selection (CSS) method to select columns from
different machines. The details of the proposed methods are
explained in the rest of this section.
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A. Random Projection
The first step of the proposed algorithm is to learn a

concise representation B for a distributed data matrix A.
In the proposed approach, a random projection method is
employed. Random projection [20][21][22] is a well-known
technique for dealing with the curse-of-the-dimensionality
problem. Let Ω be a random projection matrix of size n×r,
and given a data matrix X of size m × n, the random
projection can be calculated as Y = XΩ. It has been
shown that applying random projection Ω to X preserves
the pairwise distances between vectors in the row space of
X with a high probability [20]:

(1− ε) ‖Xi: −Xj:‖ ≤ ‖Xi:Ω−Xj:Ω‖
≤ (1 + ε) ‖Xi: −Xj:‖ ,

(6)

where ε is an arbitrarily small factor.
Since the CSS criterion F (S) measures the reconstruction

error between the big data matrix A and its low-rank
approximation P (S)A, it essentially measures the sum of
the distances between the original rows and their approxi-
mations. This means that when applying random projection
to both A and P (S)A, the reconstruction error of the original
data matrix A will be approximately equal to that of AΩ
when both are approximated using the subset of selected
columns:

‖A− P (S)A‖2F ≈ ‖AΩ− P (S)AΩ‖2F . (7)

So, instead of optimizing ‖A − P (S)A‖2F , the distributed
CSS can approximately optimize ‖AΩ− P (S)AΩ‖2F .

Let B = AΩ, the distributed column subset selection
problem can be formally defined as

Problem 3: (Distributed Column Subset Selection)
Given an m× n(i) sub-matrix A(i) which is stored at node
i and an integer l(i), find a subset of columns L(i) such that
|L(i)| = l(i) and

L(i) = arg min
S
‖B − P (S)B‖2F ,

where B = AΩ, Ω is an n× r random projection matrix, S
is the set of the indices of the candidate columns and L(i)

is the set of the indices of the selected columns from A(i).
A key observation here is that random projection matrices

whose entries are sampled i.i.d from some univariate distri-
bution Ψ can be exploited to compute random projection
on MapReduce in a very efficient manner. Examples of
such matrices are Gaussian random matrices [20], uniform
random sign (±1) matrices [21], and sparse random sign
matrices [22].

In order to implement random projection on MapReduce,
the data matrix A is distributed in a column-wise fashion
and viewed as pairs of 〈i, A:i〉 where A:i is the i-th column
of A. Recall that B = AΩ can be rewritten as

B =

n∑
i=1

A:iΩi: (8)

Algorithm 2 Fast Random Projection on MapReduce
Input: Data matrix A, Univariate distribution Ψ, Number of
dimensions r
Output: Concise representation B = AΩ, Ωij ∼ Ψ ∀i, j

1: map:
2: B̄ = [0]m×r
3: foreach 〈i, A:i〉
4: Generate v = [v1, v2, ...vr], vj ∼ Ψ
5: B̄ = B̄ +A:iv
6: for j = 1 to m
7: emit 〈j, B̄j:〉

8: reduce:
9: foreach 〈j,

[
[B̄(1)]j:, [B̄(2)]j:, ..., [B̄(c)]j:

]
〉

10: Bj: =
∑c

i=1[B̄(i)]j:

11: emit 〈j, Bj:〉

and since the map function is provided one column of A at
a time, one does not need to worry about pre-computing
the full matrix Ω. In fact, for each input column A:i, a
new vector Ωi: needs to be sampled from Ψ. So, each input
column generates a matrix of size m× r which means that
O(nmr) data should be moved across the network to sum
the generated n matrices at m independent reducers each
summing a row Bj: to obtain B. To minimize that network
cost, an in-memory summation can be carried out over the
generated m × r matrices at each mapper. This can be
done incrementally after processing each column of A. That
optimization reduces the network cost to O(cmr), where c
is the number of physical blocks of the matrix1. Algorithm
2 outlines the proposed random projection algorithm. The
term emit is used to refer to outputting new 〈key, value〉
pairs from a mapper or a reducer.

B. Generalized CSS

This section presents the generalized column subset selec-
tion algorithm which will be used to perform the selection
of columns at different machines. While Problem 1 is
concerned with the selection of a subset of columns from
a data matrix which best represent other columns of the
same matrix, Problem 3 selects a subset of columns from a
source matrix which best represent the columns of a different
target matrix. The objective function of Problem 3 represents
the reconstruction error of the target matrix B based on
the selected columns from the source matrix. and the term
P (S) = A:S

(
AT

:SA:S
)−1

AT
:S is the projection matrix which

projects the columns of B onto the subspace of the columns
selected from A.

In order to optimize this new criterion, a greedy algorithm
can be introduced. Let F̄ (S) =

∥∥B − P (S)B
∥∥2

F
be the

1The in-memory summation can also be replaced by a MapReduce
combiner [7].
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distributed CSS criterion, the following theorem derives a
recursive formula for F̄ (S).

Theorem 3: Given a set of columns S . For any P ⊂ S,

F̄ (S) = F̄ (P)−
∥∥∥F̃R∥∥∥2

F
,

where F = B − P (P)B, and F̃R is the low-rank approxi-
mation of F based on the subset R = S \ P of columns of
E = A− P (P)A.

Proof: Using the recursive formula for the low-rank
approximation of A: ÃS = ÃP + ẼR, and multiplying both
sides with Ω gives

ÃSΩ = ÃPΩ + ẼRΩ .

Low-rank approximations can be written in terms of projec-
tion matrices as

P (S)AΩ = P (P)AΩ +R(R)EΩ .

Using B = AΩ,

P (S)B = P (P)B +R(R)EΩ .

Let F = EΩ. The matrix F is the residual after approxi-
mating B using the set P of columns

F = EΩ =
(
A− P (P)A

)
Ω = AΩ−P (P)AΩ = B−P (P)B.

This means that

P (S)B = P (P)B +R(R)F

Substituting in F̄ (S) =
∥∥B − P (S)B

∥∥2

F
gives

F̄ (S) =
∥∥∥B − P (P)B −R(R)F

∥∥∥2

F

Using F = B − P (P)B gives

F̄ (S) =
∥∥∥F −R(R)F

∥∥∥2

F

Using the relation between Frobenius norm and trace,

F̄ (S) = trace
((

F −R(R)F
)T (

F −R(R)F
))

= trace
(
FTF − 2FTR(R)F + FTR(R)R(R)F

)
= trace

(
FTF − FTR(R)F

)
= ‖F‖2F −

∥∥∥R(R)F
∥∥∥2

F

Using F̄ (P) = ‖F‖2F and F̃R = R(R)F proves the
theorem.

Using the recursive formula for F̄ (S ∪ {i}) allows the
development of a greedy algorithm which at iteration t
optimizes

p = arg min
i

F̄ (S ∪ {i}) = arg max
i

∥∥∥F̃{i}∥∥∥2

F
(9)

Algorithm 3 Greedy Generalized Column Subset Selection
Input: Source matrix A, Target matrix B, Number of
columns l
Output: Selected subset of columns S

1: Initialize f (0)
i = ‖BTA:i‖2, g(0)

i = AT
:iA:i for i = 1...n

2: Repeat t = 1→ l:
3: p = arg max

i
f

(t)
i /g

(t)
i , S = S ∪ {p}

4: δ(t) = ATA:p −
∑t−1

r=1 ω
(r)
p ω(r)

5: γ(t) = BTA:p −
∑t−1

r=1 ω
(r)
p υ(r)

6: ω(t) = δ(t)/
√
δ(t)
p , υ(t) = γ(t)/

√
δ(t)
p

7: Update f i’s, gi’s (Theorem 4)

Let G = ETE and H = FTE, the objective function of
this optimization problem can be simplified as follows.∥∥∥F̃{i}∥∥∥2

F
=
∥∥∥E:i

(
ET

:iE:i

)−1
ET

:iF
∥∥∥2

F

= trace
(
FTE:i

(
ET

:iE:i

)−1
ET

:iF
)

=

∥∥FTE:i

∥∥2

ET
:iE:i

=
‖H:i‖2

Gii
.

(10)

This allows the definition of the following generalized
CSS problem.

Problem 4: (Greedy Generalized CSS) At iteration t,
find column p such that

p = arg max
i

‖H:i‖2

Gii

where H = FTE, G = ETE, F = B − P (S)B, E =
A−P (S)A and S is the set of columns selected during the
first t− 1 iterations.

For iteration t, define γ = H:p and υ = H:p/
√
Gpp =

γ/
√
δp . The vector γ(t) can be calculated in terms of A, B

and previous ω’s and υ’s as γ(t) = BTA:p−
∑t−1

r=1 ω
(r)
p υ(r).

Similarly, the numerator and denominator of the selection
criterion at each iteration can be calculated in an efficient
manner using the following theorem.

Theorem 4: Let f i = ‖H:i‖2 and gi = Gii be the nu-
merator and denominator of the greedy criterion function for
column i respectively, f = [f i]i=1..n, and g = [gi]i=1..n.
Then,

f (t) =
(
f − 2

(
ω ◦

(
ATBυ − Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)

,

where ◦ represents the Hadamard product operator.
As outlined in Section VI-A, the algorithm’s distribution

strategy is based on sharing the concise representation of the
data B among all mappers. Then, independent l(b) columns
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Algorithm 4 Distributed CSS on MapReduce
Input: Matrix A of size m× n, Concise representation B,
Number of columns l
Output: Selected columns C

1: map:
2: A(b) = [ ]
3: foreach 〈i, A:i〉
4: A(b) = [A(b) A:i]
5: S̄ = GeneralizedCSS(A(b), B, l(b))
6: foreach j in S̄
7: emit 〈0, [A(b)]:j〉

8: reduce:
9: For all values {[A(1)]:S̄(1) , [A(2)]:S̄(2) , ...., [A(c)]:S̄(c)}

10: A(0) =
[
[A(1)]:S̄(1) , [A(2)]:S̄(2) , ...., [A(c)]:S̄(c)

]
11: S = GeneralizedCSS (A(0), B, l)
12: foreach j in S
13: emit 〈0, [A(0)]:j〉

from each mapper are selected using the generalized CSS
algorithm. A second phase of selection is run over the∑c

b=1 l(b) (where c is the number of input blocks) columns
to find the best l columns to represent B. Different ways
can be used to set l(b) for each input block b. In the
context of this paper, the set of l(b) is assigned uniform
values for all blocks (i.e. l(b) = bl/cc∀b ∈ 1, 2, ..c). Other
methods are to be considered in future extensions. Algorithm
4 sketches the MapReduce implementation of the distributed
CSS algorithm. It should be emphasized that the proposed
MapReduce algorithm requires only two passes over the data
set and its moves a very few amount of the data across the
network.

VII. RELATED WORK

Different approaches have been proposed for selecting a
subset of representative columns from a data matrix. This
section focuses on briefly describing these approaches and
their applicability to massively distributed data matrices. The
Column Subset Selection (CSS) methods can be generally
categorized into randomized, deterministic and hybrid.

The randomized methods sample a subset of columns
from the original matrix using carefully chosen sampling
probabilities. Frieze et al. [9] was the first to suggest the
idea of randomly sampling l columns from a matrix and
using these columns to calculate a rank-k approximation
of the matrix (where l ≥ k). That work of Frieze et al.
was followed by different papers [10], [11] that enhanced
the algorithm by proposing different sampling probabilities.
Drineas et al. [12] proposed a subspace sampling method
which samples columns using probabilities proportional to
the norms of the rows of the top k right singular vectors
of A. Deshpande et al. [13] proposed an adaptive sampling

method which updates the sampling probabilities based on
the columns selected so far.

Column subset selection with uniform sampling can
be easily implemented on MapReduce. For non-uniform
sampling, the efficiency of implementing the selection on
MapReduce is determined by how easy are the calculations
of the sampling probabilities. The calculations of probabil-
ities that depend on calculating the leading singular values
and vectors are time-consuming on MapReduce. On the
other hand, adaptive sampling methods are computationally
very complex as they depend on calculating the residual of
the whole data matrix after each iteration.

The second category of methods employs a deterministic
algorithm for selecting columns such that some criterion
function is minimized. This criterion function usually quan-
tifies the reconstruction error of the data matrix based on
the subset of selected columns. The deterministic methods
are slower, but more accurate, than the randomized ones.
In the area of numerical linear algebra, the column pivoting
method exploited by the QR decomposition [23] permutes
the columns of the matrix based on their norms to enhance
the numerical stability of the QR decomposition algorithm.
The first l columns of the permuted matrix can be directly
selected as representative columns. Besides methods based
on QR decomposition, different recent methods have been
proposed for directly selecting a subset of columns from
the data matrix. Boutsidis et al. [4] proposed a deterministic
column subset selection method which first groups columns
into clusters and then selects a subset of columns from
each cluster. Çivril and Magdon-Ismail [14] presented a
deterministic algorithm which greedily selects columns from
the data matrix that best represent the right leading singular
values of the matrix. Recently, Boutsidis et al. [6] presented
a column subset selection algorithm which first calculates
the top-k right singular values of the data matrix (where k
is the target rank) and then uses deterministic sparsification
methods to select l ≥ k columns from the data matrix.
Besides, other deterministic algorithms have been proposed
for selecting columns based on the volume defined by them
and the origin [24], [25].

The deterministic algorithms are more complex to im-
plement on MapReduce. For instance, it is time-consuming
to calculate the leading singular values and vectors of a
massively distributed matrix or to cluster their columns using
k-means. It is also computationally complex to calculate
QR decomposition with pivoting. Moreover, the recently
proposed algorithms for volume sampling are more complex
than other CSS algorithms as well as the one presented in
this paper, and they are infeasible for large data sets.

A third category of CSS techniques is the hybrid methods
which combine the benefits of both the randomized and
deterministic methods. In these methods, a large subset of
columns is randomly sampled from the columns of the data
matrix and then a deterministic step is employed to reduce
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Table I
THE PROPERTIES OF THE DATA SETS USED TO EVALUATE THE

DISTRIBUTED CSS METHOD.

Data set Type # Instances # Features
RCV1-200K Documents 193,844 47,236

TinyImages-1M Images 1 million 1,024

the number of selected columns to the desired rank. For
instance, Boutsidis et al. [5] proposed a two-stage hybrid
CSS algorithm which first samples O (l log l) columns based
on probabilities calculated using the l-leading right singular
vectors, and then employs a deterministic algorithm to select
exactly l columns from the columns sampled in the first
stage. However, the algorithm depends on calculating the
leading l right singular vectors which is time-consuming for
large data sets.

The hybrid algorithms for CSS can be easily imple-
mented on MapReduce if the randomized selection step is
MapReduce-efficient and the deterministic selection step can
be implemented on a single machine. This is usually true if
the number of columns selected by the randomized step is
relatively small.

In comparison to other CSS methods, the algorithm pro-
posed in this paper is designed to be MapReduce-efficient.
In the distributed selection step, representative columns are
selected based on a common representation. The common
representation proposed in this work is based on random
projection. This is more efficient than the work of Çivril
and Magdon-Ismail [14] which selects columns based on
the leading singular vectors. In comparison to other de-
terministic methods, the proposed algorithm is specifically
designed to be parallelized which makes it applicable to big
data matrices whose columns are massively distributed. On
the other hand, the two-step of distributed then centralized
selection is similar to that of the hybrid CSS methods.
The proposed algorithm however employs a deterministic
algorithm at the distributed selection phase which is more
accurate than the randomized selection employed by hybrid
methods in the first phase.

VIII. EXPERIMENTS

Experiments have been conducted on two big data sets
to evaluate the efficiency and effectiveness of the proposed
distributed CSS algorithm on MapReduce. The properties of
the data sets are described in Table I. The RCV1-200K is a
subset of the RCV1 data set [26] which has been prepared
and used by Chen et al. [27] to evaluate parallel spectral
clustering algorithms. The TinyImages-1M data set contains
1 million images that were sampled from the 80 million tiny
images data set [28] and converted to grayscale.

Similar to previous work on CSS, the different methods
are evaluated according to their ability to minimize the
reconstruction error of the data matrix based on the subset
of selected columns. In order to quantify the reconstruction

error across different data sets, a relative accuracy measure
is defined as

Relative Accuracy =
‖A− ÃU‖F − ‖A− ÃS‖F
‖A− ÃU‖F − ‖A− Ãl‖F

× 100% ,

where ÃU is the rank-l approximation of the data matrix
based on a random subset U of columns, ÃS is the rank-l
approximation of the data matrix based on the subset S of
columns and Ãl is the best rank-l approximation of the data
matrix calculated using the Singular Value Decomposition
(SVD). This measure compares different methods relative
to the uniform sampling as a baseline with higher values
indicating better performance.

The experiments were conducted on Amazon EC22 clus-
ters, which consist of 10 instances for the RCV1-200K data
set and 20 instances for the TinyImages-1M data set. Each
instance has a 7.5 GB of memory and a two-cores processor.
All instances are running Debian 6.0.5 and Hadoop version
1.0.3. The data sets were converted into a binary format
in the form of a sequence of key-value pairs. Each pair
consisted of a column index as the key and a vector of the
column entries. That is the standard format used in Mahout3

for storing distributed matrices.
The distributed CSS method has been compared with

different state-of-the-art methods. It should be noted that
most of these methods were not designed with the goal
of applying them to massively-distributed data, and hence
their implementation on MapReduce is not straightforward.
However, the designed experiments used the best practices
for implementing the different steps of these methods on
MapReduce to the best of the authors’ knowledge. In
specific, the following distributed CSS algorithms were
compared.
• UniNoRep: is uniform sampling of columns without re-

placement. This is usually the worst performing method
in terms on approximation error and it will be used as a
baseline to evaluate methods across different data sets.

• HybirdUni, HybirdCol and HybirdSVD: are different
distributed variants of the hybrid CSS algorithm which
can be implemented efficiently on MapReduce. In the
randomized phase, the three methods use probabilities
calculated based on uniform sampling, column norms
and the norms of the leading singular vectors’ rows,
respectively. The number of selected columns in the
randomized phase is set to l log (l). In the deterministic
phase, the centralized greedy CSS is employed to select
exactly l columns from the randomly sampled columns.

• DistApproxSVD: is an extension of the centralized
algorithm for sparse approximation of Singular Value
Decomposition (SVD) [14]. The distributed CSS algo-
rithm presented in this paper (Algorithm 4) is used

2Amazon Elastic Compute Cloud (EC2): http://aws.amazon.com/ec2
3Mahout is an Apache project for implementing Machine Learning

algorithms on Hadoop. See http://mahout.apache.org/.
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Table II
THE RUN TIMES AND RELATIVE ACCURACIES OF DIFFERENT CSS METHODS. THE BEST PERFORMING METHOD FOR EACH l IS HIGHLIGHTED IN BOLD,

AND THE SECOND BEST METHOD IS UNDERLINED. NEGATIVE MEASURES INDICATE METHODS THAT PERFORM WORSE THAN UNIFORM SAMPLING.

Methods Run time (minutes) Relative accuracy (%)
l = 10 l = 100 l = 500 l = 10 l = 100 l = 500

RCV1 - 200K
Uniform - Baseline 0.6 0.6 0.5 0.00 0.00 0.00
Hybird (Uniform) 0.8 0.8 2.9 -2.37 -1.28 4.49

Hybird (Column Norms) 1.6 1.5 3.7 4.54 0.81 6.60
Hybird (SVD-based) 1.3 1.4 3.6 9.00 12.10 18.43

Distributed Approx. SVD 16.6 16.7 18.8 41.50 57.19 63.10
Distributed Greedy CSS (rnd) 5.8 6.2 7.9 51.76 61.92 67.75
Distributed Greedy CSS (ssgn) 2.2 2.9 5.1 40.30 62.41 67.91

Tiny Images - 1M
Uniform - Baseline 1.3 1.3 1.3 0.00 0.00 0.00
Hybird (Uniform) 1.5 1.7 8.3 19.99 6.85 6.50

Hybird (Column Norms) 3.3 3.4 9.4 17.28 3.57 7.80
Hybird (SVD-based) 52.4 52.5 59.4 3.59 8.57 10.82

Distributed Approx. SVD 71.0 70.8 75.2 70.02 31.05 24.49
Distributed Greedy CSS (ssgn) 22.1 23.6 24.2 67.58 25.18 20.74

to select columns that best approximate the leading
singular vectors (by setting B = UkΣk). The use
of the distributed CSS algorithm extends the original
algorithm proposed by Çivril and Magdon-Ismail [14]
to work on distributed matrices. In order to allow
efficient implementation on MapReduce, the number of
leading singular vectors is set of 100.

• DistGreedyCSS: is the distributed column subset selec-
tion method described in Algorithm 4. For all experi-
ments, the dimension of the random projection matrix
is set to 100. This makes the size of the concise
representation the same as the DistApproxSVD method.
Two types of random matrices are used for random
projection: (1) a dense Gaussian random matrix (rnd),
and (2) a sparse random sign matrix (ssgn).

For the methods that require the calculations of Singular
Value Decomposition (SVD), the Stochastic SVD (SSVD)
algorithm [29] is used to approximate the leading singular
values and vectors of the data matrix. The use of SSVD
significantly reduces the run time of the original SVD-
based algorithms while achieving comparable accuracy. In
the conducted experiments, the SSVD implementation of
Mahout was used.

Table II shows the run times and relative accuracies for
different CSS methods. It can be observed from the table that
for the RCV1-200K data set, the DistGreedyCSS methods
(with random Gaussian and sparse random sing matrices)
outperforms all other methods in terms of relative accuracies.
In addition, the run times of both of them are relatively small
compared to the DistApproxSVD method which achieves
accuracies that are close to the DistGreedyCSS method.
Both the DistApproxSVD and DistGreedyCSS methods
achieve very good approximation accuracies compared to
randomized and hybrid methods. It should also be noted that
using a sparse random sign matrix for random projection
takes much less time than a dense Gaussian matrix, while

achieving comparable approximation accuracies. Based on
this observation, the sparse random matrix has been used
with the TinyImages-1M data set.

For the TinyImages-1M data set, although the DistAp-
proxSVD achieves slightly higher approximation accuracies
than DistGreedyCSS (with sparse random sign matrix), the
DistGreedyCSS selects columns in almost one-third of the
time. The reason why the DistApproxSVD outperforms
DistGreedyCSS for this data set is that its rank is relatively
small (less than 1024). This means that using the leading 100
singular values to represent the concise representation of the
data matrix captures most of the information in the matrix
and accordingly is more accurate than random projection.
The DistGreedyCSS however still selects a very good subset
of columns in a relatively small time.

IX. CONCLUSION

This paper proposes an accurate and efficient MapReduce
algorithm for selecting a subset of columns from a massively
distributed matrix. The algorithm starts by learning a concise
representation of the data matrix using random projection. It
then selects columns from each sub-matrix that best approxi-
mate this concise approximation. A centralized selection step
is then performed on the columns selected from different
sub-matrices. In order to facilitate the implementation of the
proposed method, a novel algorithm for greedy generalized
CSS is proposed to perform the selection from different sub-
matrices. In addition, the different steps of the algorithms are
carefully designed to be MapReduce-efficient. Experiments
on big data sets demonstrate the effectiveness and efficiency
of the proposed algorithm in comparison to other CSS
methods when implemented on distributed data.
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